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computational evidence 
for nonlinear feedforward 
modulation of fusimotor drive 
to antagonistic co‑contracting 
muscles
Russell L. Hardesty1, Matthew t. Boots2,3, Sergiy Yakovenko2,3,4 & Valeriya Gritsenko 1,3,4*

the sensorimotor integration during unconstrained reaching movements in the presence of variable 
environmental forces remains poorly understood. the objective of this study was to quantify how 
much the primary afferent activity of muscle spindles can contribute to shaping muscle coactivation 
patterns during reaching movements with complex dynamics. to achieve this objective, we designed 
a virtual reality task that guided healthy human participants through a set of planar reaching 
movements with controlled kinematic and dynamic conditions that were accompanied by variable 
muscle co-contraction. Next, we approximated the Ia afferent activity using a phenomenological 
model of the muscle spindle and muscle lengths derived from a musculoskeletal model. the 
parameters of the spindle model were altered systematically to evaluate the effect of fusimotor drive 
on the shape of the temporal profile of afferent activity during movement. The experimental and 
simulated data were analyzed with hierarchical clustering. We found that the pattern of co‑activation 
of agonistic and antagonistic muscles changed based on whether passive forces in each movement 
played assistive or resistive roles in limb dynamics. the reaching task with assistive limb dynamics 
was associated with the most muscle co-contraction. In contrast, the simulated Ia afferent profiles 
were not changing between tasks and they were largely reciprocal with homonymous muscle 
activity. Simulated physiological changes to the fusimotor drive were not sufficient to reproduce 
muscle co-contraction. These results largely rule out the static set and α-γ coactivation as the main 
types of fusimotor drive that transform the monosynaptic Ia afferent feedback into task-dependent 
co‑contraction of antagonistic muscles. We speculate that another type of nonlinear transformation of 
Ia afferent signals that is independent of signals modulating the activity of α motoneurons is required 
for Ia afferent-based co-contraction. This transformation could either be applied through a complex 
nonlinear profile of fusimotor drive that is not yet experimentally observed or through presynaptic 
inhibition.

Movement is the product of interactions between neural signals and the musculoskeletal dynamics that depends 
on limb  anatomy1–4. The motor control problem is then solved within a system with coupled neural and mechani-
cal dynamical  elements5–7. Therefore, the relationship between neural signals driving muscle contraction and 
the resulting motion is nonlinear. Muscle contractions generate forces that sum into active moments defined by 
the agonistic or antagonistic relationships between the muscle’s moment arms around a given axis of rotation 
of the joint. The components of these forces that sum to zero moment, such as forces produced by balanced 
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co-contraction of antagonistic muscles, define joint stiffness and viscosity. The remaining unbalanced moments 
are often termed muscle torques; they produce motion. In this bottom-up reasoning, muscle contractions rep-
resent the output of the central nervous system (CNS) that also reflects the mechanical properties of the limb 
being moved by these muscles. For example, muscle torques derived from motion capture share a large amount 
of variance with muscle activity profiles during reaching movements in certain  directions8, while in other direc-
tions co-contraction defines the muscle activity profiles more than muscle torques. Joint stiffness is the product 
of co-contraction of antagonistic muscles. However, without the knowledge of the moment arms and motor unit 
recruitment of these muscles, it is often difficult to estimate experimentally joint stiffness from surface electro-
myography. Some studies estimate co-contraction using “wasted contraction”, i.e. the minimal value of estimated 
muscle recruitment between antagonistic  muscles9–11. Other studies measure joint stiffness more directly with 
 perturbations12–14. These studies found that both co-contraction and stiffness change with task demands, so that 
the co-contraction increases in the novel, precise, or demanding tasks and the resulting stiffness depends on limb 
dynamics. The joint and, possibly, whole arm stiffness is thought to be a controlled parameter in the CNS ensur-
ing movement  stability15,16. An important question in motor control is how the co-contraction of antagonistic 
muscles that modulate stiffness with stability is produced.

It is well established that at the lowest level of the CNS, the primary afferents (Ia) from muscle spindles can 
increase the activity of the homonymous muscle and its agonists, thus increasing their stiffness, through the 
homonymous monosynaptic  reflex17. It is also well established that the same Ia feedback through an interneu-
ron can inhibit the activity of the antagonistic muscle, contributing to the reciprocal muscle activation during 
 locomotion18,19. The contribution of these pathways to muscle activation can be modulated via the activity of 
dynamic and static γ motoneurons that change the profile of activity of the Ia  afferent20. During movement, the 
dynamic fusimotor action changes mainly the velocity sensitivity of the Ia afferents, while the static fusimotor 
action changes mainly the length sensitivity of the Ia  afferents21,22. How exactly the activity of γ motoneurons 
changes during reaching movements in humans is unknown (for the reviews of afferent recording studies  see22,23). 
However, the effect the fusimotor drive has on shaping the muscle spindle output can be broadly classified based 
on whether the fusimotor drive is constant or changing during movement. The former is defined as the static set, 
where γ motoneuron activity remains constant during a given movement, but its level changes between different 
movement types adjusting muscle spindle sensitivity to the anticipated demands of the  task24,25. Alternatively, 
the Ia feedback could be coupled to the ongoing motor activity via α-γ coactivation, where the sensitivity of 
muscle spindles is maintained during muscle shortening by coupling the activity of γ motoneurons to the activ-
ity of α  motoneurons26,27. The fusimotor drive provided by β motoneurons, which innervate both extrafusal and 
intrafusal muscle  fibers28, can also modulate Ia afferent activity. However, in our correlative study, the effect of β 
motoneurons is indistinguishable from the effect of α-γ coactivation. Given such complex and flexible Ia feedback 
that could be transmitted through the mono- and disynaptic pathways, the role that it plays in co-contraction 
and ultimately limb stiffness is unknown. It has been suggested the co-contraction of antagonistic muscles can be 
modulated by descending signals through the concurrent fusimotor drive, e.g. C command in lambda-model29. 
A pathological change in the strength of the monosynaptic connection of Ia afferents to α motoneurons is also 
implicated in spasticity, a condition that is characterized by abnormal co-contraction of antagonistic  muscles30. 
The question arises whether the common fusimotor drive to muscle spindles in antagonists can contribute 
significantly to their co-contraction through the monosynaptic Ia feedback under normal conditions, such as 
during reaching. Answering this question will help constrain the space of possible solutions for descending 
neural control signals.

The current methods of directly observing primary afferent firing in humans, such as microneurography, are 
limited in the number of observable signals and the types of behaviors these observations can be made under. In 
presence of these limitations, the experimentally validated models of primary  afferents31 and the musculoskeletal 
anatomy of the  arm32 used together can provide unique insight into the transformation through the motoneuron 
pool. Muscle spindle models have been used to gain valuable insight into the contribution of afferent feedback 
during healthy and injured  locomotion31,33,34 The novel approach used here enables a holistic computational 
estimation of the Ia afferent activity from multiple muscles during reaching movements in humans. Here, we 
used the model of muscle spindle with the two types of fusimotor drive, static set and α-γ coactivation, to address 
the question of Ia afferent contribution to the co-contraction of multiple muscles during reaching movements. 
The movements were selected based on the roles of passive forces, assistive or resistive, during reaching that 
were expected to be accompanied by different patterns of muscle co-contraction. We then used a mathemati-
cal model of Ia afferent with two parameters that define the sensitivity of muscle spindle to muscle length and 
velocity  changes31. We changed these parameters across tasks according to the experimental observations that 
informed the two types of fusimotor drive. We took advantage of the linearizing properties of the motoneuron 
pool in transforming synaptic drive into neural command to the  muscles35. We used electromyography (EMG) to 
estimate the ensemble activity of the motoneuron  pool35–37. During reaching without heavy objects, the maximal 
EMG in arm muscles is estimated to be low, 5–10% of maximal voluntary  contraction38,39. At that range, the 
relationship between EMG and the recruitment of motoneuron pool is largely  linear36. This justified employing a 
hierarchical clustering analysis to quantify the linear relationships between time-varying muscle activity (EMG), 
including co-contraction, and simulated Ia afferent activity. We expected that the activity of co-contracting 
antagonistic muscles will positively correlate with the activity of their Ia afferents shaped by static set and α-γ 
coactivation, which would be evident from observing these signals in the same clusters.
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Materials and methods
experimental design and human participants. We recruited 9 healthy adults (5 males, 4 females; age, 
24.3 ± 1.8 years; weight, 76.3 ± 14.5 kg) to perform reaching movements to visual targets in a virtual reality (VR, 
Oculus Rift, developer kit 2). All procedures were approved by the West Virginia University Institutional Review 
Board (IRB). All methods were performed in accordance with the IRB guidelines and regulations; informed con-
sent was obtained from all individuals prior to their participation in the study. All data analysis and simulations 
were performed in Matlab (MathWorks, RRID:SCR_001622).

Participants performed three reaching tasks in VR (Fig. 1A). Pairs of visual targets defined the starting and 
goal target locations for each task (Fig. 1B). The virtual environment provided two distinct advantages: (1) it 
allowed target locations to be quickly calculated and scaled based upon an individual participant’s proportions 
and (2) it provided visual guidance to constrain movement trajectories without physically interacting with the 
participant, i.e. altering limb dynamics. To minimize inter-subject variability in angular kinematics, the locations 
of virtual targets were derived using planar trigonometry based on the lengths of individual’s arm and forearm 
segments and displayed relative to the subject’s shoulder location in VR. This resulted in the same shoulder, 
elbow, and wrist angles at the start and end of each movement across participants. The pairs of starting and goal 
visual targets were shown in a random sequence to minimize bias. The cue to move was the change of target color 
from red to green. Trunk motion was restricted with straps, wrist was instructed to be kept at neutral palm down 
(Fig. 1A). Each task was repeated 24 times. At the beginning of each 60-trial block, the virtual target positions 
were re-calibrated to the participant’s shoulder location.

The tasks were based on planar pointing movements selected for their diverse dynamical contexts. The Control 
movement (Fig. 1B, black) was largely passive with the arm being lowered with gravity. The Resistive move-
ment (Fig. 1B, red) was accompanied by increasing gravitational load at the shoulder and resistive interaction 
torques between the shoulder and  elbow40. Finally, the Assistive movement (Fig. 1B, blue) was accompanied by 
decreasing gravitational load at the shoulder and assistive interaction torques between the shoulder and elbow. 
The dynamical contexts were identified based on inverse simulations in Simulink (RRID:SCR_014744) with a 
mechanical planar model of the  arm8 that predicted shoulder and elbow torques for a given linear trajectory 
between an arbitrary set of starting and ending postures.

During the performance of each task, we recorded the kinematics of the shoulder, elbow, and wrist joints 
and electromyography (EMG) of 12 muscles that span those joints. The recorded muscles were the anterior and 
posterior deltoids (AD and PD, respectively), pectoralis major (Pec), teres major (TM), biceps brachii long and 
short heads (BicL and BicS, respectively), triceps brachii lateral and long heads (TriLa and TriLo, respectively), 
brachioradialis (Br), extensor carpi radialis (ECR), flexor carpi radialis (FCR), and flexor carpi ulnaris (FCU). 
These muscle abbreviations are used consistently throughout the manuscript and figures. Motion capture data 
were recorded at 480 Hz using an Impulse system (PhaseSpace), and EMG signals were recorded at 2000 Hz with 
an MA400-28 system (MotionLab Systems). Nine LED markers were placed on bony landmarks of the arm and 
trunk (Cervical Vertebrae 7, Xiphoid Process, Sternoclavicular Joint, Acromial Edge, Acromioclavicular Joint, 
Lateral Olecranon Process, Radioulnar Joint, Styloid Process, and the Distal Phalanges Head). The start and end 
of each movement was defined by finding a local maximum in the 3rd derivative of the vector distance profile 
of the wrist and elbow LED markers. The motion capture data were used to derive joint angles by fitting local 
coordinate systems into the markers defining each major segment and deriving Euler angles between them using 
linear  algebra41. The EMG was processed consistent with SENIAM recommendations, it was high-pass filtered at 
10 Hz, rectified, and low-pass filtered at 20 Hz. The resulting EMG profiles were time-normalized between onset 
and offset of each movement, averaged per task, and amplitude-normalized to the maximum across all tasks per 
participant. Co-contraction was calculated as “wasted contraction”9–11 between normalized EMG profiles of pairs 
of antagonists defined as follows, AD-PD, Pec-TM, BicL-TriLo, BicS-TriLa, Br-TriLa, FCR-ECR, and FCU-ECR.

Primary afferent model. To estimate the sensory contribution from muscle spindles during movement, 
we used Prochazka’s model of primary afferent  discharge42, which offers a clear parametrization of static and 
dynamic responses. The spindle model relates afferent firing rate (Ia) to the time-varying muscle length (l) and 
its rate of change (v) as follows:

where the constant parameters. In Eq. (1) (A = 65, B = 200, and C = 10) were validated empirically to reflect human 
microneurography  data43.

The changes of musculotendon length during movement were calculated in OpenSim (RRID:SCR_002683) 
using a modified musculoskeletal model of the human  arm32 (Fig. 1C). This model was adjusted for each indi-
vidual using segment lengths to scale model’s segments and move proportionally the origin and insertion of 
each simulated muscle. Muscle lengths were simulated by driving the adjusted model with the mean angular 
trajectories for each task and participant. This resulted in temporal profiles of muscle length ( l  ) in units of meters 
and its derivative ( v ) in units of meters per second for each movement per participant. Muscle length profiles 
used in the Ia model were converted to the rest-length units based on the minimal and maximal muscle lengths 
observed across all the possible postures of the OpenSim model in Gritsenko et al.1. The rest length was defined 
as half the length between the maximal and minimal muscle length  values33. The muscle shortening/lengthen-
ing velocity profiles used in the Ia model were converted to the rest length per second units. The parameter 
space of A and B variations was explored in the context of variable fusimotor drive. To simulate a change in the 
dynamic fusimotor drive, we varied the velocity coefficient A; to simulate a change in the static fusimotor drive, 
we varied the length coefficient B. The following parameter ranges were explored: A ∈ [33 200] and B ∈ [50 400], 
which resulted in 4 models of static set referred to below as follows: V33-L50, V33-L400, V200-L50, V200-L400, 

(1)Ia(v, l) = Av0.5 + Bl + C
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Figure 1.  Illustrations of the experimental setup and arm models. Oculus DK1 is shown, but all data collection 
occurred with Oculus DK2 headset. (A) Annotated photo of the setup; insert shows participant’s monocular 
view. Reaching target is in green, the origin target is in red. Yellow sphere shows the location of individual’s 
fingertip and the black lines outline the major arm segments for visual feedback of arm location in VR. (B) 
Colored lines show the fingertip trajectories of each of the three tasks. Arrows indicate the direction of motion 
toward the reaching target. The grey blocks show the locations and orientations of local coordinate systems used 
to obtain joint torques from motion capture. Circles with black and white quarters indicate the locations of the 
centers of mass and the orientations of local coordinate systems. (C) Illustration of the OpenSim model used to 
derive muscle lengths for the calculations of Ia afferent discharge. Red lines show the anatomical paths of each 
muscle from which EMG signals were recorded during experiments.
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where V stands for velocity coefficient and L stands for muscle length coefficient. This also served as a sensitivity 
analysis of the two parameters of the Ia model.

Separately, we approximated α-γ coactivation that affects both the dynamic and static fusimotor drive using 
EMG profiles which transformed Eq. (1) as follows:

where a is the normalized mean EMG profile for a given task and participant. The model in Eq. (2) is referred 
to below as EMG-coupled Ia model.

The time-varying primary afferent profiles calculated with Eqs. (1) and (2) are referred to below as Ia profiles. 
For the regression analysis described below, the Ia profiles were amplitude-normalized to the maximum across 
all tasks per participant to obtain unitless values.

Verifying task dynamics. A mechanical model of a human upper-limb8 was used to compute joint tor-
ques from joint angles inferred from motion capture. The mechanical model described above was expanded to 
comprise three segments and five degrees of freedom, including the shoulder (flexion/extension, abduction/
adduction, internal/external rotation), elbow (flexion/extension), and wrist (flexion/extension). The height and 
weight of each individual were used with anthropometric  tables44 to estimate the lengths and cylindrical inertias 
of the arm, forearm, and hand segments (Fig. 1B). To calculate active torques that result from muscle action, 
mean angular trajectories from each individual and task were used to drive the subject-specific model in inverse 
dynamic simulations (Fig. 2). The motion defined by our tasks was in the vertical plane. Participants showed 
minimal out-of-plane motion as measured by angular trajectories about shoulder abduction/adduction and 
internal/external rotation degrees of freedom. Therefore, only muscle torques about the shoulder flection/exten-
sion degree of freedom was included in the analysis described below.

To describe the limb dynamics of each task, the three muscle torques about shoulder, elbow, and wrist were 
then used to calculate the following parameters. (1) The postural torque change was calculated as the difference 
between muscle torques averaged over 100 ms prior to onset and following the offset of movement. These pos-
tural torques are produced to maintain the arm in starting and final postures against the force of gravity. (2) The 
peak torque change in acceleration phase was calculated as the maximal change in torque between the start of 
movement to its halfway point. The first half of movement was used to ascertain the amount of muscle force that 
is required to start the motion, which is thought to represent largely feedforward activation. (3) The mechanical 
muscle work was calculated by integrating a product between muscle torques and angular velocity as described 
 in44. When the direction of action matches between muscle torque and angular velocity, as indicated by the same 
sign (both positive or both negative), the mechanical muscle work is positive. This means that agonist muscle 
contractions about the corresponding degree of freedom are concentric and they are actively producing the 
motion. When the direction of action is opposite between muscle torque and angular velocity, as indicated by 
opposite signs, the mechanical muscle work is negative. This means that agonist muscle contractions about the 
corresponding degree of freedom are eccentric and the motion is produced by passive torques, such as gravity, 
interaction torques, etc. In our tasks, the wrist joint does not move, therefore the mechanical muscle work about 

(2)Ia(a, v, l) = a · 65v0.5 + a · 200l + 10
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Figure 2.  Signals calculated from motion capture. Thick lines show normalized mean trajectories for each 
movement across all participants, shaded areas show standard deviations across participants. Movement phase 
represents the normalized duration of each movement with 0 indicating the start of movement (vertical onset 
line) and 1 indicating the end of movement. (A) Joint angles; (B) joint angular velocity; (C) muscle torques.
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the wrist is zero. This means that the muscle torque about the wrist reflects the isometric contraction of wrist 
and hand muscles that is required to stabilize the joint at a constant angle.

Analysis. To quantify the common and distinct features in EMG and Ia profiles and to compare them to fea-
tures obtained from muscle lengths we used hierarchical clustering. The relationships between the normalized 
averaged EMG and Ia profiles were characterized by a matrix of Pearson’s correlation coefficients (r). To reduce 
the probability of Type I errors, the α for determining the significance of r values was adjusted using the two-
stage Benjamini, Krieger, and Yekutieli procedure for controlling false detection  rate45. The correlation matrix 
was then transformed into the heterogeneous variance explained (HVE) as follows:

The HVE from Eq. (3) transforms the large positive r values that are characteristic of agonistic relationships 
into short distances close to 0 and the large negative r values corresponding to antagonistic relationships into 
long distances close to 2. To identify synergistic relationships between EMG and Ia, we applied hierarchical 
clustering to an unbiased HVE distance matrix using the linkage function with an unweighted average distance 
 method1. The goodness of fit of the clustering model was assessed using the cophenetic correlation coefficient, 
which quantified how faithfully the hierarchical cluster tree represented the dissimilarities among observations. 
The magnitude of this value should be very close to 1 for a high-quality solution. As a result of this analysis, the 
strongly and positively correlated signals will be labeled belonging to the same cluster, and we will be able to 
assess the degree of similarity between these clusters based on the strength of the positive and negative correla-
tions between them. This approach is advantageous in examining the correlation structure while still distinguish-
ing between positive and negative correlations. Hierarchal cluster analysis has captured the relationship between 
EMG and Ia signals with high precision, as evidenced by high cophenetic coefficient of 0.81 ± 0.044, mean and 
standard deviation across participants.

Clusters were compared using the Fowlkes–Mallows index (Bk) to assess cluster similarity between separate 
hierarchical cluster  trees46. The Fowlkes–Mallows index represents a normalized number of common elements 
between clusters from different trees at the same cluster height. For example, B2 indicates that the hierarchical 
trees were compared at the height, where only 2 clusters occur. Here, we explored k = [2,…, n], where n is half 
the number of signals being included in the hierarchical clustering. Thus, for two cluster trees with arbitrarily 
numbered clusters i = 1,…, k and j = 1,…, k we can use the number of objects between the ith cluster of one tree 
and jth cluster of the other tree (mij) to calculate the index as follows:

where

At each cluster division, the index is calculated such that 0 ≤ Bk ≤ 1, where Bk = 1 indicates two identical clusters 
and provides a means to compare the multi-muscle clustering of EMG and Ia signals. A further benefit of the 
Fowlkes–Mallows index is that it approaches 0 with an increasing number of data points, making it less sensitive 
to spurious correlations than the commonly used Rand  index46.

In an earlier  study1, we quantified the synergistic relationships between muscles based on their anatomy using 
the same musculoskeletal model of the arm used here for muscle length measurements. The muscle lengths were 
calculated over the whole range of physiological joint postures and analyzed using the same hierarchal clustering 
method described above. Here we selected a subset of muscles recorded in this study and compared the cluster-
ing structure of the muscle lengths across all postures in Gritsenko et al.1 study to the clustering structure of 
simulated Ia afferent activity. We used the muscle lengths obtained from Gritsenko et al.1 rather than the muscle 
lengths calculated for the Ia modeling, because the former was calculated over a wider range of postures than 
the latter. Because the muscle lengths data is part of the Eq. (1), similar clustering structure is expected between 
muscle lengths and Ia profiles. These muscle length data were used as one of the controls for the statistical analysis 
of clustering structure described below.
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Statistics. All values reported in results are means with standard deviations across participants, unless 
stated otherwise. The shared variance  (R2) between clusters defined by hierarchical clustering was assessed using 
t-tests. The t-tests were applied to  R2 values averaged across members of the cluster per participant per task. Indi-
viduals were assumed to represent independent samples. The combined p-values across participants included in 
the tables were obtained using the Fisher’s combined probability  test47. Correction for multiple testing was based 
on Bonferroni adjustment of alpha, the acceptable probability of making type I  error48.

The statistical comparison of hierarchical clustering between multiple signal modalities was based on permut-
ing the hierarchical clustering trees to estimate the chance of observing spurious correlations. The hierarchal 
tree for each participant each movement type and each signal modality (Ia, EMG, muscle length) was randomly 
permuted 1,000 times. Then the Fowlkes–Mallows index (B) was calculated between each of the permuted trees, 
which resulted in a population of B values that represents the distribution of noise. The distribution of experi-
mental B values across tasks and individuals was compared to the corresponding noise distribution of B values 
to test the hypothesis that Bexperimental ≠ Bnoise. The p-value for each experimental B value was determined from 
the corresponding noise distribution for each individual using the percentile  method49. The combined p-values 
across cluster subdivisions included in the supplementary tables were obtained using the Fisher’s combined 
probability  test47. The significant alpha was set to 0.0056 to adjust for repeating tests across 9 participants. This 
permutation analysis was applied to test three hypotheses. The 1st hypothesis was that the similarity between Ia 
and muscle-length clusters is not spurious. This is a test of the chosen statistical method. We expect to support 
the 1st hypothesis, because the Ia and muscle length profiles are not independent, i.e. the former is derived from 
the latter as described in Eq. (1). The 2nd hypothesis was that the similarity between Ia and EMG clusters is not 
spurious. The 3rd hypothesis was that EMG and Ia clusters change the same way between tasks. Supporting either 
2nd or 3rd hypothesis means that the compared trees are similar to a greater extent than is expected by chance, 
and that the afferent activity clusters comprise the same muscles as the muscles that co-activate in a given task.

The statistical comparison of hierarchical clustering between tasks was based on bootstrapping the B  values49. 
The B values for EMG clustering (BEMG) and Ia clustering (BIa) calculated between tasks were resampled with 
replacement 1,000 times. This resulted in two distributions of 45,000 BEMG and BIa values for each task pair 
(Control-Resistive, Control-Assistive, and Resistive-Assistive). These data were used to test the 3rd hypothesis 
that EMG and Ia clusters change the same way between tasks. To test this hypothesis, we calculated the difference 
between the two distributions of BEMG and BIa values across tasks, each comprising 1,000 bootstraps per cluster 
number (k = 2,…, 6) per participant (N = 9). The p-value for each task pair was determined from the location of 
the 0 value in the resulting distribution of differences, which indicated no difference between cluster structures, 
using the percentile  method49.

The last set of hypotheses addressed the extent to which the fusimotor drive can shape Ia afferent discharge 
and capture muscle co-contraction. The hypothesis for each altered Ia model was that the similarity between Ia 
and EMG clusters is increased by alternative fusimotor drives. To test these hypotheses, the B values were calcu-
lated between the hierarchical clustering of Ia and EMG profiles for each of the models with altered coefficients 
(V33-L50, V33-L400, V200-L50, V200-L400, and EMG-coupled). The distribution of B values from each of the 
altered model was subtracted from the corresponding B values based on Ia profiles from the Prochazka model. 
The p-value for each model with altered coefficients was determined based on the location of the 0 value in the 
resulting distribution of differences using the percentile  method49.

Results
Participants performed reaching tasks with consistent angular kinematics within the constraints defined by the 
VR targets. The angular excursions of each joint were similar across individuals for the three tasks (Fig. 2A), the 
angular velocity was most variable across participants in the Assistive task (Fig. 2B). Because the individual’s 
movements were not restricted, most participants moved slightly out of the sagittal plane and the experimental 
angular displacement differed somewhat from those defined by virtual targets (Table 1). In the Control and 
Assistive tasks, the virtual targets defined joint excursions that required the shoulder and elbow joints to rotate 
in opposite directions. This caused assistive interaction torques between these joints similar to the Assistive task 
in Gritsenko et al.40, which were associated with negative muscle work at the shoulder and positive muscle work 
at the elbow (Table 1). The sign of work indicates the direction of energy flow. The positive sign of work indicates 
concentric contractions that transfer energy from muscles to segments, while the negative sign of work indicates 
eccentric contractions during which the energy from external forces are overpowering the muscle action and 
doing the  work44. Thus, in the Control and Assistive tasks, the shoulder motion was largely passive, and the 
activity of shoulder muscles was compensating for external forces due to gravity and interaction torques. In the 
Control task, elbow and wrist torques were the lowest across the three tasks (Fig. 2C, black lines). The Assistive 
task was accompanied by decreasing postural torques in all joints, low acceleration shoulder torques, but high 
deceleration elbow and wrist torques (Fig. 2C, blue lines; Table 1, third column). This shows that in the Assistive 
task most of the muscle action was to decelerate the limb accelerated primarily by the interaction torques and 
gravity. In contrast, in the Resistive task the joint excursions were such that required the shoulder and elbow to 
rotate in the same direction, causing resistive interaction torques similar to the Resistive task  in40. Altogether, 
this caused the opposite pattern of shoulder torques compared to that in the Control and Assistive tasks, while 
maintaining the same elbow and wrist torques to that in the Assistive task (Fig. 2C). In the Resistive task, the 
mechanical muscle work was always positive, indicating that muscle contractions were concentric and that the 
motion was produced with the least reliance on passive limb dynamics and gravity.

The EMG and Ia profiles varied between tasks, but in a different manner from each other (Figs. 3, 4). The EMG 
profiles showed variable levels of co-contraction that changed between tasks and joints. In the Assistive task, in 
which passive forces assist at the shoulder, the EMG profiles of multiple muscles that span the elbow and wrist 
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joints were ramping up during movement (Figs. 3C, 4, blue lines). The co-contraction between pairs of antago-
nists represented by shared variance between their normalized EMG profiles was the largest in the Assistive task 
(Supplementary Table S1). Hierarchal cluster analysis has shown that in the Assistive task multiple agonists and 
antagonists spanning the elbow and wrist (TriLa/TriLo/BicL/BicS/Br/FCR/FCU/ECR) comprised a single EMG 
cluster, i.e. all these muscles co-activated in this task (Fig. 5 Assistive). In the Resistive task with the least reliance 
on passive dynamics, co-contraction was high in AD-PD (Fig. 3A) and low in elbow and wrist muscles (Figs. 3C, 
4; Supplementary Table S1). Hierarchal cluster analysis has shown that in the Resistive task, muscle coactivation 
was present in two different smaller clusters (Br/FCR/FCU/ECR and TM/AD/PD/TriLa; Fig. 5 Resistive), while 
in the Control task muscle coactivation was present in even smaller clusters (Br/FCR/FCU/ECR, TriLo/TriLa, 
BicS/BicL, and Pec/TM; Fig. 5 Control). Overall this analysis shows that the muscle groups defined by shared 
variance across EMG profiles are task-dependent and that they consist of both agonistic and antagonistic muscles.

In contrast to EMG profiles, the Ia profiles largely reflected the kinematic differences between tasks. For 
example, the Ia profiles of muscles spanning only the shoulder reversed in the Resistive task, in which the 
direction of shoulder excursion reversed relative to Control and Assistive tasks (Figs. 2, 3A, B); the Ia profiles of 
muscles spanning the elbow largely followed the profiles of elbow excursions (Figs. 2, 4). The amount of shared 
variance between Ia profiles from antagonistic muscles did not change between tasks and the correlations were 
primarily negative, except for Pec-TM (Supplementary Table S2). The negative correlations between Ia profiles 
of antagonists are consistent with the reciprocal actions of antagonistic muscles. This also suggests that Pec and 
TM are not acting as antagonists in the selected movements. The Ia profiles of smaller groups of mainly agonistic 
muscles, such as Pec/PD/TM, TriLo/TriLa, BicS/BicL/Br, and FCR/FCU, were positively correlated (Fig. 5A, 
right bottom corners of correlation matrices). Hierarchal clustering analysis comparing Ia profiles and muscle 
length from Gritsenko et al.1 showed that the Ia clusters were significantly more similar than expected by chance 
to muscle length clusters for all tasks at most cluster subdivisions (Fig. 6, Supplementary Table S3). Thus, we 
have supported the 1st hypothesis as expected. The significant similarity index at multiple cluster subdivisions 
confirms that the same muscles that shorten or lengthen together also have similar Ia feedback across multiple 
postures or movements. Overall, this analysis suggests that the Ia afferents in synergistic muscles signal similar 
information related to the kinematics of reaching.

To address the question of Ia afferent contribution to muscle co-contraction, we compared the time varying 
normalized Ia and EMG profiles in each task (Fig. 5A, right top corners of correlation matrices). The shared 
variance between Ia and EMG profiles from homonymous muscles was variable between muscles and tasks in 
both the strength and sign of the correlation (Supplementary Table S4). Pectoralis and biceps muscles showed 
the largest negative correlations, while the triceps muscle showed the largest positive correlations. This indicates 
that Ia feedback can both potentiate and inhibit the activity of its homonymous muscle in different tasks, even at 
the same level of static set across tasks represented by unchanging coefficients A and B from Eq. (1). The direct 
contribution of Ia afferents to muscle co-contraction can be quantified with hierarchal cluster analysis that 

Table 1.  Table of task parameters. All joint angles are around flexion/extension axes of rotation for the three 
major joints included in the analysis. The sign of angles and torques indicates the direction of change of the 
corresponding measure, positive for increase and negative for decrease. Experimental values are averages with 
standard deviations across participants. Target-defined excursion is different from the experimental excursion 
due to out-of-plane arm motion. F indicates flexion direction of action; E indicates extension direction of 
action; N indicates no change. Negative values of mechanical muscle work imply work done by external forces, 
e.g. gravity and reaction from distal segments in the mechanical chain.

Control Resistive Assistive

Shoulder

Target-defined excursion (deg) − 60 − 45 − 40

Experimental excursion (deg) − 48 ± 2 E 40 ± 4 F − 35 ± 5 E

Postural torque change (Nm) − 2.7 ± 0.3 F 1.3 ± 0.5 F − 3.2 ± 0.5 F

Peak torque change in acceleration phase (Nm/s) 8.3 ± 3.6 E 9.0 ± 3.1 F 4.5 ± 1.8 E

Mechanical muscle work (J) − 3.80 ± 0.39 3.05 ± 0.42 − 2.60 ± 0.23

Elbow

Target-defined excursion (deg) 60 10 100

Experimental excursion (deg) 42 ± 4 F 7 ± 3 F 81 ± 8 F

Postural torque change (Nm) 0.3 ± 0.2 F − 1.0 ± 0.2 F − 0.9 ± 0.4 F

Peak torque change in acceleration phase (Nm/s) 1.8 ± 0.5 F 5.2 ± 2.3 E 5.3 ± 3.4 E

Mechanical muscle work (J) 0.99 ± 0.20 0.28 ± 0.06 1.93 ± 0.24

Wrist

Target-defined excursion (deg) 0 0 0

Experimental excursion (deg) 0.7 ± 4.3 N 1.4 ± 3.7 N 7.5 ± 13.3 E

Postural torque change (Nm) 0.0 ± 0.03 N − 0.15 ± 0.05 F − 0.14 ± 0.10 F

Peak torque change in acceleration phase (Nm/s) 0.3 ± 0.2 E 0.8 ± 0.3 F 0.9 ± 0.6 F

Mechanical muscle work (J) − 0.00 ± 0.01 0.00 ± 0.01 − 0.01 ± 0.03
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groups positively correlated EMG profiles of co-contracting muscles and their Ia profiles into the same clusters. 
This predicts that, for example, the two clusters of co-activating muscles in the Resistive task should also contain 
the Ia profiles from the same muscles so that the Fowlkes-Mallows similarity index (B) between EMG and Ia 
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clusters would lie outside the noise distribution. However, the distribution of similarity indices between EMG 
and Ia clusters was indistinguishable from noise at most cluster subdivisions in all tasks (Fig. 7A, Supplementary 
Table S5). This result did not support the 2nd hypothesis, indicating that the similarity between Ia and EMG 
clusters is spurious. Further analysis comparing directly the co-contraction profiles from antagonists to the Ia 
profiles from their host muscles further supported the lack of similarity in profiles. It showed that the Ia profiles 
from antagonistic muscle pairs were correlated reciprocally, either positively or negatively but never both posi-
tively, with the corresponding co-contraction profile (Supplementary Table S6). This indicates that muscle co-
contraction can be potentiated by monosynaptic Ia feedback from one of the antagonistic muscles, but not both.

To contribute meaningfully to co-contraction, the Ia profiles from co-contracting muscles need to change 
between tasks the same way as EMG profiles of these muscles change between tasks. Therefore, we compared 
cluster structure between tasks. We observed that the similarity of Ia clusters (BIa) between tasks was higher than 
the similarity of EMG clusters (BEMG) between tasks (Fig. 7B; p < 0.001 for all task comparisons). This shows that 
Ia clusters were more consistent between tasks than EMG clusters were (Fig. 6B). Therefore, the 3rd hypothesis 
that the EMG and Ia clusters change the same way between tasks was not supported. Instead, this result supports 
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the conclusion above that Ia clusters contain information related to the kinematics of reaching, which changed 
less between our tasks than limb dynamics and co-contraction did.

Lastly, we evaluated to what extent the fusimotor drive could alter Ia signal profiles to capture muscle co-
contraction. To achieve this, we manipulated Ia model coefficients to simulate alternative fusimotor inputs, such 
as static set and α-γ coactivation. The models of different static sets with large coefficients produced maximal 
firing rates that were above those reported for human large fiber afferents (Human afferents  from43: 40 imp/s; 
simulated afferents from Pec: 174 ± 49 imp/s; AD: 331 ± 48 imp/s; PD: 332 ± 49 imp/s; TM: 305 ± 37 imp/s; TriLo: 
170 ± 25 imp/s; TriLa: 243 ± 38 imp/s; BicL: 171 ± 49 imp/s; BicS: 177 ± 63 imp/s; Br: 304 ± 93 imp/s; FCR: 129 ± 42 
imp/s; FCU: 139 ± 40 imp/s; ECR: 142 ± 35 imp/s with SD across participants). However, the maximal simulated 
firing rates increased linearly with the increases in model coefficients (data not shown). Therefore, the conclu-
sions drawn based on the data simulated at extremes using models with large coefficients will apply to the data 
obtained using models with lower coefficients.

We first evaluated how different static sets and α-γ coactivation can change the clustering structure of Ia 
profiles relative to that produced by the model with original coefficients (Prochazka model). We found that alter-
ing the Ia model coefficients did affect the clustering pattern of Ia signals as evident from the similarity indices 
between alternative models and the Prochazka model being less than 1 (Fig. 8A). The largest changes in Ia cluster 
structure were caused by the EMG-coupled Ia model simulating α-γ coactivation compared to those simulating 
altered static set. However, these changes in cluster structure did not increase the similarity between EMG and 
Ia profiles (Fig. 8B). Therefore, the last set of hypotheses stating that the similarity between Ia and EMG clusters 
is not increased by alternative fusimotor drives were not supported (Fig. 8C; Supplementary Tables S7–S11). 
This shows that the changes in the Ia afferent activity caused by known fusimotor input, such as static set or 
α-γ coactivation, are not likely to potentiate sufficiently the contribution of monosynaptic Ia feedback to the 
co-contraction of antagonists.

Discussion
Here we addressed the question of the degree to which the Ia afferent activity from muscle spindles in antago-
nists can contribute to their co-contraction through monosynaptic feedback under normal conditions, such as 
reaching movements. We asked human participants to reach toward virtual targets at different locations, which 
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instructed planar movements in a sagittal vertical plane. These reaching tasks were accompanied by different roles 
of passive limb dynamics, assistive or resistive. We found that EMG patterns changed between tasks and were 
associated with different levels of co-contraction, while the Ia patterns did not change between tasks and were 
primarily reciprocal between antagonists. Altering Ia model coefficients to simulate different types of fusimotor 
drive, such as static set and α-γ coactivation, did not change these conclusions. Although these results cannot 
rule out any given motor control theory, they do constrain the space of possible neural control solutions. Our 
results suggest a limited contribution of direct projections from the Ia afferents to muscle co-contraction, even 
with “simple” task-dependent changes in the fusimotor drive, such as static set and α-γ coactivation.

The reaching tasks selected for this study represent unique dynamical contexts experienced by the multiseg-
mented limb during movement in the presence of gravity. This was reflected in different active muscle torques 
and mechanical muscle work around the major joints in the three tasks (Table 1). Motion in the Control and 
Assistive tasks was produced with reliance on passive interaction torques and gravity. In the Assistive task, 
this was accompanied by the coactivation of the largest group of muscles (Figs. 3, 4). This may have served 
to increase distal limb stiffness, which helped to stabilize the movement against the potentially de-stabilizing 
whiplash interactions between  joints11,40,50–53. In contrast, motion in the Resistive task was produced against the 
opposing action of gravity and interaction torques between shoulder and elbow. This was accomplished with 
concentric contractions of two different groups of proximal and distal muscles, biarticular biceps and triceps 
muscles changed their coactivation patterns the most (Figs. 3, 4). Overall, our results suggest that the dynamical 
demands of each task define specific patterns of coactivation of agonist and antagonist muscles that form broadly 
defined proximal and distal groups. These flexible task-dependent groups of coactivating muscles may reflect 
the neural compensation of limb dynamics through limb  impedance12–14,50,51,54,55.

There is a known monosynaptic relationship between Ia afferents and motoneurons innervating the same 
and synergistic muscles that underlies stretch reflexes, which compensate for perturbations. This anatomical 
arrangement with high gain, i.e. strong coupling, could result in similar profiles of the activity of Ia afferents and 
the profiles of the activity of homologous motoneurons, measured with EMG. Here, we tested this idea using 
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two methods, hierarchal clustering of the correlation matrix between simulated Ia and EMG profiles and shared 
variance between profiles of antagonist co-contraction and Ia profiles. Hierarchal clustering revealed low simi-
larity between Ia and EMG clusters, that resulted from inconsistent positive correlations between EMG and Ia 
profiles from the same muscles across tasks (Fig. 7; Supplementary Table S5). The comparison of co-contraction 
profiles with Ia profiles showed that only one of the antagonistic muscles was associated with positively correlated 
profiles, but not the other, and those relationships varied across tasks (Supplementary Table S6). Furthermore, 
we found that changing the parameters of the Ia model to simulate different levels of fusimotor static set between 
tasks did not increase the similarity between Ia and EMG clusters (Fig. 8). This suggests that simply changing 
the constant level of fusimotor drive between tasks cannot transform the Ia afferent activity so that it could 
contribute more to the co-contraction of antagonistic muscles observed during reaching movements. This may 
explain the findings of decreased gain of H-reflexes, which are indicative of the strength of the monosynaptic 
connection between the Ia afferents and α motoneurons, during tasks that require more co-contraction. For 
example, learning to co-contract antagonistic muscles during standing reduces the gain of soleus H-reflex in 
 humans56. A recent simulation study has also shown that low gain of afferent feedback, both Ia and Ib, combined 
with co-contraction driven by mainly descending signals results in the optimal combination of stable control of 
movement and timely response to  perturbations57. Altogether, this suggests that the monosynaptic Ia afferent 
feedback needs to be modulated nonlinearly during movement to contribute significantly to the co-contraction 
of antagonistic muscles.

Here we explored one type of nonlinear fusimotor drive that coupled the changes in muscle spindle sensitivity 
to muscle length and its rate of change to the activity of homonymous motoneurons. Such α-γ coactivation is 
thought to potentiate the recruitment of homonymous motor pools, increase muscle stiffness, and decrease the 
response times to  perturbation58,59. Our results have shown that the nonlinear transformation of the Ia afferent 
signal by α-γ coactivation can change the profiles and, consequently, the clustering of Ia afferent signals more 
than all other models (Fig. 8A, EMG-coupled model). However, these changes were not enough to alter the Ia 
afferent profiles in a way that would reflect muscle co-contraction (Fig. 8B, C). This suggests that another type 
of nonlinear transformation of Ia afferent signals that is independent of signals modulating the activity of α 
motoneurons is required for Ia afferent-based co-contraction of antagonistic muscles. This transformation could 
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either be applied through a complex nonlinear profile of fusimotor drive or nonlinear modulation of the gain 
of Ia afferent feedback onto the α motoneurons through presynaptic inhibition and/or spinal interneurons. Our 
results and approach can be used to test the first possibility. We can derive the temporal profile of the static and 
dynamic γ motoneuronal activity that would create the task-dependent coactivation pattern seen in EMG by 
solving Eq. (2) with least squares for two separate a coefficients (static and dynamic) for every phase of move-
ment using EMG co-contraction as a cost function. The second possibility is more open-ended. The second 
type of nonlinear transformation may be accomplished by state-dependent nonlinear presynaptic inhibition 
of the monosynaptic pathway from Ia afferents to α motoneurons in some of the co-contracting antagonistic 
 muscles56,60 or by state-dependent nonlinear inhibition of Ia interneurons that mediate the reciprocal inhibition 
of antagonists (for review  see61). The propriospinal system can also be engaged in task-dependent modulation of 
afferent feedback  gains62. Ultimately, the task-dependency is thought to be determined by the higher-level neural 
circuits that modulate presynaptic inhibition, fusimotor drive, and the activity of spinal  interneurons29,58,59,62,63. 
Future perturbation studies that alter the Ia feedback, for example with vibration, during reaching with different 
dynamical contexts is the next logical step to test the predictions from this computational study.

A potential limitation of the Ia afferent model used here is its simplicity. More complex models of Ia afferents 
take into account intrafusal muscle properties and may have somewhat different profiles of Ia afferent  activity64,65. 
Specifically, these models capture the transient bursts in afferent firing due to short range stiffness of the intrafusal 
muscle fiber. It is not known how these transient bursts are used by the nervous system, a recent paper suggested 
they may help sense changes in muscle  force66. However, the scientific consensus is that the muscle spindle is 
primarily a sensor of muscle length and its rate of change, so that all models capture these features in their pre-
dictions of Ia afferent discharge. Therefore, our conclusions from the simple model are likely to be generalizable 
to simulations with other more complex models.

Another limitation our Ia simulations is the assumption that the muscle rest lengths is a halfway length 
between min and max of all possible muscle lengths across the whole physiological range of motion simulated in 
Gritsenko et al.1. We observed that the distributions of muscle lengths across degrees of freedom in the Gritsenko 
et al.1 were often not normal. Therefore, the half-way estimate of rest length could bias it to be outside of the 
most common operational range. To mitigate this limitation and test the generality of our results, we re-ran all 
analyses using rest lengths calculated differently. The new rest lengths were calculated as median lengths using 
the distributions from Gritsenko et al.1. The results were the same (data no included), further supporting the 
generalizability of our results.

The linear correlative approach used here to compare the primary Ia and EMG signals does not take into 
account the non-linear aspects of the transformation between them through the motoneuron pool. However, 
Farina et al.35 have shown that motoneuron pools, unlike individual motoneurons, display linearizing proper-
ties in transforming the common synaptic input into the neural drive to the muscle, i.e. EMG. This shifts the 
bulk of non-linearities in the transformation from the monosynaptic Ia feedback to EMG toward other synaptic 
inputs, such as spinal interneuronal and descending inputs discussed above. Moreover, the non-linearities in 
the transformation from the activity of a motoneuron pool to EMG are likely to be minimal in the low range 
of ~ 5–10% of maximal voluntary contraction during  reaching38,39 examined here. At that range, the rate coding 
of recruited motor units is likely to drive linearly the EMG amplitude and, thus, muscle  force36. Therefore, within 
the constraints of our experiment the non-linear transformation of the monosynaptic primary Ia inputs to the 
motoneuron pool into EMG is likely to capture a smaller component of the transformation than the linear one 
quantified here.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 22 March 2019; Accepted: 4 June 2020

References
 1. Gritsenko, V., Hardesty, R. L., Boots, M. T. & Yakovenko, S. Biomechanical constraints underlying motor primitives derived from 

the musculoskeletal anatomy of the human arm. PLoS ONE 11, 1–18 (2016).
 2. Yakovenko, S. A hierarchical perspective on rhythm generation for locomotor control. Prog. Brain Res. 188, 151–166 (2011).
 3. Prochazka, A. & Yakovenko, S. The neuromechanical tuning hypothesis. In Progress in Brain Research (eds Cisek, P. et al.) 255–265 

(Elsevier, Amsterdam, 2007).
 4. Nishikawa, K. et al. Neuromechanics: An integrative approach for understanding motor control. Integr. Comp. Biol. 47, 16–54 

(2007).
 5. Taga, G., Yamaguchi, Y. & Shimizu, H. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environ-

ment. Biol. Cybern. 65, 147–159 (1991).
 6. Schöner, G. & Kelso, J. A. Dynamic pattern generation in behavioral and neural systems. Science (New York, NY) 239, 1513–1520 

(1988).
 7. Ting, L. H. et al. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 

86, 38–54 (2015).
 8. Olesh, E. V., Pollard, B. S. & Gritsenko, V. Gravitational and dynamic components of muscle torque underlie tonic and phasic 

muscle activity during goal-directed reaching. Front. Hum. Neurosci. 11, 474 (2017).
 9. Thoroughman, K. A. & Shadmehr, R. Electromyographic correlates of learning an internal model of reaching movements. J. 

Neurosci. 19, 8573–8588 (1999).
 10. Gribble, P. L., Mullin, L. I., Cothros, N. & Mattar, A. Role of cocontraction in arm movement accuracy. J. Neurophysiol. 89, 

2396–2405 (2003).
 11. Darainy, M. & Ostry, D. J. Muscle cocontraction following dynamics learning. Exp. Brain Res. 190, 153–163 (2008).



16

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:10625  | https://doi.org/10.1038/s41598-020-67403-w

www.nature.com/scientificreports/

 12. Damm, L. & McIntyre, J. Physiological basis of limb-impedance modulation during free and constrained movements. J. Neuro-
physiol. 100, 2577–2588 (2008).

 13. De Serres, S. J. & Milner, T. E. Wrist muscle activation patterns and stiffness associated with stable and unstable mechanical loads. 
Exp. Brain Res. 86, 451–458 (1991).

 14. Wong, J., Wilson, E. T., Malfait, N. & Gribble, P. L. Limb stiffness is modulated with spatial accuracy requirements during move-
ment in the absence of destabilizing forces. J. Neurophysiol. 101, 1542–1549 (2009).

 15. Milner, T. E. & Franklin, D. W. Impedance control and internal model use during the initial stage of adaptation to novel dynamics 
in humans: Initial stage of motor adaptation. J. Physiol. 567, 651–664 (2005).

 16. Franklin, D. W. et al. Endpoint stiffness of the arm is directionally tuned to instability in the environment. J. Neurosci. 27, 7705–7716 
(2007).

 17. Angel, M. J., Guertin, P., Jiménez, I. & McCrea, D. A. Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor 
motorneurones during fictive locomotion. J. Physiol. (Lond.) 494(Pt 3), 851–861 (1996).

 18. Hongo, T., Jankowska, E. & Lundberg, A. Convergence of excitatory and inhibitory action on interneurones in the lumbosacral 
cord. Exp. Brain Res. 1, 338–358 (1966).

 19. Lundberg, A. Convergence of excitatory and inhibitory action on interneurones in the spinal cord. UCLA Forum Med. Sci. 11, 
231–265 (1969).

 20. Boyd, I. A. The Muscle Spindle (PR Agency, Stockton, 1985).
 21. Matthews, P. B. C. A study of certain factors influencing the stretch reflex of the decerebrate cat. J. Physiol. 147, 547–564 (1959).
 22. Prochazka, A. Proprioceptive feedback and movement regulation. In Comprehensive Physiology (ed. Terjung, R.) (Wiley, Hoboken, 

2011).
 23. Macefield, V. G. & Knellwolf, T. P. Functional properties of human muscle spindles. J. Neurophysiol. 120, 452–467 (2018).
 24. Prochazka, A., Hulliger, M. & Zangger, P. ‘Fusimotor set’: New evidence for a-independent control of y-motoneurones during 

movement in the awake cat. Brain Res. 339, 136–140 (1985).
 25. Prochazka, A. Proprioception during voluntary movement. Can. J. Physiol. Pharmacol. 64, 499–504 (1986).
 26. Granit, R. The Basis of Motor Control: Integrating the Activity of Muscles Alpha and Gamma Motoneurons and Their Leading Control 

Systems (Academic Press, Cambridge, 1970).
 27. Hagbarth, K. E. Microneurography and applications to issues of motor control: Fifth Annual Stuart Reiner Memorial Lecture. 

Muscle Nerve 16, 693–705 (1993).
 28. Kakuda, N., Miwa, T. & Nagaoka, M. Coupling between single muscle spindle afferent and EMG in human wrist extensor muscles: 

Physiological evidence of skeletofusimotor (beta) innervation. Electroencephalogr. Clin. Neurophysiol. 109, 360–363 (1998).
 29. Feldman, A. G. Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Control-

lable parameters of the muscle. Biophysics 11, 565–578 (1966).
 30. Brown, P. Pathophysiology of spasticity. J. Neurol. Neurosurg. Psychiatry 57, 773–777 (1994).
 31. Prochazka, A. & Gorassini, M. Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. 

J. Physiol. 507, 277–291 (1998).
 32. Saul, K. R. et al. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal 

model. Comput. Methods Biomech. Biomed. Eng. 18, 1445–1458 (2015).
 33. Yakovenko, S., Gritsenko, V. & Prochazka, A. Contribution of stretch reflexes to locomotor control: A modeling study. Biol. Cybern. 

90, 146–155 (2004).
 34. Moraud, E. M. et al. Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive 

feedback after spinal cord injury. Sci. Rep. 8, 1–12 (2018).
 35. Farina, D., Negro, F. & Dideriksen, J. L. The effective neural drive to muscles is the common synaptic input to motor neurons: 

Effective neural drive to muscles. J. Physiol. 592, 3427–3441 (2014).
 36. De Luca, C. J. & Hostage, E. C. Relationship between firing rate and recruitment threshold of motoneurons in voluntary isometric 

contractions. J. Neurophysiol. 104, 1034–1046 (2010).
 37. Hoffer, J. A. et al. Cat hindlimb motoneurons during locomotion. II. Normal activity patterns. J. Neurophysiol. 57, 530–553 (1987).
 38. Aurbach, M., Spicka, J., Süß, F. & Dendorfer, S. Evaluation of musculoskeletal modelling parameters of the shoulder complex 

during humeral abduction above 90°. J. Biomech. https ://doi.org/10.1016/j.jbiom ech.2020.10981 7 (2020).
 39. Tagliabue, M., Ciancio, A. L., Brochier, T., Eskiizmirliler, S. & Maier, M. A. Differences between kinematic synergies and muscle 

synergies during two-digit grasping. Front. Hum. Neurosci. 9, 165 (2015).
 40. Gritsenko, V., Kalaska, J. F. & Cisek, P. Descending corticospinal control of intersegmental dynamics. J. Neurosci. 31, 11968–11979 

(2011).
 41. Robertson, G. E., Caldwell, G. E., Hamill, J., Kamen, G. & Whittlesey, S. Research Methods in Biomechanics (Human Kinetics, Inc., 

Champaign, 2013).
 42. Prochazka, A. Chapter 11 quantifying proprioception. In Progress in Brain Research (ed. Binder, M. D.) 133–142 (Elsevier, Amster-

dam, 1999).
 43. Malik, P., Jabakhanji, N. & Jones, K. E. An assessment of six muscle spindle models for predicting sensory information during 

human wrist movements. Front. Comput. Neurosci. 9, 154 (2016).
 44. Winter, D. A. Biomechanics and Motor Control of Human Movement (Wiley, Hoboken, 2009).
 45. Benjamini, Y., Krieger, A. M. & Yekutieli, D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 

93, 491–507 (2006).
 46. Fowlkes, E. B. & Mallows, C. L. A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553–569 (1983).
 47. Fisher, R. A. Statistical Methods for Research Workers 14th edn. (Oliver and Boyd, Edinburgh, 1970).
 48. Dunn, O. J. Estimation of the medians for dependent variables. Ann. Math. Stat. 30, 192–197 (1959).
 49. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman and Hall/CRC, New York, 1994).
 50. Burdet, E., Osu, R., Franklin, D. W., Milner, T. E. & Kawato, M. The central nervous system stabilizes unstable dynamics by learning 

optimal impedance. Nature 414, 446–449 (2001).
 51. Hogan, N., Bizzi, E., Mussa-Ivaldi, F. A. & Flash, T. Controlling multijoint motor behavior. Exerc. Sport Sci. Rev. 15, 153–190 (1987).
 52. Tee, K. P., Franklin, D. W., Kawato, M., Milner, T. E. & Burdet, E. Concurrent adaptation of force and impedance in the redundant 

muscle system. Biol. Cybern. 102, 31–44 (2010).
 53. Gribble, P. L. & Ostry, D. J. Compensation for interaction torques during single- and multijoint limb movement. J. Neurophysiol. 

82, 2310–2326 (1999).
 54. Perreault, E. J., Kirsch, R. F. & Crago, P. E. Effects of voluntary force generation on the elastic components of endpoint stiffness. 

Exp. Brain Res. 141, 312–323 (2001).
 55. Loeb, G. E., Brown, I. E. & Cheng, E. J. A hierarchical foundation for models of sensorimotor control. Exp. Brain Res. 126, 1–18 

(1999).
 56. Perez, M. A., Lundbye-Jensen, J. & Nielsen, J. B. Task-specific depression of the soleus h-reflex after cocontraction training of 

antagonistic ankle muscles. J. Neurophysiol. 98, 3677–3687 (2007).
 57. Dideriksen, J. L., Negro, F. & Farina, D. The optimal neural strategy for a stable motor task requires a compromise between level 

of muscle cocontraction and synaptic gain of afferent feedback. J. Neurophysiol. 114, 1895–1911 (2015).

https://doi.org/10.1016/j.jbiomech.2020.109817


17

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:10625  | https://doi.org/10.1038/s41598-020-67403-w

www.nature.com/scientificreports/

 58. Pruszynski, J. A., Kurtzer, I., Lillicrap, T. P. & Scott, S. H. Temporal evolution of “automatic gain-scaling”. J. Neurophysiol. 102, 
992–1003 (2009).

 59. Crevecoeur, F. & Scott, S. H. Beyond muscles stiffness: Importance of State-estimation to account for very fast motor corrections. 
PLoS Comput. Biol. 10, e1003869 (2014).

 60. Seki, K., Perlmutter, S. I. & Fetz, E. E. Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. 
Nat. Neurosci. 6, 1309–1316 (2003).

 61. Burke, R. E. The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. 
Exp. Brain Res. 128, 263–277 (1999).

 62. Roberts, L. V., Stinear, C. M., Lewis, G. N. & Byblow, W. D. Task-dependent modulation of propriospinal inputs to human shoulder. 
J. Neurophysiol. 100, 2109–2114 (2008).

 63. Latash, M. Evolution of motor control: From reflexes and motor programs to the equilibrium-point hypothesis. J. Hum. Kinet. 19, 
3–24 (2008).

 64. Mileusnic, M. P., Brown, I. E., Lan, N. & Loeb, G. E. Mathematical models of proprioceptors. I. Control and transduction in the 
muscle spindle. J. Neurophysiol. 96, 1772–1788 (2006).

 65. Chen, W. J. & Poppele, R. E. Small-signal analysis of response of mammalian muscle spindles with fusimotor stimulation and a 
comparison with large-signal responses. J. Neurophysiol. 41, 15–27 (1978).

 66. Blum, K. P., Lamotte D’Incamps, B., Zytnicki, D. & Ting, L. H. Force encoding in muscle spindles during stretch of passive muscle. 
PLoS Comput. Biol. 13, e1005767 (2017).

Acknowledgements
The authors acknowledge Dr. Robert Gaunt for his valuable critical input to the interpretation of modeling 
results. This study was supported by NIH/NIGMS U54GM104942 (RLH), T32GM081741 (RLH), T32AG052375 
(RLH), Ruby Fellowship (MTB), and NIH/NIGMS CoBRE P20GM109098 (SY, VG). The content is solely the 
responsibility of the authors and does not necessarily represent the official views of the NIH. This model devel-
opment was sponsored by the U.S. Army Research Office and the Defense Advanced Research Projects Agency 
(DARPA) under Cooperative Agreement Number W911NF-15-2-0016. The views and conclusions contained in 
this document are those of the authors and should not be interpreted as representing the official policies, either 
expressed or implied, of the Army Research Office, Army Research Laboratory, or the U.S. Government. The 
U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding 
any copyright notation hereon. Editorial services were supported by the West Virginia Clinical and Translational 
Science Institute (supported by the National Institute of General Medical Sciences, U54GM104942).

Author contributions
Substantial contributions to the conception of the work were by RH, SY, and VG; substantial contribution to the 
acquisition, analysis, interpretation of data, and drafting the manuscript was by RH, MB, SY, and VG.

competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-67403 -w.

Correspondence and requests for materials should be addressed to V.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-67403-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Computational evidence for nonlinear feedforward modulation of fusimotor drive to antagonistic co-contracting muscles
	Anchor 2
	Anchor 3
	Materials and methods
	Experimental design and human participants. 
	Primary afferent model. 
	Verifying task dynamics. 
	Analysis. 
	Statistics. 

	Results
	Discussion
	References
	Acknowledgements


