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Abstract

High-latitude northern ecosystems are experiencing rapid climate changes, and represent a large potential climate feedback
because of their high soil carbon densities and shifting disturbance regimes. A significant carbon flow from these
ecosystems is soil respiration (RS, the flow of carbon dioxide, generated by plant roots and soil fauna, from the soil surface to
atmosphere), and any change in the high-latitude carbon cycle might thus be reflected in RS observed in the field. This study
used two variants of a machine-learning algorithm and least squares regression to examine how remotely-sensed canopy
greenness (NDVI), climate, and other variables are coupled to annual RS based on 105 observations from 64 circumpolar
sites in a global database. The addition of NDVI roughly doubled model performance, with the best-performing models
explaining ,62% of observed RS variability. We show that early-summer NDVI from previous years is generally the best
single predictor of RS, and is better than current-year temperature or moisture. This implies significant temporal lags
between these variables, with multi-year carbon pools exerting large-scale effects. Areas of decreasing RS are spatially
correlated with browning boreal forests and warmer temperatures, particularly in western North America. We suggest that
total circumpolar RS may have slowed by ,5% over the last decade, depressed by forest stress and mortality, which in turn
decrease RS. Arctic tundra may exhibit a significantly different response, but few data are available with which to test this.
Combining large-scale remote observations and small-scale field measurements, as done here, has the potential to allow
inferences about the temporal and spatial complexity of the large-scale response of northern ecosystems to changing
climate.
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Introduction

Climate changes in the coming century may affect permafrost

thaw rates, greenhouse gas fluxes, wildfires, productivity, biota,

and energy fluxes in northern ecosystems [1,2,3,4]. Such high-

latitude ecosystems represent a large potential climate feedback

[5,6] because of their high soil carbon densities [7] and rapid

warming [8]. Any current or future carbon losses from these areas

will mostly occur through combustion [9] or changes in the

balance between net primary production and the heterotrophic

component of RS, the soil surface CO2 flux between the soil and

atmosphere. At 80–100 Pg C yr21 [10,11], total RS is one of the

largest fluxes in the terrestrial carbon cycle but its magnitude and

dynamics remain poorly constrained.

We hypothesized that boreal tree stress or mortality [12,13]

might be exerting a significant effect on the large-scale, high-

latitude RS flux, as belowground carbon allocation drops in

weakening or dying trees. Such forest stress and mortality has been

observed in both boreal North America [14,15] and Eurasia

[16,17], as well as more broadly worldwide [18]. These events are

most frequently attributed to drought stress [19] or insect attack

[20], and can be observed as trends in the remotely-sensed

Normalized Differenced Vegetation Index (NDVI), a measure of

canopy greenness [21,22], as well as the Enhanced Vegetation

Index (EVI) [23]. Such severe stress events are associated with

canopy defoliation and depletion of carbon reserves, delayed

recovery of surviving individuals, and tree death [24,25]. Because

plant photosynthesis is the ultimate source of all ecosystem

respiration, and forest soil respiration at large scales may be driven

more by productivity than temperature [26], such events should

also, in theory, be observable in RS data.

More generally, climate changes appear to be observable in the

extant published record of RS fluxes [10], but how such large-scale

changes interact to affect the major components of the high-

latitude carbon cycle remains an open question [6]. To explore

one aspect of this, we linked a global RS database [27], NDVI or

canopy greenness [22,28] and gridded climate data using both

machine-learning and classical statistical approaches. Our objec-

tives were to analyze the relationship, if any, between forest

‘browning’ observed from satellites and large-scale patterns of

annual RS, and to infer constraints that may be operating at high

latitudes on this large carbon flux.
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Methods

Soil Respiration, NDVI, and Ancillary Data
Observed soil surface CO2 flux, or soil respiration (RS, g C

m22 yr21), was the primary response variable considered in this

study. We used a recent version (20110224a, downloaded 24

February 2011 from http://code.google.com/p/srdb/) of a global

soil respiration database [27]. The downloaded data were filtered

to include only non-manipulated ecosystems (no agriculture or

experimentally manipulated systems); positive RS values; .50uN
latitude; mean annual air temperature (1961–1990) of ,2uC,

following [10]; and measured using infrared gas analyzers or gas

chromatography, relatively standardized techniques.

The primary independent data were Advanced Very High

Resolution Radiometer-Normalized Difference Vegetation Index

(AVHRR-NDVI, from http://glcf.umiacs.umd.edu/data/gimms/)

data covering all land surfaces above 50uN, except the glaciated

areas of Greenland. These NDVI measure ‘greenness,’ which at the

pixel level declines (and ‘browning’ increases) as forests weaken and

eventually die from biotic or abiotic stresses. These data were

produced as part of the NASA Global Inventory, Monitoring and

Modeling project (GIMMS version-G), spanned the years 1982–

2008 and were relatively coarse in spatial (64 km2 cells) and

temporal (15-day composite images) scales. GIMMS version-G data

have been calibrated to account for orbital drift, cloud cover, sensor

degradation, and the emission of volcanic aerosols [29,30]. We

transformed these data to a stereographic polar projection based on

the Clarke 1866 spheroid, and summarized them at a variety of

temporal scales: monthly; seasonal, including spring (mean of

March and April), early summer (May, June), late summer (July,

August), autumn (September, October), and winter (November-

February); and annual (mean of the entire year).

A variety of ancillary data were included in the analysis. Time

since disturbance (in years) was derived from the soil respiration

database, above, with missing data assigned the median value

(,50 years) as recommended by [31]. (Excluding the missing data

resulted in a significantly smaller data set, but did not change the

disturbance-related results below.) Global climate data (‘‘Monthly

Mean Air Temperature (Global 1900–2008)’’ and ‘‘Monthly Total

Precipitation (Global 1900–2008)’’) sets were downloaded from

http://climate.geog.udel.edu/̃ climate/; these data were used

because of their spatial resolution and currency. Mean (1961–

1990) values and climate anomalies were then computed as the

year-specific temperature or precipitation value minus the mean

value for that 0.5u grid cell. Global leaf area index (50, from

ECOCLIMAP [32]), grid area (0.5u, to derive a circumpolar flux

from area-normalized predictions, from EOS-WEBSTER at

http://eos-webster.sr.unh.edu/), nitrogen deposition (5u, from

ORNL DAAC at http://webmap.ornl.gov/wcsdown/wcsdown.

jsp?dg_id = 830_2), a Thornwaite-based climate index [33], and

the MODIS Vegetation Continuous Field (Collection 4, Version 3,

from http://www.landcover.org/data/vcf/) were also used.

These data sets were matched spatially and temporally to the

collected RS studies using a nearest-neighbor algorithm. Tempo-

rally, each RS observation was paired with climate and NDVI data

from the year of that study as well as up to five years previously,

i.e., a given RS observation from year t was associated with

temperature anomaly, precipitation anomaly, and NDVI (half-

monthly, monthly, etc., as described above) data from year t, t-1,

… t-5. This was done because multi-year carbon pools in northern

ecosystems [34] may decouple observed carbon fluxes (e.g., tree

growth) from ambient abiotic drivers [22,35].

Data Analysis
Two related machine-learning algorithms were used on the

final, unified data set (105 observations and 288 variables, from 64

unique sites). The standard Random Forest algorithm [31], a

nonparametric machine learning technique for classification and

regression, is widely used for large-data analyses, and as a data-

driven methodology makes no a priori theoretical assumptions

about RS drivers or behavior. The algorithm predicts by

aggregating regression trees constructed using different random

samples of the data, and choosing splits of the trees from subsets of

the available predictors, which are randomly chosen at each node

[31]. The use of random data and predictor subsets means that the

full data set can be used and data need not be withheld for

validation. The RF algorithm generally produces highly accurate

and unbiased estimates and classification when potential predictors

are drawn from the same scale or category, and it is particularly

robust against overprediction for ‘m.n’ (more potential predictor

variables than observations) data sets.

Random Forest can be unreliable (exhibit biased variable

selection), however, when potential predictor variables vary in

measurement scale or categories [36]. For this reason we also used

a conditional inference random forest (CI-RF) algorithm [37], the

cforest routine in party package version 0.9-99991 in R [38]. This

algorithm supports conditional inference trees [37] and aggregates

using observation weights extracted from the trees [39]. Such

conditional inference forests better handle variables of different

types, and observations of different weights, than do trees

generated using the original Breiman RF algorithm, although

they do not entirely eliminate the preference for correlated

predictors [37].

We allowed these algorithms to access varying amounts of

NDVI (from the original 15-day data, to monthly, seasonal, and

annual means, to none at all) and previous-year information

(‘lookback,’ from 0 to 5 years in the past). Importantly, each level

Table 1. Summary of variable importance in conditional
inference random forest models.

Variable name Rank Models Variable description

ndvi_jun4 1.4 5 NDVI, June, 4 years previous

ndvi_jun1 2.3 11 NDVI, June, previous year

ndvi_juna1 2.4 5 NDVI, first half of June, previous year

ndvi_maya3 3.7 3 NDVI, first half of May, 3 years previous

ndvi_sepa1 4.6 5 NDVI, first half of September, previous year

ndvi_esummer4 4.7 7 NDVI, early summer, 4 years previous

ndvi_esummer1 5.2 16 NDVI, early summer, previous year

ndvi_jun0 5.3 12 NDVI, June, previous year

ndvi_juna4 5.5 2 NDVI, first half of June, 4 years previous

ndvi_junb4 5.5 2 NDVI, second half of June, 4 years previous

ndvi_juna5 7.0 1 NDVI, first half of June, 5 years previous

ndvi_may3 8.1 7 NDVI, May, 3 years previous

ndvi_apr3 9.0 1 NDVI, April, 3 years previous

ndvi_auga2 9.3 4 NDVI, first half of August, 2 years previous

ndvi_lsummer5 9.3 4 NDVI, late summer, 5 years previous

Only the top 15 variables (out of 270 total potential predictors) are shown.
Variables are ordered by the mean rank (from node purity) computed by the
random forest algorithm; the third column gives number of models across
which this mean was computed.
doi:10.1371/journal.pone.0050441.t001

Northern Forest Browning and Soil Respiration

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e50441



tested included all previous coarser ones; for example, models

using monthly NDVI data were also given seasonal and annual

data, to see if the new level of detail resulted in significant model

improvement. Because late-winter snow interferes with the satellite

sensor, resulting in many missing values for this time period, we

excluded December-April NDVI after extensive testing: none of

these data was significant (i.e., ranked in the top 25 most important

variables; cf. Table 1) in any tested RS model, and their exclusion

resulted in no decrease in model explanatory power. The RF and

CI-RF routines were run with default settings (in particular,

Figure 1. Summary of model performance in predicting high-latitude soil respiration. Data are shown by algorithm type (a: conditional
inference Random Forest, CI-RF; b: ordinary least squares, OLS), level of NDVI detail available to the algorithm (none, and annual, seasonal, monthly,
and half-monthly means), and number of years the algorithm was allowed to look into the past. Values given are bin midpoints; out-of-bag R2 for CI-
RF (see Methods), and adjusted R2 for OLS.
doi:10.1371/journal.pone.0050441.g001
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number of variables randomly selected at each node = 5, number

of trees = 500) for all 30 models (5 levels of NDVI information

times 6 levels of temporal lookback); we found that altering these

parameters did not change the results in any meaningful way. The

algorithms ranked all variables by importance. For CI-RF, we

computed a pseudo-R2 following the original randomForest package,

as 1-SSTOT/SSERR, because the party package does not currently

compute a true out-of-bag error rate.

We also examined the effect of including the most important

variables, as identified by the RF and CI-RF algorithms, into

ordinary least squares (OLS) models, as OLS is a fundamental tool

for analyzing sources of variance in many studies. For each of the

30 NDVI/lookback models we built ordinary least squares (OLS)

models using the 18 most important variables identified by the

machine-learning algorithms. The automated ‘step’ function in R

removed and added model terms, starting from the complete

formula identified by the RF (and CI-RF) analysis. Term selection

was based on Akaike Information Criterion. For all analyses,

observations were weighted by the years of observed data reported

for each RS data point, to account for studies that reported multi-

year RS means. OLS models were checked for influential outliers

using a Cook’s distance threshold of 0.5 and refit, if necessary,

after outlier removal.

Circumpolar Modeling
The best-performing (based on pseudo-R2) model was used to

predict RS fluxes across the circumpolar region. A circumpolar

0.5u grid was used, with grid cells matched to all required climate,

NDVI, and ancillary data. Predicted fluxes for years 1989–2008–

roughly the period of methodologically standardized and pub-

lished RS measurements [10]–were calculated using the cell area

data and summed to produce a global high-latitude flux for boreal

and Arctic (.50uN, mean annual air temperature ,2uC) cells. A

nonparametric Mann-Kendall test was used to test for temporal

trends in the model output, and D’Agostino’s K2 goodness-of-fit

[40] to test for skew or departures from normality. All analyses

were performed using R 2.15.1 [38].

Results

The two machine-learning models accounted for 50–62% of the

observed variability for 105 annual RS observations at high

latitudes. When allowed to use more-detailed NDVI data, and

look back further into the past (i.e., consider previous-year

conditions to explain current RS) the models’ performance

improved (Figure 1). The best-performing model (a CI-RF type,

root mean square error RMSE = 139.9 g C m22 yr21) used

monthly NDVI and up to five previous years’ NDVI/climate data;

this was also identified as the best model by the classical RF

algorithm. OLS models built using the most important variables

from the machine-learning analyses showed a dramatic improve-

ment, with explained variability almost doubling from 33% (no

NDVI, only current-year data) to 61% (seasonal NDVI, up to four

years ‘lookback’ allowed). The best-performing OLS model is

summarized in Table 2. For all algorithms, the use of half-

monthly NDVI did not improve model performance relative to

mean monthly NDVI.

Previous-year NDVI–in particular, early-summer greenness–

was generally the most important RS predictor. Nine of the top ten

CI-RF variables, and five of the top ten RF ones, were NDVI in

early summer (May, June, July) in years before the RS

measurement, especially the previous year (Table 1). The best-

performing models also followed this pattern, with previous-year

June NDVI the best predictor and previous-year temperature the

best non-NDVI predictor. A number of potential explanatory

variables were almost never highly ranked, including nitrogen

deposition, time since disturbance, leaf area index, and percent

tree cover. As in a previous study [10], mean annual air

temperature was negatively associated with RS–i.e., warmer years

were consistently associated with lower respiration at high

latitudes. In summary, NDVI proved a far better RS predictor

than any other type of variable; previous-year data almost always

outperformed current-year data; and early-summer NDVI was the

single best predictor across a large number of models.

The results of extrapolating RS across the circumpolar boreal

region based on NDVI and climate data for the 1989–2008 period

are shown spatially in Figure 2, and the integrated circumpolar

flux in Figure 3. Predicted RS values ranged from 212–646 g C

m22 yr21, with a mean6s.d. of 3486102 g C m22 yr21; in

comparison, Arctic and boreal data average 1096109 and

3836228 g C m22 yr21, respectively, in the RS database used

here [27].

The model did not predict extremely low (,100 g C m22 yr21)

RS values observed at some Arctic sites, probably due both to the

paucity of observed RS data at these extreme latitudes, and the

presence of late-lying snow that interferes with the satellite sensor.

High observed RS values also tended to be underpredicted

(Figure 4). The mean predicted RS integrated over the entire

study area was 8.6 Pg C yr21, ,9% of the global flux [10], and

declined (0.04 Pg yr22, Mann-Kendall tau = -0.511, P = 0.049)

over the last ten years of the study period. Large areas of declining

RS in western North America (yellow patches in Figure 2) drove

the circumpolar slowdown in the model output.

Discussion

The dominance of lag effects–in previous-year NDVI and air

temperature–in this analysis is consistent with both theory and

observations. Short-turnaround, labile C comprises a significant

component of ecosystem C fluxes [41], while field experiments

Table 2. Summary of the best-performing ordinary least
squares (OLS) model.

Variable Year Estimate SE t P Signif.

(Intercept) 216760 9687 21.73 0.087 .

NDVI (early summer) 1 13.96 5.02 2.78 0.007 **

NDVI (late summer) 4 7.77 5.15 1.51 0.135

NDVI (early summer) 0 6.85 4.81 1.43 0.158

Air temperature 4 1.03 1.66 6.21 ,0.001 ***

NDVI (late summer) 1 21.53 4.96 23.08 0.003 **

Precipitation 0 0.70 0.34 2.05 0.043 *

Year 8.51 4.84 1.76 0.082 .

Air temperature 0 255.19 22.81 22.42 0.017 *

Mean annual precip. 20.58 0.20 22.90 0.005 **

NDVI (annual) 1 214.43 6.31 22.29 0.025 *

NDVI (fall) 0 9.21 3.35 2.75 0.007 **

Potential parameters of the best OLS model (RMSE = 156.9 g C m22 yr21 on 94
d.f., adjusted R2 = 0.61, P,0.001) were selected by the CI-RF algorithm before
OLS was performed (see Methods and Table 1). Columns include variable
included in OLS regression, year of data stream (0 = current year, 1 = previous
year, etc.); OLS estimate and standard error (SE); t-value; P-value; and
significance (‘‘.’’ ,0.1; ‘‘*’’ ,0.05; ‘‘**’’ ,0.01; ‘‘***’’ ,0.001).
doi:10.1371/journal.pone.0050441.t002
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have shown a lack of correlation between boreal tree ring width

increment and net ecosystem exchange [35], while ring width and

NDVI are only inconsistently correlated in high-latitude forests

[42,43]. This suggests that multi-year C pools play a significant

role in buffering ecosystem carbon fluxes from changing abiotic

drivers. Lags between RS and its drivers (soil temperature and

gross primary production) of up to 88 days were shown by Vargas

et al. [44], but we are unaware of previous studies documenting

multi-year lag effects. We note that RF and CI-RF models using

no current-year data at all–simply previous-year NDVI, air

temperature, and precipitation–explains ,60% (RMSE = 140.9 g

C m22 yr21) of observed RS variability, i.e., adding current-year

data yields very little improvement in model performance.

What mechanisms would link increases in temperature with

declines in RS, as observed here? Largely following the logic of

Peng et al. [14], we hypothesize that drought and water stress

engender hydraulic failure and inability to maintain carbon

balance (i.e., starvation) [25]. The dominant sources of RS are root

(autotrophic) and microbial (heterotrophic) respiration, and both

are affected–albeit at different temporal lags–by changes in the

photosynthate supply [45]. The resulting declines in belowground

tree respiration and root exudates then depress the RS flux as

measured at the soil surface.

Such a mechanism would be consistent with other studies

performed at a variety of scales. Drought has deleterious effects on

CO2 uptake [46], and has been shown to reduce RS in field studies

[47]. Tree mortality in western boreal North America has

increased [14], and field studies have observed aspen and white

spruce stress and dieback in North America has been linked to

moisture indices [12]. Silva et al. [15] reported that temperate and

boreal trees in Ontario, Canada, exhibited widespread growth

decline consistent with warming-induced stress, in spite of

increases in water use efficiency over the last half-century. At

larger scales, FLUXNET analyses have inferred significant

drought effects on ecosystem carbon cycling [48,49], and

productivity (for which NDVI, in this study, is a proxy) has been

shown to be more important than temperature in determining

landscale-level RS [26]. Finally, remote sensing analyses suggest

that changes in annual temperature and precipitation across North

America are negatively affecting forest resilience as measured

Figure 2. Spatial distribution of 1989–2008 soil respiration trends (RS, g C m22 yr22). Grid cells are colored by slope of RS trend, computed
based on the best fitting model (conditional-inference Random Forest, using monthly NDVI data up to 5 years previously) from Table 1. Field studies
used in building the models, drawn from a global RS database [27], are shown by overlaid points.
doi:10.1371/journal.pone.0050441.g002
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using the MODIS Enhanced Vegetation Index [23]. The use of

previous-year NDVI in this study is thus a significant strength, as it

provides an integrated signal of forest canopy stress tightly linked

with the photosynthates stored for the following year’s growth and

respiration.

There are other possible mechanisms to explain a putative RS

slowdown: climate changes might enable more pathogen and pest

outbreaks in drought-weakened trees [25] or increase freeze-thaw

events [12], for example, resulting in tree death, lower NDVI and

lower RS. Increased nitrogen deposition could also be depressing

forest RS, as has been shown to occur in temperate forests [50],

although most North American boreal and Arctic sites are

considered nitrogen-limited. We found no association between

RS and nitrogen deposition and thus a water-related mechanism,

as laid out above, seems more consistent with the available data.

It is not surprising that time since disturbance exerted no effect

on RS in this analysis. This is not to say that disturbance exerts no

effect: plant productivity exerts a dominant role on RS [26], and

fire in particular plays an important role in many high-latitude

forests [51], altering RS by killing plants, increasing litter inputs,

changing soil moisture conditions, and increasing the active layer

depth [52]. Disturbances can also cause soil C losses (via RS) so

large that sites become multi-year carbon sources [26]. The time-

since-disturbance variable may simply not have added any extra

information, however, given the strong NDVI effect found in this

analysis and the fact that NDVI and time since disturbance tend to

be well-correlated for several decades following disturbance [53].

In addition, while post-disturbance RS changes may be visible in

meta-analyses [54] and syntheses [26], many studies have

observed inconsistent or invariant ecosystem respiration [55] and

RS [56] in the decades after disturbance. Finally, relatively few RS

studies have been performed in post-disturbance forest and tundra

[27].

This analysis has a number of limitations. First, although we

used two more years of data (observations published 2009–2010)

than a previous RS meta-analysis [10], these results are based on

Figure 3. Predicted high-latitude soil respiration (RS), by year, with main driver variables. Panels show, from top, RS predicted flux; mean
annual temperature (MAT); mean annual precipitation (MAP); and previous-June canopy greenness (NDVI, unitless). RS points show integrated result
of the best-performing Random Forest model; to highlight trend, a loess smoother is shown by the dark line. Smoother errors (gray regions) were
computed as the least-squares error on locally weighted scatterplot smoothing.
doi:10.1371/journal.pone.0050441.g003
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only 105 annual flux measurements spread across a large

(,246106 km2) circumpolar region. The possibility of a type I

(false positive) error remains [10] significant: future data may

resolve the curiosity of high-latitude RS changes not being

positively correlated with air temperature increases. Second, the

RS data used here are dominated by well-drained, boreal, upland

sites, reflecting an imbalance in the published literature [27]. But

the respiration of peatland and permafrost ecosystems–which store

an outsized fraction of global soil organic carbon–may change in

different ways than a simple temperature- and NDVI-based model

would predict, driven by species shifts, permafrost thaw, and

increasing peat oxygenation. Tundra ecosystems will also likely

respond differently to warming than will boreal forests, as

processes such as warming-induced thermokarst and woody plant

encroachment may increase plant productivity [6,57,58]. Finally,

RS cannot by itself be used to infer carbon balance, as ecosystem

carbon balance is driven by the balance between net primary

production and heterotrophic respiration from snags, woody

debris, and soil. Few such comprehensive data are available at

high latitudes, however.

Conclusions
This study has shown that remotely-sensed NDVI and climate

data explain a large fraction of the variability of RS, the dominant

component of ecosystem respiration, at high latitudes. Combining

large-scale observations (NDVI) and a compilation of small-scale

observations (RS) allowed us to show that lag effects imply multi-

year carbon pools exerting significant large-scale effects, to the

point that no current-year data are needed (at this scale) to predict

total RS in a given year. Finally, we suggest that high-latitude RS

has declined significantly over the last ten years, as warmer

summers stress some northern ecosystems, in particular the boreal

forests that constitute most of the data used here [46]; we caution

that tundra ecosystems may respond very differently. Although we

cannot prove causality between the observed NDVI and RS data,

such an effect would be consistent with other recent studies (e.g.,

[59]). Because the boreal and Arctic carbon cycles may exert

strong global climate feedbacks [6], the question of whether this

decline is truly a symptom of water stress and forest mortality

deserves further exploration.
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Figure 4. Observed versus predicted soil respiration (g C m22 yr21) for the best-performing linear model summarized in Table 1.
Solid line shows 1:1, dashed line (with grey error region) the relationship between observed and predicted values. Point size indicates number of
years reported by each study (cf. Figure 2), and was used as a weighting factor in all analyses.
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