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Respiratory diseases including apnea are often accompanied by abnormal respiratory depth, frequency, and rhythm. If different
abnormal respiratory patterns can be detected and recorded, with their depth, frequency, and rhythm analyzed, the detection and
diagnosis of respiratory diseases can be achieved. High-frequency millimeter-wave radar (76–81GHz) has low environmental
impact, high accuracy, and small volume, which is more suitable for respiratory signal detection and recognition compared with
other contact equipment. In this paper, the experimental platform of frequency-modulated continuous wave (FMCW) radar was
built at first, realizing the noncontact measurement of vital signs. Secondly, the energy intensity and threshold of respiration signal
during each period were calculated by using the rectangular window, and the accurate judgment of apnea was realized via
numerical comparison. +irdly, the features of respiratory and heart rate signals, the number of peaks and valleys, the difference
between peaks and valleys, the average and the standard deviation of normalized short-term energy, and the average and the
standard deviation and the minimum of instantaneous frequency, were extracted and analyzed. Finally, support vector machine
(SVM) and K-nearest neighbor (KNN) were used to classify the extracted features, and the accuracy was 98.25% and 88.75%,
respectively. +e classification and recognition of respiratory patterns have been successfully realized.

1. Introduction

According to the World Health Organization, 27% of the
world’s population is suffering from respiratory problems, and
2%–7% of adults have obstructive sleep apnea [1]. Apnea can
pose a threat to people’s life, and chronic respiratory diseases
can also affect people’s health subtly [2, 3]. +erefore, the
research on the classification of apnea and abnormal respi-
ratory patterns is of great significance to the protection of life
and health. At present, the more advanced contact vital signal
detection methods include Forcecardiography [4], Seismo-
cardiography [5], Gyrocardiography [6, 7], and Piezoresistive
Breathing Sensing System [8, 9] with wearable shell for
measuring respiration. Advanced noncontact detection
equipment includes remote wireless monitoring system
[10, 11], millimeter-wave radar system [12] for detecting
multiple vital signs, active integrated antenna and envelope
detector [13, 14], monitoring system integrated into hearing

protection device [15] for detecting heartbeat and pulse, etc.
High-frequency millimeter-wave radar has the advantages of
small size, low power consumption, and high accuracy [16]. It
can detect the movement as small as a fewmillimeters, so it can
be used to measure the microvibration of respiration and
heartbeat [17].

Recently, Petkie et al. [18] proposed a heterodyne radar
system for remote measurement of respiration and heart rate,
which could measure respiration and heart rate within 50
meters. Bakhtiari et al. [19] developed a compact millimeter-
wave sensor for remote detection of human vital signs (res-
piration and heart rate). +e system could be applied to a wide
range of isolation sensing, including patient health care, bio-
logical measurement, and general remote vibration measure-
ment. Kao et al. [20] adopted fully integrated Doppler
miniature radar for noncontact vital signs and vibration de-
tection using smaller wavelength to achieve a highly compact
system for portable devices. Vinci et al. [21] proposed a novel
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remote respiratory and heartbeat monitoring sensor based on a
single-base radar based on a six-port interferometer, operating
at 24GHz. +e advantages of the six-port receiver are high-
range measurement accuracy on the micron scale and low
system complexity. Wang et al. [22] focused on the develop-
ment of linear frequency modulation continuous wave
(LFMCW) radar for noncontact range tracking of vital signs
such as respiration signal and presented an algorithm of dis-
tance tracking based on phase. Yang et al. [23] took advantage
of 60GHz millimeter wave in sleep testing for vital signs. +e
system was able to monitor the respiration and heartbeat and
recognize the sleep posture.

Although some progresses in the respiration detection
based onmillimeter-wave radar have been made, most of the
frequency ranges used in millimeter-wave radar belong to
low frequency such as 24GHz and 35GHz [24, 25]. And the
measurement accuracy is always low. In addition, the ma-
jority of the millimeter-wave radar systems are with large
sizes [26]. Without miniaturization and portability, the
practicability will be restricted to a large extent in many
aspects such as home and medical institutions. Besides, the
radar signals always contain a variety of contamination,
reducing the signal-noise-ratio (SNR) and the accuracy of
respiration and heart rate measurement. And the current
abnormal respiratory patterns are able to be detected only.
However, there is no further classification [27].

To address the problem, this paper builds a noncontact
vital signal-detecting system based on frequency-modulated
continuous wave (FMCW) radar to realize the estimation of
human micromotion parameter. By capturing the reflected
signal, the FMCW radar system could obtain the distance,
speed, and angle of the measured object [28]. +en, the
respiration and heart rate were distinguished through cal-
culating the vibration amplitude and frequency.

In terms of apnea judgment, we combined respiration
signal and heart rate signal to do the joint apnea judgment.+e
rectangular window was selected to segment the vital signal.
+en, the energy intensity and threshold of each segment were
calculated. Next, the judgment result was output after com-
paring the energy intensity and the threshold.

In accordance with recognition of different respiratory
patterns, experiments of 5 kinds of respiratory patterns, such
as normal respiration, Biot’s respiration, tachypnea, bra-
dypnea and Cheyne–Stokes respiration, were designed and
conducted separately [29]. +e preprocessing and feature
extraction were carried out afterwards: the valley to peak
difference (VPD) peak-finding was utilized to extract the
peak value, the valley value, and the difference between them
[30]. After calculating the average and standard deviation of
the normalized short-term energy [31], Hilbert–Huang
transform (HHT) was taken advantage of to extract the
average, standard deviation, and minimum of the instan-
taneous frequency [32]. Finally, we used support vector
machine (SVM) and K-nearest neighbor (KNN) algorithm
to do the classification, realizing the recognition of different
respiratory patterns successfully.

+e structure of the paper is as follows: Section 2 in-
troduces the FMCW radar-based experimental platform and
the data acquisition. Section 3 describes the data acquisition

and processing. Section 4 illustrates the apnea judgment
through energy intensity and threshold. Section 5 represents
the respiratory pattern classification. In Section 6, the research
contents of this paper are discussed and compared with other
research studies in this field. Section 7 summarizes this paper.

2. Data Acquisition Based on FMCW Radar
Experimental Platform

+e schematic diagram of the vital signal-detecting system
based on FMCW radar is shown in Figure 1. Initially, a
synthesizer generates a linear frequency modulation (LFM)
(whose frequency is linear with time) pulse, which is emitted
by the transmit antenna (TX antenna). After reaching the
measured object, the reflected pulse is captured by the re-
ceive antenna (RX antenna). +e mixer combines the RX
and TX signals and generates an intermediate frequency (IF)
signal. +e instantaneous frequency of the output IF signal is
equal to the difference of the instantaneous frequency of the
two signals. +e phase of the output IF signal is equal to the
difference of the phase of the two signals. After being
bandpass filtered and sampled by analogue-to-digital con-
verser (ADC), the sampling rate of ADC is 2MHz, and the
ADC resolution is 10 bit. +e data are packaged by the
processor. From USB to serial port, the acquired data are
sent to the PC. Subsequently, with data processing including
fast Fourier transform (FFT), the waveform and frequency of
the vital signals of respiration and heart rate are gained.

+e experiment platform is composed of millimeter-
wave sensor (IWR1642 (Texas Instruments, America)),
microcontroller (TM4C1294NCPDT (Texas Instruments,
America)), FLASH memory, and power circuit. +e hard-
ware block diagram is implied in Figure 1. +e power circuit
includes the following:

(i) Power management chip, LP87524 (Texas Instru-
ments, America), converts the externally input
voltage (5V) into the voltage required (1.2V, 1.3 V,
1.8V, and 3.3V) by the millimeter-wave sensor,
which needs to be controlled through I2C com-
patible serial interface and enable signal.

(ii) Circuit protection chip, TPD4E004 (Texas Instru-
ments, America), is used for interference suppres-
sion and electrostatic protection.

(iii) Linear regulator, BL9193 (Belling, China), converts
the input voltage, 5 V, to 3.3V for the
microcontroller.

+e millimeter-wave sensor, IWR1642, communicates
with the FLASH memory through Queued Serial Peripheral
Interface (QSPI) to realize the data reading and erasing. +e
microcontroller can achieve the programming in the inte-
grated digital signal processing (DSP) subsystem of the
millimeter-wave sensor through the JTAG interface. +e
collected signals are converted by the microcontroller and
sent to the PC via USB for data processing. Figure 2 shows
the experimental platform of the millimeter-wave radar. +e
actual power of the millimeter-wave radar experimental
platform is 3.6W.
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+e distance resolution dres and speed resolution Δω of
the system are determined by the bandwidth and sweep
frequency, respectively. +e specific formula is shown as
follows:

dres �
c

2B
, (1)

Δω �
2π
N

. (2)

In order to enhance the FMCWradar parameter resolution,
combined with the IWR1642, the linear frequency modulation
parameters for radar measurement are set in Table 1.

2.1. Bandwidth. +e bandwidth needs to be increased
proportionally. +erefore, the maximum continuous
bandwidth, 4GHz, in which the millimeter-wave sensor
IWR1642 could support, was chosen in order to improve the
distance resolution.
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Figure 1: +e schematic diagram and the hardware block diagram of the vital signal-detecting system based on FMCW radar.
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Figure 2: +e experimental platform of the millimeter-wave radar.
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2.2. Number of Sweep Frequency (N). +e number of sweep
frequencies needs to be enhanced. However, increasing the
number of sweep frequency will lead to longer processing
time. Considering the speed resolution and algorithm effi-
ciency comprehensively, the number of sweep frequency of
each linear FM frame was 100.

2.3. Duration of Sweep Duration (Tc). +e bandwidth of the
radar measurement is related to the duration of frequency
sweep.+e duration of sweep frequency was set to 50 μs so as
to ensure the maximum bandwidth of the radar.

For the other parameters, the initial frequency
Fc � 77GHz, the slow time axis sampling frequency
Fs � 20Hz, and the fast time axis sampling frequency
Fs ∼ fast � 2MHz were defined.

3. Data Acquisition and Processing

+ere were 20 healthy subjects with an average age of 24.
Before the experiment, each person sat in front of the test
radar into a calm state and then began the formal mea-
surement. Each simulated respiration method is shown in
Table 2. +e number of apnea simulations was 5 for each
person, which formed 100 samples in total. Each respiratory
pattern was simulated 8 times for each person, forming 160
samples of each respiratory pattern, and there were 800
samples in total.

Adults breathe about 16–20 times per minute normally.
Biot’s respiration belongs to a pathological periodic respi-
ration: one or more strong breaths are followed by a long
breath stop, and then several strong breaths arise again, with
a cycle of 10–60 seconds [33]. Tachypnea forms when the
respiratory frequency of adults is more than 20 times per
minute. Bradypnea means that the respiratory rhythm is
regular, but the frequency is less than 10 times per minute.
Cheyne–Stokes respiration happens along with the gradual
weakening of respiration, so that the respiration stop and the
gradual increase appear alternately, showing a tidal wave-
like trend [34]. +e waveforms of the five respiratory pat-
terns are indicated in Figure 3.

Subjects were simulated with apnea and five respiratory
patterns (normal respiration, Biot’s respiration, tachypnea,
bradypnea, and Cheyne–Stokes respiration). +e number of
apnea simulations was 5 for each person, which formed 100
samples in total. Each respiratory pattern was simulated 8
times for each person, forming 160 samples of each respi-
ratory pattern, and there were 800 samples in total.

3.1.ExperimentofOptimumMeasurementDistance. In order
to find out the best measurement distance of the FMCW
radar, three distance experiments were carried out. +e
FMCW radar was 10 cm, 30 cm, and 50 cm away from the
chest, respectively, and the data were collected for 1min in
each experiment. +e number of frames of the collected data
was recorded. When using FMCW radar for data acquisi-
tion, due to external or internal interference, data loss will
often occur, leading to the mutation of the corresponding
point of that frame. If there was a mutation in the corre-
sponding point, the data of this frame got lost.+erefore, the
quality of the collected data could be judged according to the
number of mutations.

+e frames and waveforms corresponding to the data
collected by millimeter-wave radar at 10 cm, 30 cm, and
50 cm are shown in Figure 4 respectively.

We conducted experiments on 20 subjects at 10 cm,
30 cm, and 50 cm, respectively, and recorded their mutation
points. +e recorded results are shown in Table 3.

By comparison, when the experimental distance is 30 cm,
the data corresponding to the frame have fewer mutation
points and higher accuracy.

3.2. Separation of Vital Signal Based on Bandpass Filter.
After data acquisition, it is necessary to extract and separate
the respiration and heart rate signals from the micro-
displacement vibration of the raw signals. Phase difference
signal refers to the phase difference part of the IF signal,
which includes the respiration and heartbeat information of
the human body. Figure 5 illustrates the separation process
of the vital signals of respiration and heart rate. Both res-
piration and heart rate cause weak vibrations on the body
surface. +e frequency of the vibration from respiration is
0.1–0.6Hz [35], and the amplitude is 1–12mm. +e fre-
quency of vibration from heartbeat is 0.8–4.0Hz [36], and
the amplitude is 0.1–0.5mm. In view of the difference in the
amplitude and frequency of body surface vibration caused by
respiration and heart rate, bandpass filters with different
frequencies can be applied [37]. +e specific process is as
follows:

(1) Perform the distance FFT on the data collected by
millimeter-wave radar.

(2) Extract the phase from the selected range bin and
unwrap the phase.

(3) Apply the bandpass filter to the phase different
signal. When the frequency band is 0.1–0.6Hz, the
respiratory signal is obtained. When the frequency
band is 0.8–4.0Hz, the heart rate signal is got.

After separating the respiratory and heart rate signals,
the frequencies were calculated. +e spectrum estimation
of respiratory signal based on FFT and peak interval was
performed [38]. +e final respiratory rate was output
under the confidence degree. Because the measurement of
heart rate is based on the distance difference between the
tiny movement of heart contraction and diastole, and the
phase change caused by the difference, according to the
micro-Doppler principle, when the human body appears,

Table 1: +e linear frequency modulation parameters for radar
measurement.

Parameters Value
Bandwidth 4GHz
N 100
Tc 50 μs
Fc 77GHz
Fs 20Hz
Fs ∼ fast 2MHz
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a large-scale movement will affect its accuracy. +erefore,
it was a need to determine whether the segment was
damaged. +e undamaged data were put into the valid
value buffer while the data whose energy exceeded the
threshold were abandoned. +en, the spectrum

estimation based on FFT, autocorrelation, and peak in-
terval was performed, and the confidence degrees of them
were calculated. Similarly, the final heartbeat frequency
was output with the decision based on the confidence
degree.
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Figure 3: +e waveforms of the five respiratory patterns: (a) normal respiration; (b) Biot’s respiration; (c) tachypnea; (d) bradypnea; (e)
Cheyne–Stokes respiration.

Table 2: Simulated respiration methods.

Respiratory patterns Experimental methods Experiment time
(s)

Normal respiration Normal respiration 60
Biot’s respiration Stop respire for 30 seconds and complete the respiratory cycle every 4 seconds for 30 seconds 60
Tachypnea Complete respiratory cycle every 2 seconds for 60 seconds 60
Bradypnea Complete respiratory cycle every 8 seconds for 60 seconds 60
Cheyne–Stokes
respiration

Apnea-gradual increase in respiration-gradual decrease in respiration-apnea. Each phase is
maintained for about 20 seconds 60

Apnea Normal respire 20 seconds, apnea 20 seconds, normal respire 20 seconds 60
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3.3. Reliability Verification of Millimeter-Wave Radar Mea-
surement Method. While respiration was measured by the
millimeter-wave radar, a respiratory belt (RSB-EQ001
(ADInstruments, Australia)) was used to record respiratory
rate. +e error was calculated to obtain the reliability of the
system. +e experimental data are shown in Table 4.

+rough observation, the maximum error of respiratory
rate measured by millimeter-wave radar is 6.67%, so the
measurement results are accurate. +e respiration measure-
ment by the millimeter-wave radar method is reliable.

While using millimeter-wave radar to measure the heart
rate, the oximetry (YX303 (Yuwell, China)) was used to record
the heart rate. +e experimental data are shown in Table 5.

+rough observation, the maximum error of heart rate
measured by millimeter-wave radar is 2.90%, so the mea-
surement results are accurate. It is reliable to measure
heartbeat by millimeter-wave radar.

3.4. Frame Data Processing. When using FMCW radar for
data acquisition, due to external or internal interference,
data loss of a certain frame will often occur, leading to the
mutation of the corresponding point of that frame, as shown
in Figure 6.

+e lost data have a certain impact on the results, so the
data should be processed. +is paper proposed two
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Figure 4: Distance experiment results: (a) frame changes during data acquisition (10 cm); (b) respiratory signal and heart rate signal
waveform (10 cm); (c) frame changes during data acquisition (30 cm); (d) respiratory signal and heart rate signal waveform (30 cm); (e)
frame changes during data acquisition (50 cm); (f ) respiratory signal and heart rate signal waveform (50 cm).
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processing methods, and the results of the two processing
methods (apnea judgment) were compared as shown in
Figure 7:

(i) Remove the mutation points.
(ii) Add an average value to the point where there is a

mutation: for example, if there is mutation at the
15th point, add an average value of the 15th and 16th
points between the 15th and 16th points.

+ere was a small period of misjudgment for apnea by
method 1, and no misjudgment by method 2. Method 2 has
better processing effect on abnormal data, so method 2 is
chosen to process abnormal data.

4. Judgment ofApneaBasedonEnergy Intensity
and Threshold

4.1. Energy Intensity and 9reshold Judgment. +e respira-
tion and heart rate signals belong to nonperiodic deter-
ministic signals, which can be illustrated by energy intensity.
+e energy intensity of the discrete signal is expressed as
follows:

E(i) � 􏽘
∞

− ∞
|x(i)|

2
, (3)

where i represents the position of discrete signal points, E(i)

represents the energy intensity, and x(i) represents the
discrete signal.+e energy intensity reflects themagnitude of
the respiration and heart rate signals. Hence, the signal
threshold is set to do the comparison: when the energy
intensity value of the vital signal reduced by more than 50%
compared with normal respiration, the apnea occurred. +e
threshold, D(n), was divided into three sections, as shown
below.+e energy intensity will be higher than the threshold
during normal respiration, and that is lower than the
threshold during apnea:

n � 1: D(n) � E(1) × 50%,

2≤ n< 5: D(n) �
􏽐

i�n
i�n− 4E(i)

n
× 50%,

n≥ 5: D(n) �
􏽐

i�n
i�n− 4E(i)

5
× 50%,

(4)

where 􏽐
i�n
i�n− 4E(i) is on behalf of the energy intensity in the

front n segments. When n � 1, the signal threshold is 50% of
its energy intensity; when 2≤ n< 5, the signal threshold is
50% of the average value of n-segment signal energy in-
tensity; when n≥ 5, the signal threshold is 50% of the average
value of the energy intensity of the first 5 signals after the two
signals.

4.2. Apnea Test Verification. +e energy intensity and
threshold were taken advantage of to judge the apnea: in the
beginning, the rectangular window was used to segment the
respiratory signals and heart rate signals, and the energy
intensity and threshold of each segment were calculated.
When the energy intensity was higher than the threshold
during normal respiration, “0” was output. During apnea,
the energy intensity was lower than the threshold and “1”

Table 3: Mutation points of different subjects at different radar
distances.

Subject number 10 (cm) 30 (cm) 50 (cm)
1 9 7 13
2 8 5 10
3 10 8 13
4 9 6 12
5 9 6 12
6 8 6 11
7 11 8 13
8 9 5 13
9 8 6 12
10 9 6 12
11 10 8 14
12 11 7 12
13 9 6 13
14 8 5 10
15 8 5 11
16 9 5 12
17 10 8 13
18 9 6 12
19 9 5 14
20 8 6 12
+e average 9.05 6.20 12.20
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was output. +e subjects were required to simulate the re-
spiratory pattern of “normal respiration-apnea-normal
respiration,” and Figure 8 indicates the judgment results.

For respiratory signal, actual apnea started at 84th point
and stopped at 145th point. +e results of apnea judgment
based on respiratory signals showed that it started from the
90th point and stopped at the 143rd point, with a detecting
accuracy of 86.9%.

For heart rate signal, actual apnea started at 83rd point
and stopped at 139th point. +e results of apnea judgment
based on heart rate signal showed that it started at the 92nd
point and stopped at the 138th point, and the monitoring
accuracy was 82.1%.

It can be found that the respiratory signal and heart rate
signals can distinguish the apnea with the energy intensity
and threshold. +e judgment accuracy of the respiratory

signal is higher than that of the heart rate signal, but the
heart rate signal can also play a role in assisting judgment.
+us, not only can the judgment of apnea rely on breathing,
but also heart rate can be used as a reference.

5. ClassificationofRespiratoryPatternBasedon
Multifeature Extraction and
Machine Learning

Chronic respiratory diseases are also detrimental to people’s
health, so it is indispensable to judge the chronic respiratory
diseases. Respiratory diseases are often accompanied by
abnormal respiratory depth, frequency, and rhythm. Dif-
ferent combinations of them often result in different ab-
normal respiratory patterns [39]. For example, excessive

Table 4: A comparison of respiratory rates measured by millimeter-wave radar and respiratory belt.

Times Millimeter-wave radar (breaths per minute (bpm)) Respiratory belt (breaths per minute (bpm)) +e error (%)
1 19 20 5
2 18 19 5.26
3 16 17 5.88
4 17 18 5.56
5 22 21 4.76
6 16 15 6.67
7 20 19 5.26
8 18 19 5.26
9 20 19 5.26
10 19 20 5

Table 5: A comparison of heart rate measured by millimeter-wave radar and oximetry.

Times Millimeter-wave radar (beats per minute (bpm)) Oximetry (beats per minute (bpm)) +e error (%)
1 70 69 1.45
2 67 69 2.90
3 67 69 2.90
4 67 68 1.47
5 67 67 0.00
6 68 70 2.86
7 68 69 1.45
8 70 69 1.45
9 70 71 1.41
10 70 70 0
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respiratory frequency will lead to tachypnea. Abnormal
respiratory rhythms will provoke Cheyne–Stokes respiration
likewise. We mainly focus on five respiratory patterns:
normal respiration, Biot’s respiration, tachypnea, bra-
dypnea, and Cheyne–Stokes respiration.

5.1. Feature Extraction of Respiratory Pattern

5.1.1. 9e Number of Peaks, the Number of Valleys, and the
Difference between9em. +e vital signal processing usually
involves peak detection and peak interval searching. Peak
detection aims at finding the position and amplitude of the
local maximum in certain signal. We chose the VPD peak-
finding algorithm [30], which eliminated all false peaks
induced by noise through iteration, until the results of the
number of peaks in two consecutive iterations were con-
sistent. +e program block diagram is implied as follows in
Figure 9, and the steps are as follows:

(a) Preprocessing. Use a three-point moving average
smoothing filter to improve the SNR. Next, apply
filters forward and backward to remove any phase
shifts resulting from filtering.

(b) Maximum and Minimum Detection. Detect all the
peaks and valleys in the signal and determine their
positions.

(c) Judgment of Peak Point and Valley Point Position.
Compare the positions of the first peak point and the
first valley point under the condition that VPD
processing starts at the valley. If the peak point
appears first, discard it, and start acquiring the signal
from the first valley point. Consequently, there are
not corresponding valley points along with discarded
peak points.

(d) Calculation of the Difference between Peak and
Valley. VPD is expressed in equation (5), and the
algorithm will search for certain condition in the
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Figure 7: Comparison of two processing methods: (a) signal processing by method 1; (b) signal processing by method 2.
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VPD series, as given in (6). Instances meeting this
condition are considered to be over-detected, so the
corresponding peak points and peak positions are
deleted from the candidate sequence:

VPD(k) � P(k) − V(k), k � 1, 2, 3, . . . , m, (5)

VPD(k)< 0.7∗
VPD(k − 1) + VPD(k) + VPD(k + 1){ }

3
.

(6)

(e) Repeated VPD Processing. Repeat VPD processing
until the number of peak points in two consecutive
iterations maintains unchanged, so that all peaks
provoked by noise and artifacts can be eliminated.

In the experiment, the number of peaks, the number of
valleys, and the difference between them of the five respi-
ratory patterns were selected as the features. In the light of
the characteristics of the respiratory patterns, the subjects
simulated different respiratory patterns. For each pattern, 80
datasets were collected as training samples. +e number of
peaks and valleys and the difference between them were
recorded in 1 minute.+emillimeter-wave radar sampled 20
points per second, namely, about 1200 points per minute. A
set of samples with peak value in each pattern are dem-
onstrated in Figure 10, and the recorded data (part) are listed
in Table 6.

As can be seen from Table 6, the number of peaks, the
number of valleys, and the difference between them vary in

different respiratory patterns. For example, a statistical
analysis of all the samples showed that the average number
of peaks of respiratory tachypnea per minute was 20.15, and
the average number of peaks of respiratory bradypnea was
14.87. At the same time, the difference between the peak and
valley points of tachypnea is smaller than that of bradypnea.

Later, we compared the VPD peak-finding algorithm
with the common peak-finding function, findpeaks. Taking
normal respiration as an example, the peak and valley points
obtained by the findpeaks function are displayed in Fig-
ure 11. In the same way, we recorded 80 sets of training
samples for each respiratory pattern gained by the findpeaks
function for 1minute, respectively. Table 7 implies the
recorded data (part).

It can be seen that the peak points are not screened,
which increases the number of peak points dramatically. At
the same time, the number of peak points and valley points is
equal. In this paper, we used the number of peaks, the
number of valleys, and the difference between them as the
feature. Consequently, we use the VPD peak-finding algo-
rithm for feature extraction.

5.1.2. Normalized Short-Term Energy Average and Standard
Deviation. Since the energy of the respiratory signal changes
with time, there is a certain energy difference between weak
respiratory and strong respiratory. +us, analyzing the
short-term energy of the respiratory signal is able to describe
the characteristic change of respiration. Normalization can
map the data to [− 1, 1] to remove the amplitude difference of
respiratory signals among different subjects and different
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Figure 9: +e program block diagram of VPD.
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respiratory patterns. +e normalization is expressed as
follows:

x �
x0

x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌max
, (7)

where |x0|max is the maximum in the absolute value of the
raw respiratory signal amplitude. After normalization, the
respiratory signal is defined as follows:

xn � − 1 +
x − xmin

xmax− xmin
· 2, (8)

where xmax and xmin are the maximum and minimum of the
respiratory signal amplitude after normalization.

+e short-term energy of the respiratory signal is defined
as follows:

En � 􏽘
+∞

m�− ∞
xn(m)w(n − m)􏼂 􏼃

2
� 􏽘

n

m�n− (N− 1)

xn(m)w(n − m)􏼂 􏼃
2
,

(9)

where w(n) is the window function, N is the window length,
and windowing is capable of reducing the truncation effect
of the respiratory frame. When the window function is a
rectangular window, equation (11) turns to

En � 􏽘

n

m�n− (N− 1)

xn
2
(m). (10)

We applied a rectangular window whose length is 4
seconds, and millimeter-wave radar samples 20 points per
second (80 points in 4 seconds), that is, N� 80. +e applied
rectangular window is written as
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Figure 10: Peak-finding results of 5 respiratory patterns: (a) normal respiration; (b) Biot’s respiration; (c) tachypnea; (d) bradypnea; (e)
Cheyne–Stokes respiration.
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w(n) �
1, 0≤ n<N − 1,

0, other.
􏼨 (11)

Subjects simulated different respiratory patterns, and the
normalized short-term energy was calculated from the col-
lected data. 80 datasets were collected for each pattern as
training samples, and a set of data was opted from each
respiratory pattern sample to perform normalized short-term
energy calculation. +e results are manifested in Figure 12.

It is undeniable that the short-term energy during
tachypnea exceeds that of bradypnea, and the short-term
energy during apnea is almost zero. Additionally, normal
respiration, tachypnea, and tachypnea maintain the same
respiratory intensity basically, and the short-term energy

changes slightly. +e intensity of Biot’s respiration decreases
first and then rises. +e intensity of Cheyne–Stokes respi-
ration soars initially and drops later. +e short-term energy
change of Biot’s and Cheyne–Stokes respiration is greater. In
expectation of observing the amplitude and the trend, the
average and standard deviation of the short-term energy
(part) of the 5 respiratory patterns were calculated separately
and are given in Table 8.

5.1.3. 9e Average Value, Standard Deviation, and Minimum
of Instantaneous Frequency. +e instantaneous frequency
represents the transient frequency characteristics of the signal
at local time points, and the instantaneous frequency over the
entire duration reflects the time-dependent law of the signal
frequency. For signal X(t), the Hilbert transform can be used
to obtain Y(t), as demonstrated in the following equation:

Y(t) �
1
π

PV 􏽚
∞

− ∞

X(τ)

t − τ
dτ􏼠 􏼡, (12)

where PV is the Cauchy principal value. Y(t) is the con-
volution of X(t) and (1/πτ). As a result, X(t) and Y(t) form
a conjugate complex pair, so an analytical signal Z(t) can be
got in equation (13), where a(t) and θ(t) are on behalf of the
amplitude and phase:

Z(t) � X(t) + iY(t) � a(t)e
iθ(t)

, (13)

a(t) � X
2
(t) + Y

2
(t)􏽨 􏽩

(1/2)
, (14)

Table 6: Number of peaks and valleys of 5 respiratory patterns (VPD, part data).

Respiratory patterns Number of peaks/number of valleys/difference
Normal respiration 21/45/24 17/42/25 16/44/28 18/42/24
Biot’s respiration 12/37/25 8/53/45 11/47/36 14/57/43
Tachypnea 20/38/18 22/41/19 18/41/23 24/36/12
Bradypnea 13/39/26 15/41/26 13/44/31 16/39/23
Cheyne–Stokes respiration 10/45/36 14/45/31 5/42/37 13/49/36
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Figure 11: +e result of comparison between VPD and the common peak-finding function, findpeaks.

Table 7: Number of peaks and valleys of 5 respiratory patterns (the
common peak-finding, part data).

Respiratory patterns Number of peaks/number of valleys/
difference

Normal respiration 51/51/0 23/23/0 50/49/-
1 45/46/1

Biot’s respiration 51/50/-
1 58/58/0 55/56/1 68/68/0

Tachypnea 45/45/0 49/49/0 47/46/-
1

41/40/-
1

Bradypnea 43/43/0 49/48/-
1

61/60/-
1 42/43/1

Cheyne–Stokes
respiration 52/53/1 48/49/1 46/45/-

1
56/55/-

1
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θ(t) � arc tan
Y(t)

X(t)
􏼠 􏼡. (15)

+ere are many ways to define the imaginary part.
However, the Hilbert transform provides a unique imagi-
nary part, which forms an analytic function. Once the phase
is obtained, the instantaneous frequency can be got because
the instantaneous frequency is the derivative of phase:

ω �
dθ(t)

dt
. (16)

+e subjects simulated different respiratory patterns.
Data were collected, and HHT was performed. Taking a

dataset of Biot’s respiration as an example, the raw waveform
and instantaneous frequency are shown in Figure 13.

It is evident that in Biot’s respiration, the instantaneous
frequency during normal respiration period is significantly
higher than that during the apnea period, and the instan-
taneous frequency of the apnea is almost zero. In this case,
we inferred that the instantaneous frequency of strong
respiration is higher than that of weak respiration. To verify
this, one experimental dataset of tachypnea and bradypnea
was taken out, and HHT was done. Figure 14 gives infor-
mation about the instantaneous frequency. Since the in-
stantaneous frequency of apnea in Biot’s respiration was
nearly 0, we implied that the instantaneous frequency of
apnea in Cheyne–Stokes respiration was nearly 0 as well.
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Figure 12: Normalized waveforms and short-term energy of 5 respiratory patterns: (a) normal respiration; (b) Biot’s respiration; (c)
tachypnea; (d) bradypnea; (e) Cheyne–Stokes respiration.
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Equally, one experimental dataset of normal and Cheyne–
Stokes respiration was taken out separately, and HHT was
operated so as to get the instantaneous frequency. +e result
is indicated in Figure 15.

It is obvious that the instantaneous frequency of
tachypnea is higher than that of bradypnea. And the
tachypnea and bradypnea maintained the same intensity
basically, with small changes in the instantaneous frequency.
+e respiratory intensity of Biot’s respiration first declines
and then leaps. +e instantaneous frequency changes dra-
matically, and the instantaneous frequency is almost zero
during apnea. For the purpose of observing the amplitude
and trend of the instantaneous frequency, we calculated the
average and standard deviation of the instantaneous fre-
quencies of 80 training samples of 5 respiratory patterns.+e
instantaneous frequencies of Biot’s and Cheyne–Stokes
respiration are 0 basically, so the minimum instantaneous
frequency can be calculated to distinguish Biot’s respiration
and Cheyne–Stokes respiration from the other 3 respiratory
patterns. +e average, standard deviation, and minimum of
the instantaneous frequencies (part) of the 5 respiratory
patterns are listed in Table 9.

5.2. Classification and Experimental Verification of Respira-
tory Patterns Based on Machine Learning. In this paper, the
KNN method and SVM method are used to classify the
samples. +e KNN algorithm has the advantages of sim-
plicity, efficiency, and low cost of retraining. Because the
KNN method mainly depends on the surrounding limited
adjacent samples, rather than the method of discriminating
the class domain to determine the category, therefore, for the
sample set to be divided which has a lot of crossover or
overlap of the class domain, the KNN method is more
suitable than other methods. However, the classification of
call pattern in this paper is just suitable for this situation, so
the KNN method is selected for classification learning. At
the same time, the results of SVM method have good
generalizability. It can solve the machine learning problem
in the case of small sample, can solve the high-dimensional
problem, and can avoid the neural network structure se-
lection and local minimum point problem. In addition, it
can obtain a low error rate, and SVM can make good
classification decisions for data points outside the training
set [40]. +erefore, we choose the SVM method as the
second classification learning method.

Firstly, we conducted the experiment of the 10-fold
cross-validation method. We divided the samples into ten
groups. Samples of each respiratory pattern were labeled:
normal respiration (1), Biot’s respiration (2), tachypnea (3),
bradypnea (4), and Cheyne–Stokes respiration (5). Taking 9
groups of samples as training data and 1 group of samples as
test data, the experiment was carried out in turn. +e ex-
perimental results are shown in Table 10.

Table 8: +e average and standard deviation of the short-term
energy of the 5 respiratory patterns (part data).

Respiratory
patterns Short-term energy average/standard deviation

Normal
respiration 8.34/5.16 18.64/7.02 8.39/6.31 8.41/6.21

Biot’s respiration 11.99/7.99 11.55/7.61 9.67/10.61 6.29/5.92
Tachypnea 10.63/8.37 13.31/8.18 8.41/4.78 11.26/7.09
Bradypnea 9.20/5.47 15.16/8.85 9.34/6.92 12.94/7.62
Cheyne–Stokes
respiration 6.06/5.94 9.20/8.06 3.71/6.23 7.18/7.46
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+e average of classification accuracy of SVM is 97.88%,
higher than that of KNN classification accuracy (88.75%).
Next, we classify the total sample. 400 sets of data were used
as training samples, and the remaining 400 sets of data were
used as test samples. +e confusion matrix of the two
classifiers is revealed in Figure 16.

Features extracted via the VPD peak-finding algorithm,
normalized short-term energy, and instantaneous frequency
on all experimental data were sent into SVM and KNN
classifiers for training and testing.+e classification accuracy
of the two classifiers is shown in Table 11.

From Table 11, the classification accuracy of SVM is
98.25%, higher than that of KNN classification accuracy
(88.75%).+e Cohen kappa score of SVM is 0.978125, higher
than that of KNN classification accuracy (0.859375).When it
comes to KNN, 21 samples of normal respiration are mis-
judged as Cheyne–Stokes respiration, 19 samples of Biot’s
respiration are misjudged as Cheyne–Stokes respiration, 4
samples of Biot’s respiration are misjudged as bradypnea,
and 1 sample of bradypnea is misjudged as Biot’s respiration.
Other two patterns, tachypnea and Cheyne–Stokes respi-
ration, are classified correctly. When referring to SVM, 7
samples of Cheyne–Stokes respiration are misjudged as
normal respiration. Other four patterns, normal respiration,
Biot’s respiration, tachypnea, and Cheyne–Stokes respira-
tion, are classified correctly. +e classification accuracy of
tachypnea is 100%, which achieves the ideal classification.

6. Discussion

First of all, the FMCW radar used in this paper is a special
radar technology with short wavelength electromagnetic
waves. +e FMCW radar can transmit signals in millimeter
range. Such wavelengths are considered short wavelengths in

the electromagnetic spectrum, which is one of the advan-
tages of the technology. Another advantage of short wave-
lengths is high accuracy, and millimeter-wave radar systems
operating at frequencies between 76 and 81GHz (corre-
sponding to wavelengths of about 4mm) are able to detect
movement to millimeter level. At the same time, high-fre-
quency millimeter-wave radar has the advantages of small
size, low power consumption, and high precision.

Secondly, the optimal distance for FMCW radar to
obtain vital signals was found through experiments, and the
respiratory and heart rate signals were separated. Meantime,
abnormal data were processed. +is effectively ensured that
the experiments about apnea detection and the recognition
of respiratory patterns related were carried out smoothly.
Next, the energy intensity and threshold method were used
to identify apnea.

Finally, this paper extracted three features of the five
respiratory patterns: the number of peaks, the number of
valleys, and the difference between them; the average and
standard deviation of the normalized short-term energy; the
average value, standard deviation, and minimum of the
instantaneous frequency. SVM and KNN were made use of
to classify the extracted features, and the accuracy rates were
98.25% and 88.75%, respectively.

According to the recorded data, the number of peaks, the
number of valleys, and the difference between them have
different variation trend under different respiratory patterns.
For example, a statistical analysis of all the samples showed
that the average number of peaks of respiratory tachypnea
per minute was 20.15, and the average number of peaks of
respiratory bradypnea was 14.87. At the same time, the
difference between the peak and valley points of tachypnea is
smaller than that of bradypnea.

+rough the analysis of all the samples, the short-term
energy during tachypnea exceeds that of bradypnea, and the
short-term energy during apnea is almost zero. Additionally,
normal respiration, tachypnea, and tachypnea maintain the
same respiratory intensity basically, and the short-term
energy changes slightly. +e intensity of Biot’s respiration
decreases first and then rises. +e intensity of Cheyne–
Stokes respiration soars initially and drops later. +e short-
term energy change of Biot’s and Cheyne–Stokes respiration
is greater. In this paper, we used the average and standard
deviation of the normalized short-term energy to describe
the size and variation trend of short-term energy and took it
as the second feature for the classification of respiratory
patterns.

Next, we analyzed the instantaneous frequency of re-
spiratory patterns across the entire sample. It is evident that

Table 9: +e average, standard deviation, and minimum of the
instantaneous frequencies of the 5 respiratory patterns (part data).

Respiratory patterns Average Standard
deviation Minimum

Normal respiration

0.16 0.11 0.02
0.31 0.10 0.10
0.50 0.34 0.01
0.29 0.18 0.04

Biot’s respiration

0.54 0.34 0.00
0.11 0.09 0.00
0.19 0.14 0.00
0.30 0.25 0.00

Tachypnea

0.55 0.33 0.02
0.62 0.32 0.02
0.57 0.29 0.01
0.68 0.34 0.02

Bradypnea

0.49 0.26 0.01
0.42 0.21 0.01
0.40 0.26 0.01
0.51 0.27 0.01

Cheyne–Stokes
respiration

0.36 0.28 0.00
0.48 0.34 0.00
0.38 0.42 0.00
0.35 0.29 0.00

Table 10: +e experimental results of the 10-fold cross-validation
method.

Times 1 2 3 4 5
SVM (%) 100.00 97.50 95.00 98.75 98.75
KNN (%) 90.00 88.75 88.75 88.75 90.00
Times 6 7 8 9 10
SVM (%) 98.75 97.50 98.75 95.00 98.75
KNN (%) 91.25 90.00 88.75 90.00 87.50
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in Biot’s respiration, the instantaneous frequency during
normal respiration period is significantly higher than that
during the apnea period, and the instantaneous frequency of
the apnea is almost zero. It is obvious that the instantaneous
frequency of tachypnea is higher than that of bradypnea.
And the tachypnea and bradypnea maintain the same in-
tensity basically, with small changes in the instantaneous
frequency.+e respiratory intensity of Biot’s respiration first
declines and then leaps. +e instantaneous frequency
changes dramatically, and the instantaneous frequency is
almost zero during apnea. +erefore, we calculated the
average value, standard deviation, and minimum of the
instantaneous frequency and took them as the third feature
for the classification of respiratory patterns.

Finally, SVM and KNN were used for classification, and
the result of SVM was obviously better than KNN. +is is
because SVM trains a model on the training set and then
uses the model to classify the test set directly.+ese two steps
are independent. For KNN, there is no training process.
Only distance measurement is made between training data
and training data to achieve classification. +e accuracy of
SVM and KNN is 98.25% and 88.75% separately. +e
proposed respiratory pattern classification method is ef-
fective and has high accuracy.

In the meantime, this paper also has some advantages in
the current research field. Although there are some similar
studies before [41–46], this paper has obvious advantages.
For example: Nijsure et al. developed a respiratory signal
monitoring system based on ultrawideband radar and
proposed a point detection algorithm that distinguished
normal breathing from apnea, with an accuracy rate of 81%.
In this paper, the accuracy of apnea identification was
higher, which was 86.9%. Lee et al. used 2.4GHz radar to

detect five respiratory patterns (dysrhythmic respiration,
normal respiration, apnea, Cheyne–stokes respiration, and
Cheyne–stokes variant respiration). In comparison, the
FMCW wave in this paper has higher frequency, more
accurate measurement, and better detection effect. Wang
et al. used radar to monitor normal respiration and sleep
apnea of the subjects, extracted three features of short-term
mean amplitude, short-term variance, and short-term
spectrum amplitude at specific points of respiratory signals,
and distinguished normal respiration and apnea by pattern
recognition. Additionally, the team used power and wavelet
information entropy to calculate the number of sleep apnea,
with the accuracy of 85% and 79%, respectively. By com-
parison, the accuracy of apnea detection in this paper is
higher. At the same time, the classification of respiratory
patterns was also carried out in addition to the judgment of
apnea. Shah et al. conducted remote monitoring of patients
using noninvasive radio frequency (RF) sensing to detect
normal respiratory rates and abnormal breathing rates, such
as elevated patterns where person experiences heavy
breathing and shallow rates where minimal air is inhaled and
exhaled. In the meantime, support vector machine (SVM),
k-nearest neighbor (KNN), and decision tree algorithms
were used to evaluate overall performance of the proposed
model. We observed that the SVM classifier provided best
classification accuracy (96%). Loon et al. [47] used FMCW
radar to measure and identify respiratory abnormalities in
patients in 2016, and accuracy was 86%. More kinds of
feature are extracted in this paper, so there is a greater
correlation with respiratory conditions.+e detection results
are better, and the accuracy rate is 98.25%.

7. Conclusions

With the development of medical level, no one can deny that
respiratory state is closely related to human health. +us,
chronic respiratory diseases can be prediagnosed and pa-
tients will be rescued in emergency by means of detecting
respiratory state in daily life. We used the FMCW radar
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Figure 16: +e confusion matrix of different classifiers: (a) SVM; (b) KNN.

Table 11: +e classification results of different classifiers.

Classifier Accuracy (%) Cohen kappa score Classification label
SVM 98.25 0.978125 1/2/3/4/5
KNN 88.75 0.859375 1/2/3/4/5
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system to detect vital signals, separated and extracted two
vital signals, respiration and heart rate. We then judged
apnea by way of energy intensity and threshold. +e ex-
periment of apnea under different conditions was con-
ducted. Next, we extracted the number of peaks, the number
of valleys, and the difference between them through the VPD
peak-finding algorithm and compared this algorithm with
the ordinary peak-finding function, findpeaks, to prove the
effectiveness of the VPD algorithm. Later, we processed the
respiratory signal, extracted the average and standard de-
viation of the normalized short-term energy, and performed
HHT to extract the average value, standard deviation, and
minimum of the instantaneous frequency. SVM and KNN
were adopted to do the classification, and the accuracy rates
were 98.25% and 88.75%, respectively, verifying the effec-
tiveness of the extracted features and classification model.

+is paper provides a noncontact, wider detectionmeans
for vital signals. Our research is expected to play a favorable
role in the diagnosis of chronic respiratory diseases, provide
new technologies for early respiratory diseases screening,
and promote the development of millimeter-wave radar in
medical fields. However, the research method of this paper
also has some disadvantages. First, this study is in the
laboratory stage and has not been applied to clinical trials. At
the same time, the environmental requirements of radar data
collection in this paper are also high, such as the impact of
vibration of other objects in the room, the distance between
the radar and human body, and the position relationship
between the two. Our future work is applying our device to
clinical trials, testing and optimizing the entire system.
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