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Abstract Introduction: Superior cognitive performance in older adults may reflect underlying resistance to
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age-associated neurodegeneration. While elevated amyloid b (Ab) deposition (Ab1) has been asso-
ciated with increased cortical atrophy, it remains unknown whether “SuperAgers” may be protected
from Ab-associated neurodegeneration.
Methods: Neuropsychologically defined SuperAgers (n 5 172) and cognitively normal for age
(n 5 172) older adults from the Australian Imaging, Biomarkers and Lifestyle study were case
matched. Rates of cortical atrophy over 8 years were examined by SuperAger classification and
Ab status.
Results: Of the case-matched SuperAgers and cognitively normal for age older adults, 40.7% and
40.1%, respectively, were Ab1. Rates of age- and Ab-associated atrophy did not differ between
the groups on any measure. Ab2 individuals displayed the slowest rates of atrophy.
Discussion: Maintenance of superior memory in late life does not reflect resistance to age- or Ab-
associated atrophy. However, those individuals who reached old age without cognitive impairment
nor elevated Ab deposition (i.e. Ab2) displayed reduced rates of cortical atrophy.
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1. Introduction

Although cognitive decline is considered characteristic of
aging [1,2], the existence of older adults with superior
cognitive ability for their age suggests that cognitive decline
is not inevitable [3]. Studies describe such individuals as suc-
cessful agers [4–7], optimal memory performers [8], super-
normals [9–11], or SuperAgers [12,13]. Despite similar
goals, each study employs different classification criteria.
For example, SuperAger classification originally included
individuals older than 80 years with episodic memory
performance equivalent to, or above, the normative mean
for adults aged 50-65 years and age-appropriate performance
in other cognitive domains [12,14–16]. SuperAgers are, thus,
considered to have maintained “youthful” memory
performance into old age [14].Other studies have used similar
neuropsychological criteria but lowered theminimumage cri-
terion to 70 (i.e. “successful agers”) [7] and 60 years (i.e.
“SuperAgers”) [3,13]. While the chronological age at which
SuperAging can be classified is still being determined,
elucidation of the neurobiological basis of aging without
cognitive decline could yield important insights into
prevention of age-associated neurodegenerative diseases
such as Alzheimer’s disease (AD).

Cross-sectional comparisons of brain morphology be-
tween SuperAgers and elderly controls report that SuperAg-
ers do not show typical age-associated atrophy on magnetic
resonance imaging (MRI) measures of cortical thickness
and volume [12]. SuperAgers also show greater left hippo-
campal volume and greater cortical thickness in anterior
cingulate cortex and default mode and salience network re-
gions [13,16]. Greater regional cortical thickness and
hippocampal volume and lower burden of white matter
lesions were observed in successful agers compared to
typical older adults [7]. Given that normal aging is associated
with gradual loss of brain volume [17], larger brain volumes
and reduced markers of cerebral small vessel disease are in-
ferred to reflect preservation of cortical integrity despite ag-
ing, raising the possibility that maintenance of superior
memory performance in old age reflects some resistance or
protection against age-associated neurodegeneration [14].

SuperAging may also reflect some protection from AD
[16]. Abnormally high levels of amyloid b (Ab1) and
carriage of the APOE ε4 allele are AD risk factors [18]; how-
ever, prevalence of Ab1 and APOE ε4 carriage are consis-
tently similar between individuals with superior memory
performance and typical older adults [3,7,8,10,16]. These
individuals maintain superior cognitive ability despite Ab1
[3,7,8] or substantial markers of AD neuropathology upon
post-mortem examination [19], suggesting that any resilience
to AD pathogenesis experienced by SuperAgers either ame-
liorates or acts independently from the risk conferred by
Ab1 and APOE ε4. For example, neurobiological factors
associated with SuperAging may protect against Ab-associ-
ated neurodegeneration. Although the adverse effects of
Ab1 on brain volume over time have been well described
[20–25], it remains unknown whether SuperAgers may be
protected from them.

Large prospective studies are necessary to disentangle the
effects of baseline brain structural characteristics, age, and
neuropathological markers in SuperAgers; however, results
of studies to date are mixed. One group reported slower
whole-brain cortical atrophy for 24 SuperAgers compared
to cognitively average elderly adults over 18 months,
although this study did not take into account Ab levels
[15]. While significant baseline differences were found be-
tween 19 successful agers and 70 typical older adults in
another study, rates of whole-brain cortical thinning and hip-
pocampal atrophy over an average of 5 years were equivalent
between groups [7]; however, this study also reported no as-
sociation between Ab deposition and loss of brain volume
within the total sample, which is inconsistent with previous
research [20–25] and may be a consequence of the small
sample studied. Despite consistent cross-sectional reports
that individuals with superior memory performance display
relatively preserved brain morphology compared to older
adults who are cognitively normal for their age (CNFA)
despite varying minimum age criteria, divergent findings
in prospective studies highlight the need for larger samples
and longer follow-up times to examine age- and Ab-associ-
ated brain morphological changes in SuperAging.

TheAustralian Imaging,Biomarkers andLifestyle (AIBL)
study is a large prospective cohort in which multiple studies
have described Ab-associated loss of brain volume
[21,22,26]. This study is well-positioned to examine
whether SuperAgers are resistant to age- and Ab-associated
neurodegeneration compared to CNFA older adults. The
first hypothesis was that greater rate of volume loss in white
matter (WM), gray matter (GM), and hippocampus would
be associated with Ab1 in CNFA older adults. The second
hypothesis was that individuals classified as SuperAgers
would display reduced rates of age- and Ab-associated
cortical atrophy compared to CNFA older adults. Finally, to
examine the influence of SuperAger classification on
cerebrovascular disease markers, this study also explored
differences between SuperAgers and CNFA in white matter
hyperintensity (WMH) volume and accumulation over time,
and whether this was mediated by Ab.
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AIBL CN at baseline 
(n=1171) 

Did not meet inclusion criteria  
(n=598) 

 
• Age <60 (n=12) 
• MMSE ≤24 (n=3) 
• No PET scan (n=381) 
• No MRI scan (n=164) 
• History of stroke/TIA or serious head 

injury (n=22) 
• Inconsistent Aβ status (n=3) 
• Inconsistent clinical classifica�on (n=13) 

Met inclusion criteria 
(n=573) 

Met SuperAger criteria 
(n=172) 

Did not meet SuperAger 
criteria (i.e. CNFA) 

(n=401) 

Case-matched CNFA with 
SuperAger group  

(n=172) 

Excluded 
(n=229) 

Fig. 1. Sample selection. Abbreviations: AIBL, Australian Imaging, Biomarkers and Lifestyle; CN, cognitively normal; CNFA, cognitively normal for age;

MRI, magnetic resonance imaging; TIA, transient ischemic attack.

C. Dang et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 566-575568
2. Method

2.1. Participants

The AIBL study protocol has been reported previously
[27]. Volunteers were ineligible for enrollment if they met
any of the following exclusion criteria: non-AD dementia,
history of schizophrenia or bipolar disorder, current depres-
sion (Geriatric Depression Scale score.5), Parkinson’s dis-
ease, cancer (other than basal cell skin carcinoma) within the
last 2 years, symptomatic stroke, uncontrolled diabetes,
obstructive sleep apnea, past head injury with .1 hour of
posttraumatic amnesia, or current regular alcohol intake
beyond recommended limits [28]. All included participants
were identified to have no or medically well-controlled sys-
temic illnesses at baseline. Ethics approval for the AIBL
study was granted by St Vincent’s Health, Austin Health,
and Edith Cowan University, and all participants provided
written informed consent at each visit.

2.1.1. Sample selection
The AIBL study currently includes 611 CN adults who

satisfied the aforementioned baseline inclusion criteria,
were aged over 60 with mini-mental status examination
.24, and underwent both Ab positron emission tomography
(PET) and MRI neuroimaging. These participants were re-
cruited in twowaves: an inception cohort (n5 400) followed
up every 18 months for up to 8 years, and an enrichment
cohort (n5 211) followed up for up to 4.5 years. The sample
was further restricted to those who reported no history of
stroke, transient ischemic attack, or serious head injury at
baseline (n 5 589). Participants who were classified with
mild cognitive impairment or dementia by a clinical panel
during the follow-up period were coded as progressors; those
whose clinical classification or Ab status were inconsistent
across the study period were excluded to ensure reliability
of classification (n 5 16). Following these exclusions, 172
of the eligible participants were classified as SuperAgers
(see criteria below). SuperAgers were then case matched
with the remaining CN participants (i.e. CNFA) based on
age, sex, education, follow-up time, and number of serial
MRI scans. The final analyses included 344 participants
(172 SuperAgers, 172 CNFA; Fig. 1).

2.1.2. SuperAger classification
Individuals were classified as SuperAgers at baseline us-

ing neuropsychological criteria adapted from the North-
western SuperAging Study criteria as described previously
[3]. A greater number of nonmemory tests were included
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in the classification criteria for this study compared to that
used in the Northwestern SuperAging Study [12] to increase
classification specificity. Classification required perfor-
mance above the normative average for adults aged 30-44
years on the California Verbal Learning Test–Second Edi-
tion Long Delay Free Recall trial [29] (�13 for women,
�12 for men), and performance above 21 SD for their age
on all nonmemory tests identified to be suitable for the study
of cognitive aging: Digit Symbol Substitution Test, Victoria
Stroop Test (words trial), Digit Span, Letter Fluency (FAS),
and Category Fluency (total animals and male names, and
fruit and furniture) [30]. CN participants who were not clas-
sified as SuperAgers were classified as CNFA.

2.1.3. Assessment
A comprehensive neuropsychological battery was admin-

istered at each study visit. Medical assessments included
anthropometric measures, blood tests, and self-reported
medical history (e.g. hypertension) [27]. Education was
coded as �12 years or .12 years. APOE genotype was
determined from whole blood extracted DNA as per previ-
ously described methodology, and participants were classi-
fied as APOE ε4 carriers or noncarriers [31].

2.2. Neuroimaging

2.2.1. MRI neuroimaging
Participants underwent a 3D T1-weighted magnetization-

prepared rapid gradient-echo sequence using the following
acquisition parameters: in-plane resolution 1 ! 1 mm, slice
thickness 1.2 mm, repetition time (TR)/echo time (TE)/
inversion time (TI)5 2300/2.98/900, flip angle 9�, and field
of view (FOV) 240 ! 256. Magnetization-prepared rapid
gradient-echo images for all participants were segmented
intoWM, GM, and cerebrospinal fluid using an implementa-
tion of the expectation maximization algorithm [32]. Hippo-
campal extraction was performed using a multiatlas
approach based on the Harmonized Hippocampus Protocol
[33]. Some participants also underwent a 3D fluid attenua-
tion inversion recovery (FLAIR) sequence (133 SuperAgers,
131 CNFA); therefore, exploratory analyses of WMH were
conducted within this sample. Three different sets of FLAIR
acquisition parameters were used: (1) in-plane resolution
0.98 ! 0.98 mm, slice thickness 0.9 mm, TR/TE/
TI 5 6000/420/2100, flip angle 120�, FOV 240 ! 256,
and 176 slices; (2) in-plane resolution 0.5 ! 0.5 mm, slice
thickness 1.0 mm, TR/TE/TI 5 5000/355/1800, flip angle
120�, FOV 512! 512, and 160 slices; (3) in-plane resolution
1.0 ! 1.0 mm, slice thickness 1.0 mm, TR/TE/TI 5 5000/
391/1800, flip angle 120�, FOV 256 ! 256, and 192 slices.
WMH were automatically segmented using the HyperInten-
sity Segmentation Tool based on an ensemble of pretrained
neural network classifiers [34,35] and quantified from the
segmented lesion masks in the common Montreal
Neurological Institute space. All measures were corrected
for scanner and total intracranial volume.
2.2.2. Amyloid-b PET neuroimaging
PET neuroimaging was conducted using one of the four

Ab radiotracers: 11C-Pittsburgh compound-B (PiB,
n 5 137), 18F-NAV4694 (NAV, n 5 38), 18F-Florbetapir
(FBP, n 5 88), or 18F-Flutemetamol (FLUTE, n 5 81).
Detailed PET methods and procedures are described else-
where [36,37]. Briefly, PET acquisitions were performed
up to 90 minutes following tracer injection. Standardized
uptake value (SUV) data were summed and normalized to
a reference region to generate a SUV ratio (SUVR). Image
analysis was performed using the MR-less method, CapA-
IBL [38]. A linear regression transformation was applied to
the NAV, FBP, and FLUTE SUVRs to create a “PiB-like”
SUVR unit called Before the Centiloid Kernel Transforma-
tion so that SUVRs across the different radiotracers were
expressed on the same scale [37]. All participants with
SUVR/Before the Centiloid Kernel Transformation�1.40
at their most recent PET scan were classified as Ab1 and
those below the threshold were classified as Ab2.
2.3. Statistical analyses

R version 3.4.3 [39] and SPSS 23 were used for all statis-
tical analyses, with statistical significance set at P, .05. No
adjustments were made for multiple comparisons due to
their conservative nature; the early and important stage of
this research highlights the importance of encouraging
future studies in this area. Therefore, estimates of effect
size were computed for all comparisons to guide interpreta-
tion of the results (i.e. d , 0.20 may be due to type I error).
SuperAgers were case-matched with CNFA using the
FUZZY extension command in SPSS. Exact matches were
required for education and sex. Tolerances for age, follow-
up time, and number of serial MRI scans were 62 years,
61 visit, and 61 scan, respectively. Eligible matches were
selected randomly.

2.3.1. Baseline group differences
Between-group comparisons by SuperAger classification

and Ab status were conducted using one-way analyses of
variance and Kruskal-Wallis one-way analyses of variance
for continuous variables and Fisher’s exact tests for categor-
ical variables. Linear regressions examined baseline differ-
ences between groups for each neuroimaging measure with
age as a covariate, both before and after case-matching
SuperAgers with CNFA.

2.3.2. Assessment of Ab status and SuperAger classification
on longitudinal neuroimaging measures

Separate linear mixed models (LMMs) were run with
each of the neuroimaging measures as dependent measures.
Fixed factors were SuperAger classification, Ab status, time
(years from baseline scan), and their interactions. Random
intercepts and slopes were calculated for each participant.
Covariates were baseline age and progression status;
APOE ε4 status and number of serial MRI scans did not



Table 1

Baseline group characteristics

Total sample CNFA Ab2 CNFA Ab1 SuperAger Ab2 SuperAger Ab1
Sig.

factors

n 344 103 69 102 70

Ab PET SUVR 1.51, 1.32 (0.49) 1.21, 1.22 (0.14) 1.97, 1.81 (0.84) 1.21, 1.20 (0.14) 1.92, 1.87 (0.74) A***

APOE ε4 carrier (%) 27.30 14.60 43.50 17.60 44.30

Age at baseline 71.75, 71.00 (9) 71.30, 71.00 (7) 73.67, 73.00 (12) 70.57, 70.00 (9) 72.26, 72.00 (7) A***

Female (%) 55.80 61.20 47.80 57.80 52.90

Education .12

years (%)

65.10 62.10 69.60 64.70 65.70

Hypertension (%) 50.30 15.41 12.21 13.08 9.59

Progressors (%) 8.40 10.70 18.80 2.00 4.30 S***

Number of MRIs 2.47, 2.00 (2.25) 2.49, 2.00 (3) 2.67, 2.00 (2.50) 2.34, 2.00 (3) 2.46, 2.00 (2)

Length of follow-up

(months)

71.98, 89.00 (37) 77.97, 90.00 (19) 71.30, 89.00 (37) 70.85, 89.00 (40) 65.46, 89.00 (55)

Baseline white matter

volume (cm3)

394.24, 394.52

(33.44)

394.40, 394.44

(32.33)

396.48, 397.26

(39.10)

390.49, 392.62

(26.55)

397.28, 398.22

(34.95)

Baseline gray matter

volume (cm3)

461.10, 461.86

(23.28)

459.83, 461.04

(25.55)

457.97, 457.76

(25.99)

463.45, 465.32

(25.81)

462.61, 462.98

(19.88)

S* y

Baseline hippocampal

volume (cm3)

2.96, 2.96 (0.34) 2.96, 2.95 (0.35) 2.93, 2.91 (0.40) 2.96, 2.94 (0.34) 2.99, 3.00 (0.31)

Baseline white matter

hyperintensity

volume (cm3)

14.15, 11.43 (5.41) 13.48, 12.01 (11.86) 17.28, 12.74 (11.68) 13.40, 10.99 (4.21) 13.01, 11.80 (4.79)

NOTE. *P , .05, ***P , .001; continuous variables are expressed as mean, median (IQR); categorical variables are expressed as percentages.

Abbreviations: Ab, amyloid b, APOE ε4, apolipoprotein E epsilon 4 allele, CNFA, cognitively normal for their age; IQR, interquartile range; MRI, magnetic

resonance imaging; PET, positron emission tomography; SUVR, standardized uptake value ratio; A, significant effect of Ab status; S, significant effect of Super-

Ager classification.
yThis difference becomes nonsignificant when adjusted for age.
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significantly contribute to the models and were therefore
removed.

To test the first hypothesis, the interaction of Ab status!
time was examined only in the CNFA group. To test the sec-
ond hypothesis, interactions between SuperAger classifica-
tion, Ab status, and time were examined for the full study
sample. Having controlled for baseline age in the analyses,
interactions with time were interpreted to reflect changes
associated with aging. For each comparison, the magnitude
of effect was expressed using Cohen’s d.

Associations of Ab1 and SuperAger classification with
WMH volume were explored using a gamma generalized
LMM fitted with a log link function. The same fixed and
random factors from the LMMs were included in the gener-
alized LMM. Covariates were baseline age, APOE ε4 status,
and self-reported hypertension.
3. Results

Across the 344 SuperAgers and CNFA included in this
study, average age was 71 years (range 60-93). The majority
had .12 years education (65.1%) and 55.8% were female.
Participants were followed up for a median of 89 months (in-
terquartile range: 37) with an average of 2 MRI scans each
(maximum 6). As expected due to the case-matching param-
eters, no differences in demographics or follow-up timewere
observed between the SuperAger and CNFA groups, and
prevalence of both Ab1 and APOE ε4 carriage were nearly
equivalent (Table 1). Compared to the Ab2 group, the Ab1
group had higher prevalence of APOE ε4 carriage (odds ra-
tio: 4.08, 95% confidence interval [CI]: 2.47-6.73;
P , .0005) and were 2 years older on average
[F(1,343) 5 10.84, P 5 .001; d 5 0.36)]. As previously re-
ported for this sample, SuperAgers were less likely to prog-
ress to mild cognitive impairment/dementia compared to
CNFA (24 CNFA and 5 SuperAgers; odds ratio: 0.19, 95%
CI: 0.07-0.50; P , .0005) [3].

3.1. Baseline brain morphological differences

Before case-matching, significantly greater WM, GM,
and hippocampal volumes were observed in SuperAgers
compared to CNFA. These differences were no longer sig-
nificant after adding age as a covariate. After case-matching,
a significant group difference was found only for GM vol-
ume; however, the effect size was small (d 5 0.22), and
this became nonsignificant after adjusting for age. No Ab
group differences were observed on any MRI measure.

3.2. Influence of Ab on brain morphological changes in
CNFA older adults

Annualized rate of volume loss within CNFA was
1.37 cm3 (0.35%) for WM, 1.80 cm3 (0.39%) for GM,
and 0.015 cm3 (0.52%) for hippocampus. Significant Ab
status ! time interactions were observed for all MRI
measures. Mean slopes for both Ab1 and Ab2 CNFA



Table 2

Annualized group mean slopes and Cohen’s d for Ab-associated

neurodegeneration in CNFA

Measure Ab2 Ab1
Cohen’s

d

Lower

95% CI

Upper

95% CI

White

matter volume

21.4 (2.16) 22.27 (2.05) 0.42 0.11 0.72

Gray

matter volume

21.81 (3.00) 22.74 (2.85) 0.32 0.01 0.62

Hippocampal

volume

0.04 (0.57) 20.03 (0.03) 0.17 20.14 0.47

NOTE. Values are presented as mean slopes (SD).

Abbreviations: Ab2, cerebral amyloid b within normal range (positron

emission tomography standardized uptake value ratio,1.40);

Ab1, elevated cerebral amyloid b; CI, confidence interval;

CNFA, cognitively normal for their age; SD, standard deviation.
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showed that Ab1 was associated with faster loss of WM,
GM, and hippocampal volume over time (Table 2). This
translates to greater volume loss of 0.88 cm3 in WM,
0.93 cm3 in GM, and 0.07 cm3 in hippocampus per year
for Ab1 compared to Ab2 CNFA. Progressors had lower
GM and hippocampal volume across all time points. Both
older age at baseline and longer time in study were asso-
ciated with smaller WM, GM, and hippocampal volumes.

3.3. Influence of SuperAger classification and Ab on brain
morphological changes

The LMM results forWM, GM, and hippocampal volume
for the full study sample are summarized in Table 3. Mean
slopes for each of the morphological measures are shown
graphically in Fig. 2. The Ab status ! time interaction re-
mained significant for all MRI measures after accounting
for SuperAger classification. However, the SuperAger status
! Ab status ! time interaction was not statistically signif-
icant for any MRI measure. Slopes were not significantly
different between SuperAgers and CNFA within the Ab2
and Ab1 groups nor were they different between Ab groups
within the SuperAger and CNFA groups. Fig. 3 shows that
Ab1 was associated with greater volume loss over time in
both SuperAger and CNFA groups for each MRI measure
but there was substantial overlap in the 95% CIs for each ef-
fect size. The two-way interaction of SuperAger classifica-
tion ! time was not significant for any morphological
measure with data collapsed across Ab groups. Although
there was a significant main effect of baseline age on all
measures, no interactions with age were observed. Analyses
restricted to participants over age 80 were not conducted due
to small cell sizes.

3.4. Exploratory analyses of SuperAger classification and
Ab on WMH

No baseline differences were observed between Super-
Ager or Ab groups. WMH accumulation increased at an
average rate of 7% per year for all participants. Older age
at baseline and longer time in study were associated with
increasedWMH volume (Table 3). No main effect of Ab sta-
tus nor SuperAger classification were observed, and no inter-
actions with time were observed.
4. Discussion

The first hypothesis, that Ab1 was associated with
greater loss of volume in WM, GM, and hippocampal struc-
tures in older adults classified as CNFA, was supported.
These data are consistent with previous findings from the
AIBL cohort and others that Ab1 is associated with GM
volume loss and hippocampal atrophy in CN individuals
[20–25]. The second hypothesis that individuals classified
as SuperAgers would display reduced rates of age- and
Ab-associated cortical atrophy compared to CNFA older
adults was not supported: no differences between
SuperAgers and CNFA older adults were observed for
rates of Ab-associated atrophy (Figs. 2 and 3). Furthermore,
no differences were observed for age-associated brain vol-
ume loss between SuperAgers and CNFA older adults
despite controlling for Ab. Exploratory analyses of WMH
also showed no differences between SuperAgers and
CNFA older adults in baseline WMH volume nor rate of
accumulation, and neither were influenced by Ab status.
Taken together, the results indicate that SuperAger classifi-
cation based entirely on neuropsychological criteria does
not reflect any unique protection from age- or Ab-associated
neurodegeneration or cerebral small vessel disease.

The SuperAging construct was developed to describe a
phenotype of preserved cognitive function in older age that
may reflect unique neurobiological characteristics such as
protection from neurodegeneration and consequent cogni-
tive decline in aging. This notion was supported by early
cross-sectional studies conducted in small samples of Super-
Agers [12,13,16,40,41]. Consistent with past reports, the
present study observed significantly greater WM, GM, and
hippocampal volumes in SuperAgers at baseline prior to
case-matching with CNFA, but these differences were not
maintained after adjusting for age. SuperAging studies
have not adjusted for age for cross-sectional analyses,
although only one morphological study of successful agers
did so for longitudinal analyses [7]; therefore, it is possible
that the reported findings may be confounded by demo-
graphic characteristics rather than reflecting true group dif-
ferences. Furthermore, prospective findings have been
mixed, potentially because of limited power to conduct lon-
gitudinal analyses due to small sample sizes [7,15]. The
finding that individuals classified as SuperAgers were not
any more protected against age- or Ab-associated atrophy
than CNFA, regardless of baseline age, does not support
the conclusion that maintenance of cognitive abilities from
midlife to late-life reflects preservation of brain structure
in aging [7,12–16]. These early studies provide important
and provocative foundations for models of SuperAging;
however, the use of small samples and lack of adjustment
for age may limit the generalizability of their conclusions



Table 3

Mixed model parameters

Fixed effects

White matter volume* Gray matter volume* Hippocampal volume* WMH volumey
Estimate Std. error P Estimate Std. error P Estimate Std. error P Estimate Std. error P

Intercept 500.96 15.34 ,.001 570.81 11.40 ,.001 4.03 0.18 ,.001 0.59 0.53 .27

SuperAger classification 25.62 3.14 .07 1.72 2.29 .45 20.02 0.04 .59 0.19 0.13 .13

Ab status (2/1) 5.79 3.52 .10 3.32 2.57 .20 0.02 0.04 .60 0.28 0.14 .05

Time 21.40 0.21 ,.001 21.81 0.30 ,.001 20.02 0.00 ,.001 0.07 0.02 ,.001

Baseline age 21.49 0.21 ,.001 21.54 0.16 ,.001 20.01 0.00 ,.001 0.02 0.01 .002

Progression 26.04 4.34 .16 211.18 3.25 ,.001 20.13 0.05 .01 0.20 0.15 .17

APOE ε4 carrier status (2/1) - - - - - - - - - 0.11 0.10 .25

Hypertension (2/1) - - - - - - - - - 0.07 0.08 .37

SuperAger ! Ab status 3.73 4.91 .45 20.94 3.58 .79 0.04 0.06 .49 20.32 0.20 .10

SuperAger ! time 20.52 0.32 .11 0.11 0.45 .81 0.00 0.00 .38 20.03 0.03 .29

Ab status ! time 20.88 0.33 .01 20.93 0.45 .04 20.01 0.00 .004 20.02 0.03 .45

SuperAger ! Ab status !

time

0.65 0.49 .19 0.09 0.69 .90 0.01 0.01 .31 0.02 0.04 .70

Bolded values are significant at P , .05.

Abbreviations: Ab, amyloid b; APOE ε4, apolipoprotein E epsilon 4 allele.

*1Analyzed using a linear mixed model, total n 5 344.
yAnalyzed using a gamma generalized linear mixed model fitted with a log link function, total n 5 264.

Fig. 2. Morphological changes over time by SuperAger and Ab status; slopes for Ab1 (solid lines) were significantly steeper than slopes for Ab2 (dashed

lines) for white matter, gray matter, and hippocampal volumes (panels A-C) but no difference was observed for white matter hyperintensities (panel D). No

difference in slopes between CNFA (orange lines) and SuperAgers (blue lines) was observed for any measure. Abbreviations: Ab2, cerebral amyloid b within

normal range (positron emission tomography standardized uptake value ratio,1.40); Ab1, elevated cerebral amyloid b; CNFA, cognitively normal for their

age; WMH, white matter hyperintensity.
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Fig. 3. Comparison of effect sizes for rates of Ab-associated atrophy; sub-

stantial overlap in the 95% CIs for each effect size reflects no difference in

the slopes of Ab-associated volume loss between the SuperAger and CNFA

groups. Abbreviations: Ab2, cerebral amyloid bwithin normal range (posi-

tron emission tomography standardized uptake value ratio,1.40);

Ab1, elevated cerebral amyloid b; WMH, white matter hyperintensity.
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due to low statistical power, potential for sampling bias, and
type I error.

In contrast to a previous report of successful agers [7], the
present study observed similar levels of WMH between
SuperAgers and CNFA older adults both cross-sectionally
and longitudinally that was not modified by Ab status. This
may reflect a larger sample with strict exclusion of high
vascular risk factors. In addition, the previous studymeasured
WM hypointensities using T1-weighted images, which can
result in lower volume estimates compared to the 3D FLAIR
sequences used here tomeasureWMH [42]. The lack of asso-
ciation between Ab status and WMH observed in the present
study is, however, consistent with reports that Ab and WMH
accumulation reflect independent processes whose delete-
rious effects on cognition are additive [43–45].

Limitations to the generalizability of these results are
related to the experimental nature of the AIBL cohort; due
to rigorous inclusion criteria, AIBL participants are healthier
and more educated than the general population [46]. Not
enough information is available to ascertain the prevalence
of SuperAgers in the general population although experi-
mental cohorts have reported rates of 17.3-42.5% in their
respective samples [7,13]. Taking into account sample and
survivor biases, it may not be unexpected that 30% of the
CN AIBL cohort were classified as SuperAgers despite
differences in age criteria and using more stringent
neuropsychological criteria compared to other studies
[7,12,13]. Unfortunately, operational definitions of
successful aging lack consistency between studies [47],
which is also the case in studies of youthful memory perfor-
mance or “SuperAging”. Comparisons between studies may
thus be limited despite similar goals; however, a strength of
the present study was case-matching SuperAgers with
CNFA older adults to ensure that the results adequately
captured differences due to neuropsychological classifica-
tion. Whole-brain and hippocampal volumetric measures
were most appropriate for the aims of this study due to the
increased likelihood of widespread cortical Ab deposition
in Ab1 individuals [48]. Future studies should conduct re-
gion of interest and surface-based analyses of longitudinal
morphological change due to Ab in SuperAgers to determine
whether cortical regions reported to be relatively preserved
(e.g. anterior cingulate) are protected from Ab-associated
neurodegeneration [7,11,13,16]. Furthermore, although
previous studies have suggested that Ab-associated
neurodegeneration occurs only in the presence of elevated
tau [49] or that neurodegeneration is more strongly associ-
ated with tau than with Ab [50], this study did not include
measures of tau, which future studies should endeavor to do.
5. Conclusions

Despite significant differences in baseline cognitive abil-
ity, individuals in the AIBL CN cohort classified as Super-
Agers displayed similar levels of AD neuropathological
markers such as Ab1 compared to CNFA older adults.
While this may be suggestive of some resilience to the ef-
fects of Ab, SuperAgers and CNFA older adults displayed
similar rates of cognitive and morphological change due to
both age and Ab over 8 years [3]. Therefore, defining Super-
Aging on the basis of neuropsychological criteria alone has
limited ability to identify individuals who are uniquely pro-
tected from the effects of age or neuropathological changes.
The results of this study suggest that the most advantageous
characteristic for attenuated brain volume loss in older adults
was to have reached old age without elevated Ab deposition.
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RESEARCH IN CONTEXT

1 Systematic review: Inconsistent terms are used to
describe samples of older adults with “youthful” or
superior memory performance; therefore, PubMed
was searched for “SuperAging” and “successful
agers,” and author publication lists and references
were perused to identify all relevant papers. PubMed
was also searched for “(amyloid or beta-amyloid) and
(atrophy or brain volume loss or neurodegeneration).”

2 Interpretation: Defining SuperAging on the basis of
neuropsychological criteria alone has limited ability
to identify individuals who are uniquely protected
from brain atrophy because of age or neuropatholog-
ical changes. The results of this study suggest that the
most advantageous characteristic for attenuated brain
volume loss in older adults was to have reached old
age without elevated Ab deposition.

3 Future directions: Longitudinal analyses with larger,
population-based samples with Alzheimer’s disease
biomarkers and statistical age corrections are neces-
sary to further examine protection from cognitive
decline and brain atrophy associated with age or Ab
in SuperAgers.
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