J Comput Neurosci (2013) 34:185-209
DOI10.1007/s10827-012-0413-9

High-capacity embedding of synfire chains

in a cortical network model

Chris Trengove - Cees van Leeuwen -
Markus Diesmann

Received: 8 November 2011 / Revised: 18 April 2012 / Accepted: 2 July 2012 / Published online: 11 August 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Synfire chains, sequences of pools linked
by feedforward connections, support the propagation
of precisely timed spike sequences, or synfire waves.
An important question remains, how synfire chains
can efficiently be embedded in cortical architecture.
We present a model of synfire chain embedding in
a cortical scale recurrent network using conductance-
based synapses, balanced chains, and variable transmis-
sion delays. The network attains substantially higher
embedding capacities than previous spiking neuron
models and allows all its connections to be used for
embedding. The number of waves in the model is
regulated by recurrent background noise. We computa-
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tionally explore the embedding capacity limit, and use
a mean field analysis to describe the equilibrium state.
Simulations confirm the mean field analysis over broad
ranges of pool sizes and connectivity levels; the number
of pools embedded in the system trades off against
the firing rate and the number of waves. An optimal
inhibition level balances the conflicting requirements
of stable synfire propagation and limited response to
background noise. A simplified analysis shows that
the present conductance-based synapses achieve higher
contrast between the responses to synfire input and
background noise compared to current-based synapses,
while regulation of wave numbers is traced to the use
of variable transmission delays.

Keywords Recurrent network dynamics -
Feedforward network - Synchrony - Synaptic
conductance - Synfire chain - Storage capacity

1 Introduction

Evidence of precisely-timed spiking activity suggests
that synfire chains play an important role in repre-
senting information in the brain (Abeles 1982; Riehle
et al. 1997; Prut et al. 1998; Shmiel et al. 2005; Kilavik
et al. 2009; Long et al. 2010). Synfire chains, pools of
neurons sequentially linked by feed-forward connec-
tions, are capable of generating temporally extended
and precisely timed patterns of spiking activity. Each
such pattern consists of a packet of near-simultaneous
spikes within a pool, that triggers a similar packet in
the subsequent pool, and so on, giving rise to wave-
like propagation of spiking activity down the chain
(Abeles 1982). Propagation of synfire waves is robust
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and efficient because of the properties of single model
neurons: a relatively small number of simultaneously
arriving inputs can elicit a spike reliably with precise
timing (Abeles 1991; Diesmann et al. 1999; Goedeke
and Diesmann 2008).

Several authors have presented models of synfire
chains as embedded in the detailed structure of
the cortex i.e. its synaptic connections and strengths
(Bienenstock 1995; Herrmann et al. 1995; Mehring et al.
2003; Aviel et al. 2005; Kumar et al. 2008; Schrader et al.
2008). Modeling of embedding involves assigning indi-
vidual neurons randomly to pools which are then linked
up to form one or more synfire chains. Individual units
can belong to more than one pool and thus participate
in several different chains, thereby forming a recurrent
network.

A system of many embedded synfire chains may
provide a form of sparse coding (Foldidk 2002), where
each chain represents some feature of a cognitive repre-
sentation. By enabling activation of chains in parallel or
in cascaded fashion, embedding can in principle realize
combinatorial representation (Bienenstock 1991, 1995,
1996; Abeles et al. 2004; Hayon et al. 2005; Hanuschkin
et al. 2010; Schrader et al. 2010).

To permit combinatorial representations, a system
needs to, first, embed a sufficient number of pools
and, second, allow a sufficient number of these to be
activated simultaneously. Let us consider the number
of chains or, more specifically, the number of pools
they consist of. The number of pools is constrained by
factors such as the number of synapses, and the need
to avoid excessive overlap between pools. The severity
of these constraints is determined by the dynamics
of neural activity; the dynamics must enable selective
initiation and stable propagation of synfire waves, and
avoid modes that would interfere with wave propa-
gation, such as ones characterized by excessively high
activity levels or strong oscillations. These dynamical
constraints put a limit on how many pools, or more
precisely, how many pool-to-pool links can be embed-
ded in the system. This we call the system’s embedding
capacity.

A model of cortical embedding of chains should
operate at a biologically realistic level of neural con-
nectivity: of the order of 10* synapses per neuron. An
early model of chain embedding in cortex achieved an
embedding capacity of about 8V pools in a network of
N neurons with cortical scale connectivity (Bienenstock
1995). However, the model presented by Bienenstock
is rather abstract: it consists of binary state neurons
with an r-winners-take-all update scheme that enforces
a low level of activity in the network (exactly »/N at
each time-step), and a coarse discretization of time
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that artificially enforces spike packet synchronization.
A similarly idealized model using a global inhibitory
signal instead of r-winners-take-all gives quantitatively
similar embedding capacity results (Herrmann et al.
1995).

Independently, studies using leaky integrate-and-fire
neurons with fine temporal resolution have shown that
spike packet sequences can propagate while conserv-
ing both the number of spikes and narrow temporal
dispersion within each packet (Diesmann et al. 1999;
Goedeke and Diesmann 2008). However, the high em-
bedding capacity that is found in the idealized models
of Bienenstock and Herrmann et al. has proved difficult
to realize using integrate-and-fire neurons, due to the
appearance of global modes of activity incompatible
with wave propagation. The state of the art thus leaves
room for improvement. Our first aim is, therefore, to
show that such realization is possible.

Like all these models of chain embedding, ours
takes as its starting point the balanced random network
architecture. This architecture consists of two popula-
tions of neurons, inhibitory and excitatory ones, respec-
tively, with sparse random coupling within and between
them (van Vreeswijk and Sompolinsky 1996; Amit and
Brunel 1997; Brunel 2000), typically driven by exter-
nal excitatory input. This architecture is an attractive
substrate in which to embed synfire chains because it
exhibits a stable state in which neurons spike at a low
rate, in an asynchronous irregular (Al) manner which is
regarded as a good first approximation to the activity of
cortical neurons (Brunel 2000). Next, in order to embed
synfire chains into this basic architecture, some or all
of the random excitatory connections are replaced with
connections that make up the links between successive
pools. An upper bound on embedding capacity (the
combinatorial capacity) is obtained for a given pool
size when all the available excitatory connections are
replaced with pool-to-pool connections. The smaller
the pools, the fewer connections within each pool-to-
pool link, and hence the more pools can be embedded
(the higher the combinatorial capacity).

Only one published study has systematically investi-
gated the embedding capacity of such systems (Aviel
et al. 2005). Like most chain embedding studies to
date, Aviel’s study uses current based synapses: each
synaptic input generates a fixed-strength pulse of cur-
rent. The capacity analysis of Aviel et al. assumes the
network is in the Al state at a particular mean firing
rate and with a characteristic membrane potential dis-
tribution. From this the minimum pool size for stable
wave propagation is estimated: the minimum number
of inputs from one pool to each neuron in the next
pool in order for the synfire wave input to shift the
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membrane potential above threshold with high prob-
ability. However, in simulations it was not possible
to attain the combinatorial capacity for any pool size.
When the fraction of connections used to store pool-to-
pool links exceeds a critical level, the Al state sponta-
neously gives way to a some activity state that prevents
synfire propagation. In most of the cases examined,
this activity takes the form of strong, periodic bursts
of synchronous spikes, but it can also be a state of
sustained high firing rate. Even below the critical level
for Al state stability, the propagating wave itself drives
moderate bursts of synchronized spiking, which tend to
destabilize the wave, resulting in a short life time, and
the critical level itself is slightly lower in the presence
of the wave. The study of Aviel et al. considered the
effect of adding inhibitory “shadow” pools to the chains
to create a doubly balanced architecture in which each
pulse packet delivers balanced input to the rest of the
network. With double balance, the undesirable effects
of the propagating wave are eliminated. As a result, the
embedding capacity in a network of N neuronsis 0.07 N
pools with double balance as against 0.065 N without.
In other words, a marginal improvement.!

The destabilizing effect of spike packets was also
observed in a locally connected recurrent network
model representing a small area of cortex with a
distance-based Gaussian connectivity density (Mehring
et al. 2003). Synchronous activity in a single pool of
localized neurons triggers a strong reverberation in
the surrounding local region similar to that found by
Aviel et al. (2005) even without any embedded chains.
Embedding a single chain of 10 pools, the reverbera-
tion resulting from the spike packet in the first pool
typically extinguishes the synfire wave. Mehring et al.
(2003) suggested that the inclusion of inhibitory shadow
pools could prevent the reverberation. Surprisingly,
even without shadow pools, spike packets can prop-
agate without triggering the reverberation when the
current-based synapses are replaced by conductance-
based ones, in combination with heterogeneity in neu-
ronal properties including the number of connections
per neuron (Kumar et al. 2008). This result was at-
tributed chiefly to the reduction of the local response
to the stimulated pulse packet due to the integrative
properties of conductance based neurons receiving

I Another, current-based, network model exhibits simultaneous
propagation of two waves in a network of 50,000 neurons
(Schrader et al. 2008). In this model the combinatorial capacity
is reached, but the connectivity is well below the cortical scale
and the number of pools is only 0.02N. This number is in fact at
the capacity limit, above which the background activity becomes
unstable (Diesmann, private communication).

background input. However, the sources of hetero-
geneity in the model may also play a role, as previously
studies have noted their ability to suppress synchro-
nized oscillations in recurrent networks (Denker et al.
2004; Tetzlaff et al. 2005). Variability in transmission
delays has also been suggested as a mechanism to stabi-
lize the Al state (Aviel et al. 2005).

Let us now consider the second requirement for a
combinatorial architecture based on synfire chains: the
capacity to activate a number of chains simultaneously.
Aviel et al. (2005) noted that embedding capacity has
a dual nature, involving both the number of available
pools and the potential number of co-active waves, but
did not incorporate the latter in their analysis. They
observed that their system is capable of sustaining only
1 to 3 waves simultaneously. It is known that the storage
capacity of sparse patterns in networks of binary neu-
rons drops as the size of the retrieved patterns increases
(Tsodyks and Feigelman 1988). Correspondingly, for
chain embedding models we may expect that a model
with more co-active waves will exhibit a lower embed-
ding capacity, because it operates at a higher overall
rate of activity.

A theoretical mean-field analysis (Trengove 2006)
predicted embedding capacities of « N pools with « >
1, much higher than found in previous models us-
ing integrate-and-fire dynamics. This was for a model
with conductance-based synapses, inhibitory “shadow”
pools and variability in the transmission delays on the
connections within each pool-to-pool link. However,
the study provided no cortical-scale simulations to ver-
ify the predictions of the analysis. This is important in
order to demonstrate global network stability. With the
simulation technology available today this undertaking
has become feasible (Morrison et al. 2005).

The present work provides a more thorough mean
field analysis of the model of (Trengove 2006) and
cortical-scale simulations showing that over a broad
range of cortically realistic parameters, global stability
is conserved and the mean field analysis holds. The
paper is organized as follows. In Section 2 we define
the model for cortical embedding of synfire chains:
network structure (Section 2.1), neuron and synapse
models (Section 2.2). We present the mean field analy-
sis leading to a self-consistency equation relating the
parameters (connectivity, pool size) and dynamical
variables (firing rates, number of waves) (Section 2.4).
We provide a definition of embedding capacity that
accommodate its dual nature, involving as it does both
the number of pools and the number of co-active waves
(Section 2.5). To test the theory, in the simulations we
focus on the upper bound on wave activity, attained
by ongoing initiation of new waves (Section 2.3). In
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Section 3 we exhibit typical behaviors of the model
(Section 3.1), numerical solutions of key quantities in
the mean field analysis (Section 3.2), and compare
network behavior to the predictions of the mean field
analysis, demonstrating that over a range of cortical
parameters the system exhibits the predicted high-
capacity (Section 3.4). We give capacity predictions of
the mean field analysis as inhibitory synaptic strength is
varied, which allow us to specify an optimal inhibitory
strength (Section 3.6), and lastly, we compare con-
ductance and current based models using a simplified
mean field analysis in order to explain why the former
outperforms the latter (Section 3.7). In Section 4 we
summarize the results and the reasons why the present
model succeeds in attaining a much higher embedding
capacity than previous spiking neuron models. We also
discuss the modest departures of the simulations from
the mean field analysis, the importance of variability
in transmission delays and the absence of synaptic rise
times in the model, and outline how the present synfire
chain embedding model can be extended to encompass
cortical embedding of more general structures such as
polychronous spiking.

2 Methods and models
2.1 Network model for synfire chain embedding

The model comprises two populations, Ng excitatory
(E) neurons and N inhibitory (I) neurons respectively.
From these constituents, a random superposition of
E/I-balanced synfire chains is created as follows. As
in previous models, a set of p excitatory pools are
formed by randomly assigning ng excitatory neurons to
each pool. Individual neurons can belong to more than
one pool: on average a neuron appears in png/Ng =
ang pools, where a« = p/Ng is the number of pools
per neuron, or embedding level. We constrained the
random assignment so that all neurons appear in nearly
the same number of pools. Thus each E-neuron appears
in | png/Ng] or [ png/Ng] pools, where |-], [-] denote
rounding down, up to the nearest integer. Likewise, ny
inhibitory neurons are assigned to each of p inhibitory
(shadow) pools, in 1:1 correspondence with the exci-
tatory ones. Pools can be grouped into sequences to
form synfire chains. From a given set of pools, a large
number of short chains or a small number of long chains
could be formed. Since this makes no difference to the
capacity analysis, for convenience we ordered all the E-
pools into a single cyclic chain, or ring. Likewise the
corresponding I-pools form a shadow ring. Excitatory
pool-to-pool links are made by connecting all neurons
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in each E-pool to all those in the next E-pool and to all
those in the next I-pool (see Fig. 1(a)). (We refer to the
number of inputs to each neuron in a pool from the pre-
vious E-pool as the input convergence. Here it equals
the pool size, but generally it need not.) Within these
constraints the connections are random and sparse;
there are no other excitatory connections in the net-
work. Thus the embedding is at the full, combinatorial
capacity for the number of connections. Note that the I-
pools play no part in wave propagation: their sequential
activation is a byproduct of the propagation of a wave
down the chain of E-pools. Each E-neuron receives
Lpng/Ng]ng or [png/Ng]ng excitatory connections
with

Cg = pni/Ng = an}, (1)

being the average number of excitatory inputs
per neuron. Each I-neuron receives |pni/Ni]ng
or [pni/Ni|ng excitatory connections. We assume
ni/ng = N1/Ng = y and use y = !/4 throughout. This
implies that inhibitory neurons appear in just as many
pools as excitatory neurons do, and hence the num-
ber of excitatory connections received is the same for
both types of neurons (Cg). It also ensures that the
contribution of each propagating wave to the spiking
rate averaged across both populations (E and I) is the
same. The inhibitory neurons connect randomly to both
populations, subject only to the constraint that all neu-
rons receive the same ratio y’ of inhibitory to excitatory
afferents. Hence each neuron in both populations re-
ceives inputs from y’ | png/Ng] ng or y' [png/Ng] ng
randomly selected inhibitory neurons according to how
many excitatory inputs it receives, rounded to the near-
est integer. Neglecting the small effect of this rounding,
the mean number of inhibitory afferents per neuron, Cj,
is given by C1/Cg = y’. For simplicity we take y' = y.

2.2 Neuron and synapse model

We use integrate-and-fire neurons with instanta-
neous conductance-based synaptic responses. Their
sub-threshold dynamics is given by:

v Vp-V
= Ve V)%:gES (t—z’;)
+Vi=WY g (r-1) )
jik

where V is the membrane potential, Vp is the resting
potential, 7p is the membrane time constant, Vg and
V1 are the excitatory and inhibitory reversal potentials,



J Comput Neurosci (2013) 34:185-209 189
(b) _ Table.l Neuronal and Vi 0 mv
[ neuron i in Ci/ng pools | synaptic parameter values Vi 80 mv
Vp -70 mV
VR -70 mV
Vo 55 mV
P 20 ms
Tref 2 ms
[ neuron i in Ci/ng pools | 8E 0.005 -
e 0.11 -

Fig. 1 (a) Construction of synfire chain embedding in a popula-
tion of neurons. A sequence of excitatory pools (green ellipses)
is formed by randomly selecting ng distinct neurons from the
excitatory population (large green circle) with replacement to
form each pool; two such selections are indicated in brown. A
corresponding sequence of inhibitory pools (red) is formed from
the inhibitory population (red). Each neuron appears in many
pools; e.g. each of the neurons in blue appears in two of the
pools shown. Links consist of all-to-all connections from each
excitatory pool to the next excitatory pool as well as to the
corresponding inhibitory pool (arrows). (b) Origin of excitatory
background input. Background input to neuron i arises from the
activity of the ng neurons in each of its Cg /ng predecessor pools.
Each neuron j in a predecessor pool of i fires at rate vg + vy,
with the component vy being due to spike packets in all Cg/ng
pools that j belong to. From this must be subtracted (ng/Cg)vw,
the rate due to spike packets in the predecessor pool of i. This
relationship is formalized in Eq. (4)

respectively, and gg and gr are the normalized synaptic
conductance responses to input, respectively (the same
for all synapses of each type).”? A spike is emitted
when V = Vg and the membrane potential is reset to
V = Vg, where Vg and Vg are threshold and reset
values, respectively. The membrane potential remains
at VR for a refractory period, t.;. Table 1 gives the
values of these parameters that were used in the chain
embedding simulations and, except where otherwise
noted, elsewhere.

Transmission delays vary across individual synaptic
connections. Identical delays are unrealistic and, more-
over, in a model with instantaneous synaptic responses,
identical delays would allow the propagation of per-
fectly synchronized spike packets; there would then be
no interval after the arrival of the synchronous inputs
during which background input could prevent or mod-
ulate the timing of an output spike. Variability of delays
introduces such an interval. As a consequence, the
model does not require rise times in the post synaptic
potentials, which would provide an alternative means
for creating such an interval.

The excitatory delays were specified so as to give
a realistically broad delay distribution overall, but a

2A normalized conductance response is the time-integrated
synaptic conductance response divided by the capacitance, and
is dimensionless.

narrow distribution of the delays on the synapses from
any one pool to the next pool in the sequence. To
achieve these two properties, each synapse’s transmis-
sion delay was set to be the sum of two components: a
component with large variability which is the same for
all synapses within the same pool-to-pool link (74 ); and
a component with small variability which is different
for every synapse (rg). Thus the transmission delay
on the synaptic connection from the jth neuron in the
uth E-pool to the ith neuron in the next E/I-pool is
given by ta(n) + (1, i, j) where ta(w) is drawn from
a uniform distribution on [0.5, 4.5) ms and t5(u, i, j) is
drawn from a uniform distribution on [0, 0.5) ms. This
specification is complete and self-consistent because
every excitatory synapse belongs to exactly one pool-
to-pool link. We refer to 7 as the inter-link delay, with
a spread of 4.0 ms, and tp as the intra-link delay, with a
spread of 0.5 ms.

The relatively small variability of delays within
synfire links is a defining feature of synfire chains:
propagation by near-synchronous input. It is also plau-
sible if, as argued by Bienenstock (1991, 1995), synfire
chains develop by strengthening synapses that cooper-
ate to deliver synchronous inputs. The magnitude and
variability of the transmission delays are realistic for
intracortical connectivity on the scale of a few hun-
dred millimeters given typically observed intracortical
conduction velocities in the range of 0.1-0.5 m/s (Yger
et al. 2011; Bringuier et al. 1999; Gonzalez-Burgos
et al. 2000). This is around the low end of the ve-
locity range observed for cortico-cortical connections
(Swadlow 2000). For instance, a synaptic delay of
0.5 ms, an axonal path length of 400 um, and a veloc-
ity of 0.2 m/s would reproduce the mean transmission
delay of 2.5 ms used here. The inhibitory connection
delays vary according to the same two-component dis-
tribution, but in their case both components are drawn
independently for every synapse.

2.3 External input

As opposed to most balanced random architec-
ture models, our network does not receive steady,
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ongoing excitatory input, neither continuous current
nor a stochastic (Poisson) input at a constant rate. The
model thereby demonstrates that synfire waves alone
can drive ongoing activity in a network. By omitting
ongoing external excitatory drive, the ratio of excita-
tory to inhibitory background input becomes invariant
with respect to the mean firing rate of the network (see
Section 2.4).

External input to the network is in the form of near-
synchronous packets of excitatory input to a specific E-
pool (and its corresponding I-pool) that serve to initiate
synfire waves. Each such stimulus, occurring at a given
time ¢, consisted of ng spikes normally distributed in
time with mean ¢ and standard deviation 0.1 ms, which
were delivered to each neuron in the target pool, with a
different transmission delay for each spike, these delays
being drawn from the same distribution as the intra-
link delay component g (Section 1).? These stimuli are
ongoing, in order to drive the number of synfire waves
to a maximum, and to demonstrate that the system
remains globally stable in such conditions. The stimuli
are regularly spaced at 40 ms intervals from ¢ = 200 ms
onwards. For convenience of output display (Fig. 2)
we always stimulated the same pool but the behavior
will be essentially the same whatever the sequence of
stimulated pools, provided the resulting waves do not
interfere with each other by visiting the same pools in
close temporal succession.

The first four wave-initiating stimuli are accompa-
nied by a transient of E/I balanced external Poisson
input. This begins at time zero with E/I rates approx-
imately equal to the background input rates gener-
ated by 4 synfire waves. The rates are progressively
reduced to zero in four equally-sized steps, one at each
new stimulus. This was done to ensure that the mean
membrane potential is near equilibrium when the first
four stimuli arrive, rather than being at the resting
potential, in case the latter would be too low to allow a
spike packet to initiate a wave. It proved not essential,
however, for the working of the model.

2.4 Mean field analysis

We begin by analyzing the equilibrium state of a net-
work in which there is assumed to be a fixed number
of propagating synfire waves, s, but no external stim-
ulation of new waves such as specified in Section 2.3,

3Thus the stimulus has the same effect on the target pool as would
a packet of ng spikes of standard deviation 0.1 ms occurring in the
previous pool.
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nor any other external input.* A mean field analysis can
be formulated in which the equilibrium state is char-
acterized by a single global parameter, the population-
averaged mean firing rate. The rate, as we will see, is the
same for both excitatory and inhibitory populations. It
can be decomposed into two parts:

V= vw + Vg (3)

with vw being the mean rate of spikes belonging to
synfire waves and vs being the mean rate of the remain-
ing spikes. These are what we referred to in Section 1
as stochastic spikes, because they arise from stochastic
membrane potential fluctuations driven by background
input. Background input refers to all the inputs to a
neuron, other than the synchronous excitatory inputs
from a synfire wave. Asynchronous input from exci-
tatory and inhibitory neurons, respectively, arrives at
rates

Ag = Cg (ww (1 —ng/Cg) + vs) = Cgv 4)
and
)»1 = CIV. (5)

Figure 1(b) illustrates how the excitatory background
input arises. Consider one of the neurons contributing
to the background input. Each such neuron belongs to
Cg/ng pools, and is thus visited by waves at different
times, resulting in spikes at quasi-random intervals, at
a mean rate vy over the population. In addition, each
neuron has a component of stochastic spiking at rate
vs. For the excitatory inputs to a neuron i, this leads
to a rate Cg(vw + vs) — ngvw, based on the activity
in the predecessor pools of all the pools to which i
belongs, minus the fraction due to synchronous activity
in each of these predecessor pools.® Since this fraction,

4In Section 3.3 we will describe an equilibrium with ongoing
external stimulation of new waves, in which the number of waves
is maintained at stable equilibrium level, Aeq, because the rate of
wave births is balanced by a corresponding rate of wave deaths.

SThe excitatory background input rate Cg((1 — ng/Cg)vw + vs)
is the expected value for a neuron. For a specific neuron or a
specific time interval the rate will deviate from this. However,
the standard deviation of the rate is small relative to the mean. In
particular, even if the pools are visited by waves very unequally
in frequency (as will be the case with the wave stimulation
protocol of Section 2.3) the neurons still receive similar back-
ground input rates, because the background input is summing the
input of Cg neurons, each of which contributes spikes belonging
to spike packets in Cg/ng — 1 pools. Thus the coefficient of
variation (across neurons) of the contribution to background
input due to spikes belonging to spike packets is approximately
1/{/(Ce(Cg/ng — 1)) = 1073 times the coefficient of variation

(across pools) of the rate at which a pool is visited by waves.
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Fig. 2 Wave activity and mean spiking rate in networks with
Cg = 8,000; (a-d) small pools, ng = 72; (e-h) large pools, ng =
200 (a,e) Spike rasters of neurons in (a) pools 20 to 79, (e) pools
320 to 419 in the sequence beginning with the stimulated pool

ng/(Ce(1 + vs/vw)), is only small in our model, Eq. (4)
provides a good approximation. This is convenient be-
cause it renders A;/Ag = C;/Cg = y, independently of
Ce and ng. The Cp inhibitory inputs per neuron are
uncorrelated with synfire links, and therefore the rate
in Eq. (5) is exact.

Background input does two things. First, it generates
stochastic spiking at rate vg. Second, it modulates spike
packet propagation, and thus the rate of spikes partic-
ipating in synfire waves, vw. These effects have to be
combined with those whereby the spiking rate in turn
generates the background input (Egs. (3)-(5)), in order
to obtain a self-consistent description that determines

1.0 2.0 3.0 4.0 5.0
time (s)

(left axis index). For each pool, ten arbitrarily chosen neurons are
shown (indexed cumulatively on the right axis); (b.f) raster of ex-
tracted spike packets, rectangles indicate regions shown in (a,e);
(¢,g) number of waves; (d,h) population mean rate histograms

the steady state behaviour for a given number of prop-
agating waves.

The stochastic spiking rate is approximated as the
mean spike rate of a single neuron receiving Poisson
input streams of excitatory and inhibitory inputs at
rates Ag and A respectively, denoted by the function

vs = fs(Ag, A1) . (6)

There is an analytical expression for the function fs,
the so-called Siegert formula (Burkitt 2006), which we
use to compare current-based and conductance-based
models in Section 3.7. However, this expression can
be a poor approximation if the conductances are not
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small enough and, in a time-step based simulation, if the
time-step is not small enough. Hence, for accurate com-
parison of network simulations and mean field theory,
the function fs was computed by single neuron simula-
tions for a closely spaced sequence of Ag values (with
A1 = yAg) and extended to intermediate values of Ag
by linear interpolation. The single neuron simulations
used a 0.1 ms time step, same as for the network. Each
simulation consisted of a set of 100 runs of duration
of 5,000 ms. The mean spike rate over the interval
[1,000 ms, 5,000 ms] was computed. This procedure was
sufficient to obtain an accurate estimate of the spiking
rate.

The modulation of spike-packet propagation by
background input was characterized via numerical sim-
ulations of a non-embedded chain of non-overlapping
pools where each neuron receives external, uncor-
related Poisson streams of input at rates Ag and
A1 = yAg respectively. These simulations were done
for pool sizes ng € {20,24,...,220} and rates, Ag €
{1,2,...,300} kHz using a 0.1 ms time step. For each
choice of pool size and background input rate, a chain
of 100 E-pools was created with the same intra-link
delay distribution as in the chain embedding model (5
in Section 2.2). Each simulation began with a period of
100 ms in which only background input was present.
This was done to avoid onset transients. A wave-
initiating excitatory input was then delivered to the
third pool in the chain as follows: ng spikes, normally
distributed in time with mean 100 ms and standard
deviation 0.1 ms, were transmitted according to the
same delay distribution as if they had occurred in the
predecessor pool. The probability Ps(Ag, A1; ng) that a
wave would successfully propagate to the end of the
chain (that is, over 98 pools) was estimated by obtain-
ing, over 100 trials, the fraction in which a spike packet
was detected in the last pool (see Section 2.6). From
this we calculated the average size of spike packets
over successful wave propagation trials. The average
spike-packet size was normalized by dividing by ng, to
give pr(Ag, A1), essentially the probability that any given
neuron in the pool contributes a spike to the packet.
The mean time interval between the spike packets in
the 90th and 100th pools, divided by 10, was used to
estimate T'(Ag, A1), the mean pool-to-pool propagation
time. The rate of wave spiking in the chain embedding
network is then given by

hng pr(Ag, A1)

= AE, ALL A, =
vw = fw(Ag, A1, b, ng) NeT G, o)

(7
Equations (3)—(7) determine the mean firing rate, v,

along with the background input rates and the rates of
wave spiking and stochastic spiking for a given number

@ Springer

of waves, k. Since fw and fs are obtained via numerical
simulations, it is convenient that A;/Ag is an invariant
of the dynamics (A;/Ag = y), since it allows fs, pr and
T to be reduced to functions of one variable (Ag).
Equations (3)—(7) then lead to a single equation for the
excitatory background input rate, and hence the other
rates (Aq, v, vw, vs):

Ag = Cg [(h/Ng) ngpi(he, yAe)/ T(re, ¥ AE)
+ fs(Ag, yAE) ] 8)

This shows that Cg, #/Ng, and ng determine the sta-
tionary rates according to the mean field analysis. Al-
ternatively, since Cg = (p/Ng) ”123 the stationary rates
are determined by p/Ng, h/Ng, and ng. This implies
that for a given pool size ng, the behaviour is invariant
if both the number of pools and the number of waves
scale linearly with Ng. In practice we choose Ng =
10Cg to obtain a network with 10 % probability of
connection for any pair of neurons.

2.5 Embedding capacity

We would like a measure of embedding capacity to
allow comparison across ranges of system parameters;
in particular, connectivity and inhibitory conductance
strength. Embedding capacity is the largest embedding
level that the system can incorporate while functioning
properly; i.e. allowing stable propagation of a certain
number of waves and a stability of the global rate
dynamics.

First, the mean field analysis of Section 2.4 must
be extended to include the constraint of stable wave
propagation, which is assumed in obtaining the steady
state solution given by Eq. (8). For spike packet prop-
agation to be stable there will, for a given synaptic
strength and level of background input, be a minimum
pool size (Diesmann et al. 1999). Using the function
Ps(Ag, yAg; np) that specifies the probability of sur-
vival, we identify the minimum pool size, #g min(AE), DY
the condition

Ps(Ag, YAg; BE) > 0.5 <= ng > NE min(AE). )

The steady state solution specified by Eq. (8) for an
arbitrary number of waves will be at the capacity limit
if we add the condition ng = ng min(Ag).

This then allows us to define the capacity limit of
the system as a constraint on both the number of pools
embedded and the level of activity, taken jointly. In
particular, if we specify the level of activity in terms of
the mean firing rate, v, then setting ng = ng min(Cgv)
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gives, as a function of the connectivity Cg, the largest
embedding level (¢ = Cg /n]25) that allows stable propa-
gation for a global mean firing rate v. That is

max(CE; v) = Cp /N in (CEV) (10)

Alternatively, we can specify the level of activity in
terms of the relative number of waves, i/ Ng, and ob-
tain a dif ferent embedding capacity function of connec-
tivity, omax(Cg; b/ Ng). For each of these definitions of
omax(CE), we optimize embedding capacity with respect
to connectivity.

The connectivity range is constrained by the require-
ment that there is a stable steady state level of stochas-
tic spiking activity in the system. Here we use a “naive”
estimate of the stability of stochastic spiking in terms
of the equivalent balanced random network. A given
self-consistent solution of the mean field theory with
mean rates v, vw and vg satisfies vg = fs(CE(vw + vg))
where vg = fg(kE) = fs(Ag, yA1). Being the fixed point
of the mapping vg‘“ = fg(CE(vW + visn)), the solution is
considered stable if the condition

afs (CE (l)w + l)isn)) /aviS“

<1 (11)

in
US =Vs

holds.® Because fs increases at a roughly constant rate
while well below saturation, this leads to an upper limit
on connectivity:

Ce < Ceman = 1/ (dfs/d2e) (12)

)»E=CEU

Even below the limit for stochastic spike rate stabil-
ity, it is necessary to ensure that a reasonable amount
of wave activity is present at the capacity limit. As Cg
increases, holding v = vw + vg constant, the level of
stochastic spiking determined by vs = fS(CE(vW + vs))
will increase, while the fraction of spikes due to synfire
waves will decrease. We therefore also require that at
least 50 % of the spiking should belong to wave activity,
which leads to another (usually smaller) connectivity
limit, Cg maxo-

Since the embedded chain network is not a random
network, we rely on simulations to verify both the
accuracy and the stability of the mean field solution for
the system at capacity, when the connectivity is below
both these limits, Cg max1 and Cg max2-

OThis is an adequate condition for the stability of the stationary
rate of a balanced random network driven by external balanced
external input at rates Cgvwy and Crvw, except where the latter
exhibits an oscillatory instability arising from a Hopf bifurcation.
Note, this formulation neglects the dependence of vw on back-
ground input.

2.6 Detection of spike packet sequences

Detecting unitary events from a stream of activity can
be done in a variety of ways. Our method is suitable
for situations where the spike rate outside a spike
packet is low; thus we can use a detection window wide
enough to safely cover any typical spike packet while
including a negligible number of non-packet spikes.
Within such windows, the median spike time gives the
precise location of spike packet. We combined all the
spike trains of all neurons in the pool to obtain a list of
spiking times Ts = ¢, ..., t,. To every spike time #; in
Ty, awindow [, ty + T,,) was applied, with width T\, =
3 ms. The spike times within this window constitute
a sublist Si. Sublists were classified as suprathreshold
if they contained more than n, spike times (]Si| >
ng). ng was set to a value midway between an esti-
mated minimum spike packet size and an estimated
maximum background spike count, resulting typically
in ny ~ 0.4ng. Maximal consecutive sequences of at
least 6 suprathreshold sublists were identified; that is,
sequences of the form L = (Syy, ..., S;) wherel — k >
6, ISjl >ngforjek+1,...,1, |Sk| <ng and [S;] <
ng. The minimum sequence length, 6, was chosen to
exclude small suprathreshold sequences that can arise
when |§;| &~ ny due to fluctuations in successive |S|.
Each such sequence L determines a single spike packet,
as follows. We identify amongst the sublists in the se-
quence the ones with maximum activity: Lyax = (S; €
L : |S;| = max{|S;| : S; € L}). We identify their “mid-
dle”, the ||Lmax|/2]’th sublist in Ly, as the spike
packet. The time of the spike packet was defined as
the median of its spike times. From the extracted spike
packets we compute vw(?), a time-resolved mean rate
over the population of spikes belonging to spike pack-
ets, using a bin size of 20 ms. By linking up spike packets
on consecutive pools, synfire waves were identified.
Spike packets on two consecutive pools were linked up
if the time interval between the first and second was
between 0.5 and 6 ms.

2.7 Simulation tools

Simulations of the chain embedding networks were
computationally intensive due to the large size of the
networks. We used the NEST simulation software us-
ing the Message Passing Protocol (MPI) for parallel
processing (Morrison et al. 2005), running on a clus-
ter of 24 Linux PCs with a total of 192 cores and
192 GB of memory. The largest networks we simulated
(those with Cg = 11,000) had approximately 1.4 x 10°
neurons and 1.9 x 10° synapses, which is close to the
maximum possible with these resources.
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3 Results
3.1 Behavior of large scale network simulations

Figure 2 exhibits the behavior of two networks, each
with connectivity per neuron Cg = 8,000. In both cases,
the model exhibits stable activity, and shows the emer-
gence of an upper bound on the number of simulta-
neously propagating spike-packets. In the left side of
Fig. 2, pool size is near the low end for allowing viable
wave propagation; this results in a high embedding level
and a large number of pools (ng =72, « = 1.54, p =
123457). In the right side of the figure, pool size is about
3 times larger; this leads to a lower embedding level
and a smaller number of pools, (ng = 200, = 0.2, p =
16,000). Note that even in this case, the number of pools
is still high compared to previous studies. Figure 2(a)
and (e) give spike rasters for 10 neurons from each pool
in a sequence of consecutive pools. The vertical axis in-
dexes pools counted from the stimulated pool (left) and
the cumulative count of neurons plotted (right). Since
each neuron appears in many pools, its spike train is
plotted at many vertical positions. Within a pool, spikes
belonging to spike packets are visibly distinguishable
from the remaining ‘background’ spikes. As discussed
in Section 2.4, these are due partly to stochastic spiking,
and partly due to the neurons participating in the spike
packets of other pools. The raster plots clearly show
waves of spike packets, propagating as a consequence
of the 25 Hz periodic stimulation. The raster plots of all
extracted spike packets (Fig. 2(b) and (f)) verify that
all spike packets belong to waves that propagate down
the chain from the stimulated pool; none occur spon-
taneously or out of sequence. In the traces of how the
number of co-active waves varies over time (Fig. 2(c)
and (g)), for both cases, the number of waves fluctuates
around a mean value not far below the maximum. With
small-sized pools, the number of waves occasionally
drops abruptly to zero or a small fraction of the max-
imum, from which it gradually recovers as new waves
are injected every 40 ms. In contrast, for large-sized
pools the number of waves remains relatively close
to the mean. This is because with smaller pools there
are fewer waves and their survival is more affected by
the noise feedback: they have a shorter average life
time indicating that they are less robust, as discussed in
Section 3.3. The mean firing rate in the population ver-
sus time (Fig. 2(d) and (h)) closely tracks the number of
waves simultaneously present. With many, small-sized
pools, the upper bound is 7 waves (with a mean of 4.9
and a firing rate of 1.75 Hz), while with fewer but larger
pools it is 26 waves (with a mean of 23.0 and a firing
rate of 26.3 Hz). This apparent trade-off between the
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number of pools and the maximum number of co-active
waves is described systematically in Section 3.4.

3.2 Dependence of pulse-packet propagation
properties and stochastic spiking
on background input

Here we give the numerical solutions for quantities
required for the mean field analysis of Section 2.4.
Figure 3(a) show Ps(ig, yAg), the probability of a
synfire wave propagating over a chain of 98 pools,
as a function of background input rate Ag for pool
sizes ng € 60,68, ...,220. For ng < 60, Ps =0 over
the range of Ap examined, while Ps = 1 for ng > 224.
Between these extremes, Pg has as a sigmoidal form:
the probability of successful propagation is high for
sufficiently low values of Ag and drops rapidly to zero
when background input rate reaches a critical level.
We can therefore define a threshold rate for successful
propagation, Ag = AE max:

AEmax(ME) = Ag : Ps(Ag, yAg;ng) =0.5 (13)

This threshold increases with pool size, as shown in
Fig. 3(d) for 3 values of inhibitory conductance (g =
0.1, 0.11, 0.12). Increasing the inhibitory conductance
reduces the threshold. Conversely, this relationship
defines a minimum pool size for propagation at a
given background input rate: ng = Hg min(AE) & A =
)"E,max(nE)-

Note that the existence of a threshold rate above
which propagation fails is non-trivial. It is to be ex-
pected that there will be a minimum pool size for
propagation at a given background rate, but only if
nemin(AE) 1S an increasing function at a given rate Ag
will that rate Ag be an upper limit for propagation
over pools of size ng min(Ag). The important functional
consequence is that background input serves to reg-
ulate wave activity; since waves generate background
input, with ongoing wave-initiating stimuli the number
of waves will increase until background rate reaches the
threshold, as seen in Fig. 2. The system equilibrates at
the embedding capacity limit where ng = ng min(Ag).

The probability that a neuron in a pool participates
in a given spike packet in that pool, p;(Ag, yAg) and
the mean pool-to-pool propagation time 7(Ag, yAg)
are given in Fig. 3(b, c¢) respectively. p; and T depend
relatively weakly on background input except when Ag
exceeds the threshold level. Figure 3(e) shows, for the
3 values of g given in Table 1, fs(Ag, yAg), the mean
spiking rate of a neuron receiving balanced background
input. The rate is approximately linear in Ag with a
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Fig. 3 Dependence of wave (a)
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slope that depends strongly on ratio of the synaptic
conductances, gg/gi.

3.3 Regulation of wave activity: the equilibrium state
of the driven system

Figure 3(a) and (d) demonstrated the existence of a
threshold level of background input (Ag max in Eq. (13)),
around which wave survival probability rapidly drops
from 1 to 0. This threshold is responsible for the upper
bound on the number of waves seen in Fig. 2. Back-
ground input is generated as a by-product of the waves
(Eq. (8)). Thus, as the number of waves increases with
ongoing stimulation, at the same time the background
input rises until it reaches the vicinity of the threshold.
At this point, the survival time of waves rapidly drops
until an equilibrium point is reached, where the wave
initiation rate is counterbalanced by the rate of wave
failure.

The number of waves at which equilibration occurs
can be quantified by considering the expected lifetime

A (kHz)

150 200 250 ] 10 20 30 40
# waves, h,,

of a wave, denoted Ts(Ag).” As a wave progresses along
the chain, the expected probability of failure per step is
constant for a given background rate and independent
of previous steps. We may therefore assume that the
life times of waves obey an exponential distribution
(as observed in the model by Bienenstock 1995). Then
Ts(rp) is related to Ps, the probability of survival over
L =98 pools, by:

Ts(Ag) = T(Ag)L/log(1/Ps(AE)) (14)

with L/log(1/Ps) being the expected number of pools
traversed. In the system driven by external stimulation,
the number of waves reaches equilibrium when the
death rate equals the rate of wave stimulation rate,
so the expected life time is related to the equilibrium
number of waves, kg, and the stimulation period, Tsim,
by heq = Ts/ Tsim- The equilibrium number of waves

7For notational brevity, and since A1 = yAg , the Aj-dependence
of Ts, Ps, ps, ... is left implicit in this section.
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is thus related to the probability of survival over L
pools by:

heq = T(Ag)L/ (Tsim log(1/ Ps(Ag))) (15)
or, equivalently

—LT(xg)

A — LT/ heg Tstim 16
hequm) xp (~LT/hegTum) — (16)

Pgs =exp (
where the weak Ag-dependence of T (Ag) and the steep
variation of Ps(Ag) for Ag &~ Agmax allows T(Ag) to
be replaced by T= T (Ag.max(ng)). This approximate
relationship between probability of survival and mean
number of waves is illustrated in Fig. 3(f) for ng =
80 and ng = 200. It depends only very weakly on #ng.
Figure 3(f) shows that there is a range of possible
equilibrium numbers of waves according to the value
of Ps(Ap). These occur at Ag-values close to Ag max,
since Ps(Ap) has a sigmoidal form that sharply drops
from 1 to 0. An expression for the equilibrium back-
ground input rate Ag, can be obtained by combining
Egs. (3), (4), (7), (6) and (15):

Lng ps(Ag)
T'stim log (1/ Ps(Ag)) Ng

The mean spike rates vy, vs and v at equilibrium and
the equilibrium number of waves /. are then deter-
mined by using this value of Ag in Egs. (7), (6), (3)
and (15), respectively.

In practice, however, using Ar = Ap max to evaluate
vw, Vs, v and heq is a good enough approximation
because of the sharp transition of Ps from 1 to 0. This is
the method used to define the embedding capacity limit
in Section 2.5.

= Ae/Cg — fs(Ag) (17)

3.4 Comparison of embedding capacity limit
by analysis and by network simulations

We have seen that the system driven by external wave
stimuli equilibrates at the embedding capacity limit.
Figure 4 shows how the state of the system at the
embedding capacity limit depends on connectivity and
pool size, as predicted by the mean field analysis.
Figure 4(a) gives the embedding level (¢ = p/Ng =
Cg/n%). Figure 4(b) and (c) show, respectively, the
mean firing rate at the limit, and the equilibrium num-
ber of waves (/¢q). The plots reveal a systematic trade-
off between on the one hand, the number of waves
and mean firing rate, and, on the other, the embedding
level. Smaller pools and higher connectivity per neuron
directly specify a higher embedding level (o« = Cg/nf)
and result in lower firing rates and lower numbers of
waves, and vice versa.
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We compared the equilibrium firing rates and num-
bers of waves predicted by the mean field analysis
with those found in a series of simulated networks, for
connectivity Cg € 5,000, 6,000, ..., 11,000 and pool size
ng € 20,28, ...,220. For each choice of Cg and ng, we
conducted one network simulation of 10,000 ms dura-
tion, extracted spike packets sequences (Section 2.6)
and obtained time resolved mean spiking rates v(f),
vw (¢) and number of waves A(f). An initial transient, the
time taken for the number of waves to reach equilib-
rium, was excluded. We set fi,;¢ = max (1,000 ms, #mean)
where fyean 1S the time when A(¢) first exceeds the
mean over the interval [1,000 ms, 10,000 ms]. The mean
rate of all spiking activity (v), the mean rate of spikes
belonging to spike packets (vw) and the mean and
maximum number of waves were then determined over
the period [fgart, 10,000 ms].

The model reaches stable equilibria in all but a
few cases. The few exceptions occurred when both
pool size and connectivity was large (ng = 212,220 for
Cg = 10,000 and ng = 204,212,220 for Cg = 11,000).
In these five cases, network behaviour was “normal”
until some apparently arbitrary point at which it rose
very rapidly to the saturation rate imposed by the
neuronal refractory period. The rate explosion is of
course incompatible with wave further propagation. No
spontaneous waves were observed to appear before the
rate explosion occurred.

Figure 4(d) shows the equilibrium behavior for both
simulations and mean field analysis for three connec-
tivity values, Cg = 5,000, 8,000, 11,000. The upper plot
shows the mean overall rate v, and the rate of spikes
belonging to waves, vy, versus pool size ng. Although
each data point represents only a single network in-
stance, the smoothness of the behavior versus pool size
indicates that fluctuations due to different network re-
alizations are small. The lower plot shows the predicted
equilibrium number of waves h.q versus ng, as well as
the mean and maximum numbers of waves obtained
in the simulations. We note the good agreement be-
tween the simulations and mean field analysis. The
most noticeable quantitative discrepancy is that the
analysis overestimates the mean spiking rate by about
10-20 %. The reasons for this discrepancy will be dis-
cussed in Section 4.

3.5 Measures of embedding capacity

We have defined embedding capacity relative to a given
level of activity: a specified firing rate or number of
waves (Section 2.5).

First, we give the embedding capacity based on
equilibration at a particular firing rate. We consider
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Fig. 4 (a—c) Predictions of mean field analysis for embedding
level (¢« = p/Ng), mean firing rate (v) and equilibrium number
of synfire waves per neuron (heq/Ng) as functions of pool size
and connectivity. (d) comparison between mean field analysis
and simulations for connectivity Cg = 5,000, 8,000, 11,000. For
each Cg: upper plot, overall mean rate and mean rate due to wave

firing rates typical of background activity in the cortex
(veq = 1,2,5, 10 Hz). Figure 5(a) shows for each veq
in (ng, Cg)-space the curves Ag max(ng)/Cg = Veq. The
corresponding embedding capacities amax(Cg) versus
Cg are shown in Fig. 5(b), along with those obtained
from the simulations. The moderate quantitative dis-
crepancy between the two is due to the discrepancy
between between the predicted and observed mean
firing rates seen in Fig. 4(d).

For each firing rate, the embedding capacity rises
steeply with connectivity and then levels out, appar-
ently suggesting that embedding capacity can be maxi-
mized by increasing connectivity to this level. However,
two constraints on connectivity need to be respected.
(Section 2.5). The first constraint limits the connectivity

spiking versus pool size for the mean field solution (small green
markers) and for simulations (large magenta markers); lower plot,
versus pool size, the mean field prediction for the equilibrium
number of waves (small green markers) and the maximum and
mean numbers of waves in the simulations (large magenta trian-
gles and circles, respectively)

to the level at which the fixed point of low stochastic
spiking rate becomes unstable:

C = Cemaa (1) = 1/ @ fs/dhe)| (18)

E=AEmax (1)
The second constraint, that at least 50 % of the spik-
ing should belong to wave activity, leads to a smaller
upper connectivity limit given by Cg = Cg max2(g) =
}LE,max(nE)/zfS()\E,max(nE))' These two upper bounds
are shown in Fig. 5(a). Where they intersect the curves
AE,max(NE)/CE = veq defines the connectivity limits for
each veq. These limits are marked by symbols on the
corresponding embedding capacity curves in Fig. 5(b).
Thus, taking into account the global rate dynamics
shows that it is not always possible to increase the
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Fig. 5 Measures of embedding capacity: (a) curves in (ng, Cg)-
space for four equilibrium firing rates (veq =1,2,5,10 Hz) and
for two upper limits (Cg max1 (ng) for global rate stability and
Cemax2(ng) for vw/v > 0.5) and the points of intersections

connectivity to the point where the capacity levels out.
For veq =1, 2, 5 Hz, maximum embedding capacity is, in
fact, limited to a smaller value by the lower of the two
connectivity limits, Cg max2-

Second, we consider embedding capacity based on
equilibration at a particular number of waves (relative
to network size). The choice of the number of waves

# connections/neuron, Cy,

(with Cg maxi(ng) red ‘0’s, with Cg max2(ng) green ‘0’s); (b)
corresponding embedding capacity amax(Cg) curves and limits,
simulation results (‘x’); (ed) as for (ab) but for heq/Ng =
(2,5, 10, 20)/80,000

is arbitrary. We consider e/ Ng = (2, 5, 10, 20)/80,000
(corresponding to heq = 2,5, 10, 20 for the case Cg =
8,000). In analogy to Fig. 5(a), the curves in (ng, Cg)-
space of heq/Ng along with the two upper limits on
connectivity are given in Fig. 5(c). Embedding capacity
versus connectivity is given in Fig. 5(d), along with the
results obtained by network simulations.
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Fig. 6 Dependence of embedding capacity on inhibitory conduc-
tance. Embedding capacity curves amax(Cg) for 3 equilibrium
firing rates veq = 2, 5, 10 Hz (panels a—c); for g; = 0.1 (red), 0.11,
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(magenta), 0.12 (blue). Vertical dashed lines show the correspond-
ing limits on connectivity for 50 % of spikes to belong to synfire
waves (Cg,max2(nE))
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The definitions of embedding capacity allow us to
study how it can be optimized with respect to other
parameters. In the present work, we use the definition
based on the equilibrium firing rate to assess the role of
inhibitory conductance.

3.6 Inhibitory conductance governs trade-off
between wave propagation stability
and stochastic spiking stability

The justification for our initial choice of the inhibitory
conductance value was that it leads to a small amount
of stochastic spiking, relative to wave-spiking. From
the theory of balanced random networks (Brunel 2000;
Meffin et al. 2004) an externally driven network must
be in the inhibition-dominated regime in order to
produce the low-rate, irregular firing rates typical of
background activity. This regime is known as the
fluctuation-driven regime, because spiking is due to
fluctuations around a mean membrane potential posi-
tioned below the firing threshold. We want to consider
how sensitive the tuning of this mean membrane po-
tential is for the performance of our model. Figure 6
shows predictions of the mean field analysis for em-
bedding capacities defined using three different choices
of equilibrium firing rate: veq = 2, 5, 10 Hz. For each,
three choices of inhibitory synaptic conductance are
examined (g; = 0.1, 0.11, 0.12). These values are, re-
spectively, the one used for the network simulations
and a value on either side of it. All three values are well
within the inhibition dominated regime.

The embedding capacity curves are higher when
the inhibitory synaptic conductance is smaller. This
is because a higher membrane potential distribution
allows stable propagation at smaller pool sizes. This
is consistent with Fig. 3(d), which shows that minin-
imum pool size for stable propagation decreases as
inhibitory conductance increases. On the other hand,
as seen in Fig. 3(e), the stochastic spiking response is
stronger with reduced inhibitory conductance. Hence
the upper bound on connectivity for 50 % of spikes
to belong to synfire waves (vw/v = 0.5) is lowered.
The consequence is that there is a trade-off between
the stability of wave propagation and the control of
stochastic spiking. For veq = 5 Hz, Fig. 6(b) indicates
the existence of an optimal inhibitory synaptic conduc-
tance close to 0.11, with maximum capacity occurring
at a connectivity of about 11,000 per neuron. For a
lower (higher) choice of equilibrium firing rate, the
optimal inhibitory conductance is reduced (increased)
and the optimal connectivity is increased (reduced), as
indicated by Fig. 6(a) and (c).

3.7 Comparison of conductance-based
and current-based models

To explain the high embedding capacity of the present
model compared to a current-based model such as that
of Aviel et al. (2005), it is desirable to examine the
behavior of the two models across suitable slices of
parameter space and relate the underlying neuronal
response properties of the two models to the global
network measure of embedding capacity. We con-
sider two quite different ways of making this compar-
ison: firstly, one that explores conventional parameter
choices for the current-based model; and secondly, one
that uses choices specifically designed to fit the current-
based model behavior to that of the conductance-based
model.

In the current-based model, Eq. (2) for the
conductance-based subthreshold membrane potential
dynamics is replaced by:

dv Vp

I S () S -1)
Jik

where ag, a; are the amplitudes of the synaptic input
responses, replacing the voltage-dependent response
amplitudes, gg (Ve — V), g1(V1 — V) respectively.

To facilitate the comparison, we use a simple, ap-
proximate method of analysis which, unlike the com-
prehensive mean field analysis presented in Section 2.4,
does not require simulations of single chains and neu-
rons to obtain solutions. The simple analysis offers
insights into the mechanisms but it comes with an
important caveat: unlike the comprehensive analy-
sis, it neglects the effects of the 0.5 ms spread in
intra-link delays that is present in the model used
for the chain embedding simulations, as specified in
Section 2. Comparison of the two analyses—simple
and comprehensive—therefore gives an indication of
the impact of intra-link delay variability. The simple
method uses the well-known Siegert formula, an an-
alytic expression for the stochastic spiking rate as a
function of background input, based on a diffusion
approximation for the stochastic membrane poten-
tial, originally developed for current-based synapses
(Ricciardi 1977; Brunel 2000) and later adapted for
conductance-based synapses (Burkitt et al. 2003). In
both cases it takes the form
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where p and o are the mean and standard deviation
of the membrane potential distribution without a spik-
ing threshold (approximating that with the threshold)
and t is the effective membrane time constant. The
dependence of u, o, andt on the background input
rates (Ag, A1) and the neuronal and synaptic parameters
is given in Burkitt (2006) for both conductance and
current based models. For the current-based model t =
tp, while for the conductance-based model 7 is reduced
substantially in the high-conductance state, which leads
to smaller o values than a current-based model with the
same tp. This is a critical feature of the conductance-
based model.

In the first method of comparison, the neuronal pa-
rameters of the current-based model (zp, Vp, V&, Vo
and t.f) are set to the same values as used in the
conductance-based model (Table 1, Section 2.2). In
the second method, however, we allow the current-
based model to take different values for tp and Vp, in
order to fit the membrane potential distribution and the
effective membrane time constant of the current-based
model to those of the conductance-based model.

For each particular choice of the neuronal and
synaptic parameters of either model, we determine the
chain embedding capacity of the network. Following
Section 2.5, we assume the system is operating at a
given mean firing rate, which we take to be v =5 Hz,
and require that less than 50 % of the spikes are
stochastic. As the connectivity per neuron, Cg (with
Ci = yCg), is varied, we determine (a) the equilib-
rium stochastic spiking rate, and its stability; (b) the
minimum pool size ngmin for stable propagation at
this firing rate and connectivity; and (c) the capacity
(max = Ce/NE ). To simplify the analysis here, we
neglect the background-input dependence of the rate
of spikes belonging to synfire waves (Eq. (7)). This
allows a simpler self-consistency equation for the sys-
tem: we can specify the spike rate due to waves (vw)
independently of the amount of stochastic spiking (by
setting the number of waves, A, appropriately) and
solve for a self-consistent stochastic spiking rate vs
such that vg = fS'(CE(vw + vs)) where vg = fS(AE) =
fs(Ag, yA1). Since we require vw + vs = v, the solution
is obtained for any connectivity level just by setting
Vg = fs(CEv) and vy = v — vg, provided vy is non-
negative. This is guaranteed by our requirement that
vs < 0.5v. As before, stability of this solution is assessed
using Eq. (11).

The minimum pool size for stable wave propaga-
tion, ng min is estimated by considering the Gaussian
approximation to the membrane potential, and requir-
ing that ng i, synchronous inputs of amplitude ag
(current model) or gg(Vaye — V) (conductance model)
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will put 95 % of the membrane potential distribution
above threshold, so that the probability of a spike
response to the input is 0.95. This leads to the condition
nEminde = Vo — (u — 1.6450). Importantly, however,
this condition is only reasonable on the assumption of
a zero intra-link delay spread. In the model specified
in Section 2 there is an intra-link delay spread of
0.5 ms. The resulting dispersion of the synfire wave
inputs introduces a window of integration during which
background input can affect the probability that a spike
is produced, so an estimate of minimum pool size based
only on the membrane potential distribution prior to
the arrival of synfire wave input will only be a good
approximation if z, the time scale at which background
input acts on the membrane potential, is large in com-
parison to the spread of intra-link delays.

To identify the best capacity for each specific choice
of neuronal and synaptic parameters, we obtain the
behavior as a function of connectivity up to a maximum
connectivity, Cg max, the point at which either (a) the
fixed point solution for vs becomes unstable, (b) the
condition vs < 0.5v = 2.5 Hz breaks down, or (¢) omax
ceases to increase.

We examine the behavior of the conductance based
model for one choice of excitatory conductance (gg =
0.005 as before) while the inhibitory conductance gj is
varied over the interval [0.02, 0.1]. For the first method
of comparison, a corresponding family of current-based
models is formed by setting ag to match gg using the
relation ag = gg(Vayg — V) where Vi = (Vi + Vo) /2.
Hence ap = 0.312mV. Choosing ag as a function of
g 1s appropriate, since the excitatory response in the
conductance-based model does not vary much for V €
[VR, Vel. However, this is not true for the inhibitory
response, so a one-to-one match between ay and g is
not well founded. Instead we simply vary the inhibitory
conductance over the interval g € [0.25, 1.5] mV and
compare the two models over their respective ranges of
ay and gp, these ranges being sufficiently representive of
the behavior of the two models as inhibition is varied.

The results of the first method of comparison are
shown in the first and second columns of Fig. 7, for the
conductance and current-based models respectively.
At low inhibitory strengths the behavior of the two
models is similar. In this region the mean membrane
potential is poised not far from threshold, allowing
small minimum pool sizes and therefore moderately
high embedding capacities. However, this region is not
realistic in that it only permits a low level of connectiv-
ity, because inhibitory feedback strength is insufficient
to control recurrent excitation. Moreover, this region
is outside the balanced, inhibition-dominated regime
of AI spiking activity that (for this class of models)
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Fig. 7 The comparison of conductance-based and current-based
models: (first column) conductance-based models with gg =
0.005 and gr € [0.02, 0.1]; (second column) current-based models
with ag = gg(VE — Vavg) and ay € [0.25, 1.5]1 mV; (third column)
current-based models fitted to a conductance-based model with
ge = 0.005 and g1 = 0.095, for Vp € [—88.4, —56.6] mV; (fourth
column) current-based models fitted to each of the conductance
models in the first column using Vp = p. In each column, the
remaining neuronal parameters are as given in Table 1. For
selected values of the varied parameter (gp, a1, Vpandgj, for
columns 1-4 respectively) the performance parameters u, o,

best represents activity in the cortex. When we come
to higher inhibitory strengths the two models diverge
dramatically. In the current-based model, as connec-
tivity increases the mean membrane potential drops
steadily and the standard deviation widens, leading to
unfavourably large minimum pool sizes and low em-

Cp (conns/nrn) Cp (conns/nrn)

Vs, NEmin and omax are plotted against connectivity Cg up to
Cg = CE max, the point that gives the highest embedding capacity
subject to the constraints on stochastic spiking rate and stability
(colored curves). The values of the varied parameter are: (first
and fourth columns) g =0.02, 0.05, 0.07, 0.08, 0.085, 0.09, 0.095,
0.10; (second column) a; =0.25, 0.5, 0.75, 0.875, 1., 1.125, 1.25,
1.3125, 1.375, 1.4375, 1.5 mV; and (third column) 21 values of Vp
between —88.4 mV and —56.6 mV. In each panel the black curve
is the behavior at Cg = CE max for the entire range of the varied
parameter

bedding capacities. In the conductance-based model
the mean membrane potential and standard deviation
approach asymptotic values and hence so does the min-
imum pool size, leading to an embedding capacity that
increases linearly with connectivity (since & = Cg/nj,).
As inhibition increases, embedding capacity optimized
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with respect to connectivity decreases in the current-
based model and increases linearly in the conductance-
based model, so that cortical-scale connectivity is only
obtainable in the latter.

In Fig. 7 the horizontal axis can also be intepreted
to represent the background input rate, via the con-
version Ag = Cgveq. In particular, we can see the be-
haviour of ng min versus Ag. For both conductance and
current-based models, at low inhibitory strengths ng min
decreases with background rate, implying that wave
activity is not regulated by background input. At higher
inhibitory strengths ng min increases with background
rate for the current-based model, and thus wave regu-
lation is restored. However, for the conductance-based
model the membrane potential distribution approaches
a limit and virtually ceases to change as background
input increases, and hence ng min reaches an asymp-
totic value at Cg values well below Cg max, implying
that wave regulation is ineffective. This result is in
contrast to our findings for a conductance model with
a 0.5 ms spread in intra-link delays: in the network
simulations there is effective regulation of the number
of waves (Fig. 2) and the comprehensive mean field
analysis (Section 3.2, Fig. 3) shows that an increase in
background input reduces the probability of a spike
in response to synfire wave input and increases the
minimum pool size. These effects, being absent in a
model with zero intra-link delay spread, must be due
to the effect of background input during the window
of integration of synfire wave input that exists when
there is a 0.5 ms intra-link delay spread. By increasing
the minimum pool size, the intra-link delay spread
also reduces the embedding capacity, as can be seen
by comparing embedding capacity curves in Figs. 5(b)
and 6 (0.5 ms delay spread) with those in the first
column of Fig. 7 (zero delay spread). With zero delay
spread the capacity increases linearly with connectivity
because the minimum pool size is asymptotically con-
stant. When the delay spread is introduced, the capacity
curves become concave down in shape, due to a mini-
mum pool size that increases almost linearly (with an
offset) as connectivity increases (Fig. 3(d)). The large
effect of intra-link delay spread in the conductance
model is not surprising, since v drops rapidly with Cg
and is already within an order of magnitude of the intra-
link delay spread at Cg = 1,000. However, the findings
for the current-based model (Fig. 7, second column)
should be only slightly changed by a 0.5 ms intra-link
delay spread, since 7p is 40 times larger than that.

Turning now to the second method of comparison,
here we choose parameters for the current based model
that will fit the effective membrane time constant and
membrane potential distribution to that of a given con-
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ductance model at a given mean firing rate v and recur-
rent connectivity Cg gii. We set Cg g to be the Cg max of
the conductance-based model, since that is where, over-
all, its best capacities are found. v and Cg g determine
Ag and A and hence u, o and 7. For the current-based
model, we set tp = v and constrain ag, aj, and Vp to
yield the same p and o as the conductance model. Since
the constraints leave one degree of freedom, they leave
ag and ajy as functions of Vp. Increasing Vp decreases
ag/|ar| and vice versa, leading to a trade-off between
rate stability and wave regulation on the one hand, and
capacity on the other. The third column of Fig. 7 shows
for a range of V’p values the performance of the current-
based model fitted to one particular conductance-based
model (g = 0.095). For low Vp, the mean membrane
potential increases with connectivity and the minimum
pool size decreases. Thus, the embedding capacity
increases but there is no regulation of wave activity. For
high Vp, the opposite is the case: there is regulation but
capacity is low. There is a narrow range of choices for
Vp where there is both high capacity and regulation of
the number of waves. One such value is Vp = p. This is
understandable because Vp = pu implies agig + ajr; =
0. Hence p remains unchanged as the number of waves
and the mean rate increase. Thus the balanced state
is preserved (as in the conductance model), while o
increases (unlike the conductance model) resulting in
a gradual increase in the minimum pool size (which
must shift 95 % of the membrane potential distribution
above the firing threshold). Therefore it is charitable
to choose Vp = u to fit a particular current model to
each conductance model. The fourth column of Fig. 7
shows the performance of a current-based model fitted
in this way to each of the conductance-based models
shown in the first column, as gy is varied. We observe
that the current-based model behaves similarly to the
conductance model with respect to the membrane po-
tential parameters (u, o) and the capacity. However,
unlike the conductance model, the limit Cg max (Which
determines the ’envelope’ curve) is not due to the 0.5v
limit on the stochastic spiking rate (Cg max2), but to
the limit at which stochastic spiking becomes unstable
(Cg.max1)- Thus the drop in performance is not graceful
as connectivity increases (with the amount of wave
activity decreasing due to regulation), but catastrophic.
This could only be remedied by choosing a higher Vp,
as the third column shows, at the expense of reducing
the capacity.

A difference between the conductance and current-
based models, the latter with the values of u, o andt
fitted to the former, lies in the origin of wave regulation.
In both models, zero intra-link delay spread behavior
is a poor match to that with 0.5 ms intra-link delay
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spread, because the effective membrane time constant
is small. A strong drift rate —(V — u)/t impedes the
rise to threshold during the integration of synfire wave
input, leading to a larger minimum pool size with the
0.5 ms intra-link delay spread. In the conductance-
based model, the small t is dynamic, and due to back-
ground input: 1/t = 1/tp + Ae(ge + ¥ g&1). In the fitted
current models, however, 7 is small but static: T = tp.
Wave regulation requires that the minimum pool size
increase with background input. In the conductance-
based model this happens because t decreases even
more, while « and o remain almost unchanged. In the
current-based model, t cannot change, so regulation
must be due to the effects of background input on u
and o. The conditions for regulation are essentially the
same for 0.5 ms intra-link delay spread as for zero intra-
link delay spread. We need p to change only slightly,
together with an increase in o, to ensure that ng nin in-
creases. The conclusion that there is a narrow range of
parameters for the current-based model that allow both
capacity and wave regulation, including values Vp ~ u
and agCg + a;Cy ~ 0, is not qualitatively affected by
the introduction of 0.5 ms intra-link delay spread.

In conclusion, the comparison of conductance and
current-based models has shown that the former out-
performs the conventional current-based model be-
cause the latter, with a membrane time constant
in the order of tens of milliseconds, overestimates
the magnitude of membrane potential fluctuations in
the high conductance state, which leads to a very
poor tradeoff between controlling stochastic spiking
and keeping small the minimum pool size for wave
propagation. A current-based model with the effective
membrane time constant and membrane potential dis-
tribution matching those of the conductance model
shows similar performance to the latter, both in ca-
pacity and regulation of waves. The simple analysis of
this section assumed an intra-link delay spread of zero.
If the intra-link delay spread is non-zero, the capacity
of both the conductance model and the current-based
model with the effective time constant fitted to that of
the conductance model will be substantially reduced,
but they still well-outperform that of the conventional
current-based model.

4 Discussion

We presented a cortical network model that allows for
the embedding of large numbers of pools linked to form
synfire chains. Key features of this model are (i) use
of conductance-based synapses, (ii) incorporation of in-
hibitory pools of neurons into the chains so that synfire

waves conserve the balance of excitatory and inhibitory
activity, and (iii) variable intra-link transmission delays.
The number of pools is at the combinatorial capacity
for a given connectivity per neuron: all excitatory con-
nections are used to constitute pool-to-pool links.

We gave a mean-field analysis that determines
steady state properties (mean firing rate and compo-
nents due to stochastic spiking and spikes belonging
to synfire waves) as a function of model parameters.
Performance is assessed in terms of number of pools
and number of co-active waves. There are two dy-
namical constraints on performance: stability of synfire
wave propagation and stability of the low rate Al state
of overall network activity. The analysis determines
the boundaries for satisfying these two constraints.
The constraint of synfire wave stability amounts to a
minimum pool size for a given level of background
input. For the constraint of Al stability, we provide a
“naive” estimate based on stability of the Al state of
the corresponding balanced random network driven by
balanced input. This is a necessary condition, but it may
not always be sufficient, as in the case for the model
studied by Aviel et al. (2005) for instance. Hence we
use numerical simulations to confirm Al stability.

The mean field analysis (Section 3.2) shows (for
three choices of inhibitory strength) that the mini-
mum pool size increases with background input; equiv-
alently, there is an upper limit on background input
for wave propagation at a given pool size. Since wave
activity drives background input, regulation of wave
activity emerges as a natural outcome of the model:
there is an upper bound on the number of propagat-
ing waves. In our simulations we drive the system to
equilibrium at this upper bound since the pool size is
then at the minimum (and the embedding level is at
the maximum) for the resulting mean firing rate at the
given connectivity per neuron. We verify that over a
wide range of pool sizes and connectivity levels the
Al state remains stable at this equilibrium and the
mean field analysis provides a good quantitative de-
scription of the equilibrium behavior. We find a trade-
off between embedding capacity on the one hand, and
both equilibrium firing rate and equilibrium number
of co-active waves on the other hand. Therefore, we
define embedding capacity with respect to either the
equilibrium firing rate or the equilibrium number of
waves. For cortical scale connectivity in the range of
5,000-11,000 excitatory synapses per neuron, we obtain
embedding capacities of around 0.5-2.0 for firing rates
of 1-10 Hz and for 2-10 waves per 80,000 neurons
respectively.

These capacity results are substantially higher than
those found in previous models of chain embedding us-
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ing spiking neurons and current-based synapses (Aviel
et al. 2005; Schrader et al. 2008). The higher embed-
ding capacity of the present model is a direct result
of two outcomes: a small minimum pool size for a
given connectivity, and a high connectivity attainable
without a ground state instability. The improvement in
both of these outcomes can, according to the analy-
sis made in Section 3.7, be attributed to the use of
conductance-based synapses. However, the predicted
increase in the attainable connectivity is based on the
stability of the mean spike rate of a balanced random
network. The naive prediction will only be valid if the
chain-embedding network is no more susceptible to a
breakdown of the Al state of spiking activity than the
corresponding random network. Our simulation results
are consistent with this supposition, but they do not go
all the way to limit. Exactly why the present network
avoids instabilities in the Al state that occur in previous
studies, such as the synfire explosion (Mehring et al.
2003; Aviel et al. 2005), is not clear. The three key
ingredients of the model (conductance-based synapses,
variability in delays, and balanced pools) are all impli-
cated in this improvement of Al stability but we have
not teased apart their relative contributions. Network
size is also important for high capacity. Figures 5 and 6
clearly indicate that high capacity is only attained when
the connectivity per neuron reaches several thousand.?

The structure of inhibition in the model serves to
keep the network in a balanced state, where the ratio
of the excitatory and inhibitory input rates and the
mean membrane potential remain approximately con-
stant as the number of waves (and the overall firing
rate) increase due to external stimulation, by ensuring
that excitatory and inhibitory mean firing rates are co-
modulated, and indeed remain equal. This is achieved
by (a) E-I balanced pools; and (b) the same mean
recurrent connectivity to both E and I neurons. (a) and
(b) respectively ensure that the mean rate of spikes
belonging to synfire waves and the stochastic spiking
rate are the same for both E and I neurons. The
strength of inhibition affects capacity in two ways. On
the one hand, increasing inhibition reduces capacity by
increasing the required pool size at a given connectivity,
but on the other hand, it allows for more recurrent

8The connectivity needed for high capacity can be reduced by
using larger synaptic strengths (Trengove 2006) but not by very
much, as synaptic strengths an order of magnitude larger than
used here would be biologically implausible and would cause the
diffusion approximation breaks down, leading to more stochastic
spiking than predicted by Eq. (20), and hence less increase in
capacity.

@ Springer

connectivity by reducing stochastic spiking in response
to noise. Overall there is a trade-off between these two
effects which determines an optimal inhibition, and this
optimum will decrease if the desired equilibrium firing
rate is increased.

Our model has structural symmetries that cause the
firing rates of excitatory and inhibitory neurons to be
the same, for simplicity. This will not be the case if Cg,
C1, gg or gp differ for the synaptic inputs of the two
neuron types, or if the condition for balanced pools,
ng/Ng = n1/ Ny, is not satisfied. This will not change
the qualitative properties of the model if the ratio of
the excitatory and inhibitory spiking rates remains ap-
proximately invariant. However, it would be interesting
to break the symmetry in such a way that the stochastic
spike rate increases more rapidly for inhibitory neurons
than for excitatory ones, as this might allow stronger
regulation of the number of waves at the same upper
bound.

A simplified mean field analysis was used to make
an efficient comparison of the conductance-based and
current-based models for varying inhibitory strength
and connectivity (Section 3.7). Two methods for speci-
fying the current-based model were examined. For the
first method, in which conventional parameters for the
current-based model are used, the two models differ
strikingly in behavior: optimal embedding capacity de-
creases with respect to inhibition for the current-based
model but increases in an asymptotically linear manner
for the conductance-based model. The difference stems
from the behaviour of the membrane potential distrib-
ution. First, at high connectivities in the conductance-
based model the neuron is in the high-conductance
state in which the effective membrane time constant is
substantially reduced (Destexhe and Paré 1999; Meffin
et al. 2004; Richardson 2004), leading to a narrower
membrane potential distribution than in the current-
based model. Second, the inhibitory reversal potential
prevents the mean membrane potential from becom-
ing too low. Combined, these effects allow a neuron
with conductance-based synapses to maintain both a
high response to coincident input and a low response
to background input as connectivity increases. This in
turn allows cortical scale connectivity to be attained
without substantial increase in pool size. For the second
method, the current-based model is given a very small
membrane time constant to match the effective mem-
brane time constant of the conductance-based model,
and other neuronal and synaptic parameters are con-
strained to fit the membrane potential distribution to
that of the conductance-based model. Within these con-
straints there is a trade-off between capacity and wave
regulation, and there exists a small range of parameters
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which achieve both wave regulation and capacities sim-
ilar to those of the conductance model.

The model we have presented here uses delta-
function synaptic responses and includes variability in
the excitatory transmission delays within each synfire
link in the form of a 0.5 ms intra-link delay spread.
The comprehensive mean field analysis of Sections 2.4
and 2.5 takes this into account. However, the sim-
plified analysis of Section 3.7 is only valid for a
model with instantaneous synaptic responses and zero
spread of intra-link transmission delays. As discussed in
Section 2.2, this is not realistic as it leads to the omission
of an integration window during which background
input can prevent the spike response to synchronous
input. Such a window will be present in a model with a
spread of intra-link delays. The intra-link delay spread
plays a critical role in determining the embedding ca-
pacity. We have shown that intra-link delay variability
reduces robustness of wave propagation and hence ca-
pacity, but that such variability is necessary in a model
with instantaneous synaptic responses in order that
waves are not so robust that they cannot be regulated.
Section 3.7 shows that regulation is missing in the
conductance-based model with zero delay spread. Thus
the delay spread governs a trade-off between capacity
and regulation. It is also responsible for the existence
of an optimal level of inhibition (Section 3.6); without
a delay spread, embedding capacity simply continues
to increase with increasing inhibition, along with con-
nectivity and network size (Fig. 7, first column). Even
without intra-link delay spread, a window of integration
of synfire input will be present if synaptic responses
are non-instantaneous (ie. there are post-synaptic rise
times). Post-synaptic rise times should have the same
effects as intra-link delay spread: regulation of wave
activity in exchange for reduced capacity, and the ex-
istence of an optimal level of inhibition. Being more
realistic than instantaneous synaptic responses, they
should be included in future studies.

Apart from the role of the intra-link excitatory de-
lay variability, how else do our results depend on the
excitatory and inhibitory delay distributions used?
The mean excitatory delay excitatory is important as
the main component of the pool-to-pool propagation
time, and thereby strongly affects how many waves
can simultaneously propagate. If the mean delay is
increased, the rate of spiking due to a single wave
decreases and thus the number of waves will increase
while the mean-field solution for the rates (vw, vs,
etc.) remains invariant. The model would not support
as many waves if the mean delay was shorter than
the 2.5 ms value used, which we argued was realistic
for local cortical connections. The inhibitory delays

don’t play any direct role in synfire propagation but
differences in E and I delay distributions will affect the
nature of the steady state of the balanced random net-
work (Brunel 2000). The asynchronous-irregular state
of stochastic spiking is stable for the delay distribu-
tions we used, but with different distributions it could
give way to synchronous-irregular (SI) oscillations. An
interesting question for further study is the extent to
which synfire propagation is compatible with SI oscilla-
tions.

Some simplifications made in the mean field analysis
of Section 2.4 may explain the modest deviations from
the simulation results. The analysis treats the stochas-
tic spiking response to background input as that of a
neuron receiving solely background input. Likewise the
effects of background input on wave propagation are
treated by considering a chain in which, apart from the
inputs due to connections within the chain itself, the
neurons received solely background input. Both treat-
ments do not take into account that synchronous input
packets also occur due to the fact that each neuron
belongs to many pools in the embedding network. Syn-
chronous inputs lead to additional spikes that cause the
membrane potential of each neuron to spend a greater
proportion of time in the post-spike recovery-from-
reset phase, during which both the propensity to emit
stochastic spikes and to respond to synchronous input
from a wave propagating down the embedded chain are
reduced. Taking these additional spikes into account
would lower the mean field prediction for both the rate
of stochastic spiking ( fs) and wave propagation relia-
bility (Ps). Nevertheless, the treatments are still useful
approximations: because the effective membrane time-
constant of neurons in the high-conductance state is
short (a few milliseconds or less) the recovery from
reset to equilibrium is quick, minimizing the effect of
the additional spikes. The analysis also overestimates
the excitatory background input rate by including as
background those inputs which are in fact synchronous:
the approximation in Eq. (4). This simplification, like
the previous one, leads to an overestimate of the sto-
chastic spiking rate ( fs) and wave propagation reliabil-
ity (Ps). Nevertheless, the approximation is reasonable,
because the relative overestimate ng/(Cg(1 + vs/vw))
is small: ~0.4-4.0 % for the cases shown in Fig. 4(d).
These simplifications may explain the quantitative dis-
crepancies between theory and simulations observed
in Fig. 4(d). We see, firstly, that total spike rate is
lower than predicted. This is consistent with a less-
than-predicted wave propagation reliability, implying
a lower Ag max(ng) and equilibration at a lower firing
rate. Secondly, the fraction of spikes which are sto-
chastic (vs/v) is less than predicted, indicating that at
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a given firing rate the background input is producing
less stochastic spiking. Note that the overestimates of
v and vg approximately cancel out, in so far as the
predicted rate of wave-spiking (vw = v — vg), yields
a good quantitative agreement with the model sim-
ulations. The predicted number of waves is also in
good agreement with the simulations, indicating that
the relationship between vw and 4/ Ng, determined by
pi(rg)/ T(Ag) evaluated at Ag = Ag max, is preserved.’
From the modest size of the discrepancies observed in
Fig. 4(d) and the fact that their origin can explained
by the simplifications made, we may conclude that the
mean field theory captures the essential behavior of the
model, despite the complexity of its dynamics.

The use of independent Poisson input trains for the
simulations of the non-embedded chains should also be
questioned. Since the inputs actually arise from sam-
pling a common embedding network of finite size (viz.
Ng = 10Cg, Ny = 10Cy) the neurons will have some
common inputs and their background input trains will
thus be correlated. Tetzlaff et al. (2004) showed that
input correlations based on sampling a common reser-
voir of Poisson neurons greatly reduced the maximum
pool size for ground state stability to a level barely
above the minimum pool size for stable wave propaga-
tion. However, it was found that this effect surprisingly
disappeared when the Poisson reservoir was replaced
by a Brunel-type balanced recurrent network. The
decorrelating effect of recurrent inhibition has recently
been identified as the mechanism responsible for this
(Tetzlaff et al. 2011). This may explain why the Poisson
approximation for background input turns out to be
quite adequate for the present model.

In this paper, because we are concerned with embed-
ding capacity, we have focused on the situation where
the number of synfire waves is driven to the maximum
level by ongoing spike packet stimulation, reaching an
equilibrium (Section 3.3). However, the system need
not operate in this marginal regime. It supports ongoing
propagation of any number of waves below the maxi-
mum. In a more structured system where there is inter-
action and computation among the chains, the number
of waves might vary in the course of this computation,
being sometimes below the limit. Furthermore, in a
model in which input convergence varies over chains
the upper bound on background input rate would not
be global, but specfic to individual chains or portions
of chains. The equilibrium rate and number of waves

9The theory overestimates p¢/ T, but since py/ T decreases with
AE, this is compensated for by the overestimate in Ag max-
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would then depend on the specific pattern of activa-
tion, and hence could evolve during the course of a
computation.

In synfire chains the neurons are organized into
discrete pools. This feature, while convenient for study
and analysis, can be criticized as artificial. However,
it is not essential, as synfire chains can be generalized
to a class of feedforward structures known as braids
(Bienenstock 1995) or polychrony (Izhikevich 2006).
In these structures the neurons need not be grouped
into discrete pools, and they support precisely-timed
and reproducible sequences of spikes that need not be
grouped into synchronous packets. For instance, a uni-
form braid generates a sequence of spikes distributed
uniformly over the interval of propagation, in a steady
stream. In braids, the delays on the feedforward con-
nections are specifically related to the spike sequences
so as to preserve the key property of synfire chains
that, during spike sequence re-activation, each neuron
receives synchronously arriving spikes from upstream
neurons. In models of the emergence of feedforward
structures through synaptic plasticity there is no mech-
anism that would enforce a pool organization, so braids
may be may easier to realize biologically than chains.

The present chain-embedding model can be general-
ized to a braid-embedding model. To embed uniform
braids, instead of assigning neurons group-wise to a
sequence of pools, they can be assigned one by one to a
sequence of putative spikes distributed uniformly over
a time interval. Excitatory feedforward connections can
then be assigned appropriate delays so that if upstream
neurons fire at the assumed times, then each down-
stream neuron will receive near-synchronous inputs
shortly before its putative spike time. The property of
double-balance can be incorporated straightforwardly.

A braid has no pools, so embedding capacity based
on the number of pools makes no sense for a braid. To
compare the embedding level of a braid embedding to
that of a chain embedding, we can define the effective
poolsize of a braid as that of an “equivalent chain”: one
with the same input convergence and mean transmis-
sion delay, and for which a propagating wave generates
the same mean spike rate. The number of pools is then
the number of putative spikes divided by the effective
pool size. Note that in this equivalent chain, unlike the
chains in present study, the input convergence may not
equal to the pool size. However, it is straightforward
to generalize the embedding capacity analysis to such
chains (Trengove 2006). The mean field theory given
here would predict for the braid model and the equiv-
alent chain model quantitatively similar relationships
between input convergence, effective pool size, con-
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nectivity per neuron, mean firing rate and number of
waves, implying similar embedding capacities too.

The present study assumes that there are biological
mechanisms for forming synfire chains (or braids) but
this has not been established yet. There have been
model studies demonstrating the growth of feedforward
structures based on spike-timing dependent plasticity
(STDP) or other plasticity mechanisms, but these have
operated well below the cortical scale and some include
artificial constraints (Bienenstock 1991; Doursat and
Bienenstock 2006b, a; Jun and Jin 2007; Fiete et al.
2010; Waddington et al. 2011). A recent study using
weight-dependent STDP in a cortical-scale balanced
random network architecture failed to find the growth
of structure (Kunkel et al. 2011), but it is still an open
issue whether a more realistic model with the right
ingredients to generate structure formation will even-
tually be found.

An important question is whether there are experi-
mentally accessible features of the present model that
can be used to test it against neural data, and thereby
infer the presence of synfire activity or challenge the
model. One observable consequence of the model is
that, because most spikes are due to synfire waves,
the spike-triggered average (STA) of the membrane
potential will show a sudden rise just before a spike.
Positive evidence of this kind was found for synfire
chains in the HVC nucleus of the finch (Long et al.
2010). In the cortex, one study (London et al. 2010)
found such sharp rises to be vary rare, but that may
be due to the anaesthetized state in which the record-
ings were made. A necessary control for sharp rises as
evidence for synfire chains is the conductance-based
balanced random network, since in that model, noise-
driven spiking with a short effective membrane time
constant suggest that most spikes will be due to inputs
arriving synchronously by chance; therefore the STA in
such a network would also show a sudden rise before
the spike. Another feature of the present model is the
presence of sharp peaks in the cross-correlograms of
pairs of neurons when there is repeated synfire wave
transmission over the sequence of pools linking the
pair (data not shown). The number of pairs showing
such peaks, the size of the peaks and the distribu-
tion of offsets depend on the number and duration
of the waves and how they are distributed over the
chains, which in turn depend on the stimulation pro-
tocol. Strong peaks have also been observed experi-
mentally but the time offset of the peak is typically
small (Funahashi and Inoue 2000; Mizuseki et al. 2009;
Isomura et al. 2009). The absence in experimental data
of strong peaks offset by more than a few millisec-

onds implies that the experiments did not observe two
neurons in a frequently re-activated chain. Thus any
frequently reactivated chains must include only a small
proportion of the neural population being sampled.'’

In general, the experimental detection of synfire
activity is a difficult task, but methods for its detection
have been developed recently (Schrader et al. 2008;
Gerstein et al. 2012). These methods require multi-
neuron recordings and repeated activation of chains.
The number of simultaneously recorded spike trains
required for reliable detection has been estimated at
several hundred, assuming both the recording sites and
the chains are co-localized to a volume of ~ 10° neu-
rons. With less localization more parallel recordings
are required. The methods have been tested on data
generated by a variant of the present model, and clearly
reveal the presence of synfire activity (Gerstein et al.
2012).

To conclude, we have considered the problem of
constructing a model for embedding many entities
(synfire chains) in a cortical scale network in which
many of them may be activated simultaneously (by
waves). With respect to the two aspects of capacity,
namely number of pool-to-pool links and number of
co-active waves, the present model achieves a perfor-
mance level that sets a new world record for spiking
neuron models. For realistic synaptic strengths, connec-
tivity at the cortical-scale optimizes performance and
is achieved while maintaining global stability of rate,
without the need for a global mechanism to impose a
limit on activity. The model allows this improved per-
formance for two reasons. First, the use of conductance-
based synapses compared to current-based increases
the contrast between the neuronal response to synchro-
nous input signal and the response to background noise.
Second, instability of the global state of asynchronous
irregular spiking is avoided by using balanced synfire
waves and heterogeneity of transmission delays.

10 An upper bound on how frequently a chain can be re-activated
without producing a visible peak could be estimated by the
condition that peak be less than twice the background level.
Given a binsize 8t and a mean firing rate v this implies a chain
activation rate less than v2s8r. For v = 10 Hz and 8¢ = 0.1 ms,
chain activation rate must be below 0.1 Hz to escape detection.
By that criterion, if the waves are uniformly distributed over
the chains they will escape detection in the present model, but
if a chain’s frequency of activation is an order of magnitude
or more above the mean, then a pair of neurons in that chain
would produce a detectable peak. (Note, for this discussion we
are considering there to be many short chains (of order 100 pools
in length) rather than a single long one (of order Ng pools) as
was used in the simulations.)
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