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Evidence, eminence and extrapolation
Gerald Hlavin,a*† Franz Koenig,a Christoph Male,b Martin Poscha

and Peter Bauera

A full independent drug development programme to demonstrate efficacy may not be ethical and/or feasible in
small populations such as paediatric populations or orphan indications. Different levels of extrapolation from a
larger population to smaller target populations are widely used for supporting decisions in this situation. There
are guidance documents in drug regulation, where a weakening of the statistical rigour for trials in the target
population is mentioned to be an option for dealing with this problem. To this end, we propose clinical trials
designs, which make use of prior knowledge on efficacy for inference. We formulate a framework based on prior
beliefs in order to investigate when the significance level for the test of the primary endpoint in confirmatory
trials can be relaxed (and thus the sample size can be reduced) in the target population while controlling a certain
posterior belief in effectiveness after rejection of the null hypothesis in the corresponding confirmatory statistical
test. We show that point-priors may be used in the argumentation because under certain constraints, they have
favourable limiting properties among other types of priors. The crucial quantity to be elicited is the prior belief in
the possibility of extrapolation from a larger population to the target population. We try to illustrate an existing
decision tree for extrapolation to paediatric populations within our framework. © 2016 The Authors. Statistics in
Medicine Published by John Wiley & Sons Ltd.

Keywords: small population; extrapolation; prior belief; adjustment of the significance level; reduction of
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1. Introduction

One of the most challenging tasks in medicine is clinical research in children. In the following
paper, we look at drug development in the paediatric population. For decades, it has been criticized that
most medicines have not been authorized for the use in children. Off-label use based on the individual
responsibility of the treating paediatrician is often the only way how children can benefit from medicines
that are only authorized for adults [1]. This relies on the questionable assumption, that children are small
adults. There exist several reasons for such a development: clinical research in children is a sensitive
area involving emotional and ethical challenges, methodological challenges, for example, the small num-
bers of children that can be recruited into trials, and on the other hand increased costs that may not be
compensated by economic returns if the treated disease is rare in children. In order to improve the
situation, new legal requirements have been created in the USA [2, 3] and in the European Union (EU)
[4, 5]. Essentially, these require companies to agree a plan for developing a medicine in children with
the regulatory authorities before authorization in adults. If studies in children performed according to
the agreed plan are submitted and lead to authorization in children, patent exclusivity is prolonged as a
reward for the extra effort of the drug developer.

The scope of such a paediatric investigation plan (PIP) may reach from a full programme (including
pre-clinical research, pharmacokinetics, pharmacodynamics, dose finding studies and two fully powered
pivotal phase III studies) for diseases only existing in childhood at the upper end of the spectrum and,
for example, a single (pharmacokinetic) case series in children on the lower end of the spectrum. The
latter situation is obviously based on the assumption that data and results from adult patients can be
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extrapolated to the childhood and only very limited additional data from children are necessary before
authorization of the treatment also for children. Such extrapolation is only possible in situations where it
may be assumed that children are reasonably similar to adults, which, as a general rule is not acceptable,
for example, because of differences related to growth and maturation. In order to give some structure
in the decision process whether and to what extent extrapolation from adults to children is appropri-
ate, the Food and Drug Administration (FDA) has developed a paediatric study decision tree based on
similarity of disease progression, similarity of response to treatment and similar concentration–response
relationships [6].

The European Medicines Agency (EMA) has issued a concept paper on extrapolation [7] that –
although referring also to extrapolation in other areas of drug development – has been mainly driven by
its Paediatric Committee. Extrapolation in the regulatory context is defined by

Extending information and conclusions available from studies in one or more subgroups of the patient pop-
ulation (source population), or in related conditions or with related medicinal products, to make inferences
for another subgroup of the population (target population), or condition or product, thus reducing the need to
generate additional information (types of studies, design modifications, number of patients required) to reach
conclusions for the target population, or condition or medicinal product.

In the same document, it is stated that the

primary rationale for extrapolation is to avoid unnecessary studies in the target population for ethical reasons,
for efficiency, and to allocate resources to areas where studies are the most needed.

There are different ways mentioned on how to reduce the evidence required from the paediatric
population(s) dependent on the degree of similarity to the source population (e.g. adults): instead of
a full development programme, only a reduced set of studies are required, for example, pharmacoki-
netic/pharmacodynamic studies only, dose-ranging or dose-titration studies, non-controlled descriptive
efficacy and/or safety studies, controlled studies but arbitrary sample size, larger significance level, lower
coverage probability of confidence intervals, acceptance of surrogate endpoints for the primary analysis,
interpolation (bridging), for example, between age subgroups, modelling prior information from exist-
ing data sets (Bayesian models and meta-analytic predictive). Some of these proposals have also been
mentioned in the previous EMA guideline on clinical trials in small populations [8].

It is obvious that decisions on the extent of extrapolation possible, for example, from adults to
children, are generally not conventional statistical decisions. Often it is even hard to find sufficient data
on the control therapy the new treatment has to be compared with in children. Generally, no data at all are
available from systematic studies with the new (drug) in children, because we still encounter the argument
that paediatric studies are not ethical before the drug has been successfully registered in adults. However,
the PIP by European law should be laid down as soon as results from early studies in adults become avail-
able, hence, certainly before registration in adults. The rationale behind is that drug developers should
provide an early commitment for what they are planning regarding development for children. Often clin-
ical data on the efficacy and safety of the new treatment are very limited even in adults so that decisions
will have to be grounded predominantly on expert opinion of experienced specialists in the disease area
with corresponding expertise in the paediatric population. Clearly, historical data from different sources
and of different relevance will in general play an important role in the expert judgement and decisions.
As a matter of fact, decisions under uncertainty have to be taken in this area by experts in collabora-
tion with statisticians. If methodologists refuse to deal with such an environment, the paediatricians will
individually decide and apply treatments to children off label without being able to refer to any systematic
study results.

In this paper, we will try to structure the extrapolation process. Thereby, we concentrate on softening
the burden of evidence in paediatric populations by enlarging the significance level in a paediatric clini-
cal trial. We introduce prior probabilities for non-applicability of extrapolation (‘scepticism’) and priors
on the hypotheses to be tested. We show, how single standard frequentist tests with an enlarged signifi-
cance level correspond to Bayesian decision rules based on certain scepticism and priors. In Section 2,
we develop the general framework for 𝛼-level adjustment by applying Bayesian arguments. In Section 3,
we apply this framework to treatment–control comparisons assuming normally distributed outcome vari-
ables. In Section 4, we show as an example, how the FDA decision tree for extrapolation may be roughly
embedded in our framework. We close with a short discussion in Section 5. In the Appendix, we show
the favourable properties of two-point priors we used in the argumentation.
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2. A simple framework for 𝛼-level adjustment

In our approach, to incorporate prior knowledge in the hypothesis testing problem, two properties of the
test function 𝜑 have to be considered.

(i) Given H1 is true, the test function should reject H0 (which means that 𝜑 = 1) with a high
probability. Thus, the power P

(
𝜑 = 1|H1

)
has to be fixed adequately on a level 1 − 𝛽.

(ii) Given that sponsor reports 𝜑 = 1, the regulators want to be sure that H1 is true. Therefore, the
probability P

(
H1|𝜑 = 1

)
= 1 − 𝛾 (which may be interpreted as a ‘positive predictive value’ of a

significant test result) has to be controlled.

Here, H0 and H1 indicate the null and alternative hypotheses in, for example, the comparison of the
means between an experimental treatment and a control, or in the test of a dose–response relationship.

It should be mentioned that criterion (ii) is in contrast to the usual clinical trial approach, where
both P

(
𝜑 = 1|H1

)
and P

(
𝜑 = 1|H0

)
are adequately controlled. In our framework, the direct control of

the power and the positive predictive value of a significant test result is the crucial condition for
comparing different tests. In the conventional testing set-up, the control of the latter value is indirectly
aimed at by control of the type I error rate. Thus, our setting could be seen as a compromise between the
classical framework and the control of both the positive and the negative predictive value as suggested
in [9].

The choice of 1−𝛽 is typically based on economical and ethical arguments, and values of 𝛽 being equal
to 0.1 or 0.2 are traditionally taken in phase III studies. In the following, we will consider two scenarios,
where the first scenario will help us to choose a reasonable value also for 1 − 𝛾 , which then will hold as
a standard, whereas the second scenario will eventually motivate an adjustment of the type I error rate in
order to maintain this standard.

2.1. Two scenarios to arrive at the same positive predictive value

2.1.1. The benchmark scenario. To motivate the choice of the positive predictive value 1−𝛾 , we consider
the case that a full study programme is conducted only in the target population, and several early phase
studies have been conducted with a positive result including a phase II proof of concept study. With each
positive result, the belief in H1 may have strengthened, and when planning the phase III study, we have
arrived at a prior probability for H1 of 1− r. We will refer to this scenario as the benchmark scenario. In
order to justify this designation, the type I and type II error rates on which Pr

(
H1|𝜑 = 1

)
= (1−𝛽)(1−r)

(1−𝛽)(1−r)+𝛼r
=

1 − 𝛾 depends on are assumed to be the traditional values for phase III studies: 𝛼 may be set to the one-
sided levels 0.025, or even 0.0252 (representing the two pivotal studies paradigm), whereas 𝛽 may be
set to, for example, 0.1 or 1 − 0.92 = 0.19 (again for the two studies paradigm). Note, Pr

(
H1|𝜑 = 1

)
is given by Bayes’s theorem, and the subscript r indicates that this benchmark belief depends on 1 − r.
After choosing error rates that represent the common practice in the given setting, let 𝜑b denote a test
that controls exactly these 𝛼 and 𝛽 levels.

A crucial parameter in this setting is the value of 1− r, the regulators belief in H1. As 1− r represents
the belief before phase III in a standard drug development programme is started, one may argue that
enough evidence has been accumulated so that 1 − r ⩾ 0.5. For the choice of 1 − r, it may be possible to
derive an average subjective probability in the Bayesian sense for the truth of H1. Another possibility is
the deduction of 1 − r in a frequentist framework using the law of total probability (see also [9]): let 𝜑III
denote a binary function that indicates the success (𝜑III = 1) or failure (𝜑III = 0) of a phase III clinical
trial. Here, as an example, we consider drug development in oncology. Investigations of the success rates
of these phase III trials in oncology claim that approximately 55–60% of these drugs fail [10,11]. Taking
this value into account with P

(
𝜑III = 1

)
= 0.40, we have

P
(
𝜑III = 1

)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

0.4

= P
(
𝜑III = 1|H1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

1−𝛽

P
(
H1

)
+ P

(
𝜑III = 1|H0

)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝛼

[
1 − P

(
H1

)]
, (1)

by simple algebra it follows

P
(
H1

)
= 0.4 − 𝛼

1 − 𝛽 − 𝛼
≈ 0.5. (2)
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The value 0.5 in the last equation follows, if 𝛼 is considered to be negligibly small and if 𝛽 ≈ 0.2. If
the success rate in phase III is higher, the aforementioned derivation will result in an increased prior
probability 1 − r > 0.5.

2.1.2. The 𝛼-level adjustment scenario. After arriving at a benchmark, two different statistical models
have to be considered: one for the source population and one for the target population. In the former
model, an alternative hypothesis H′

1 is formulated. It is assumed, that it is possible to translate the
alternative H′

1 from the source population into a clinically relevant alternative hypothesis H1 for the
statistical model in the target population with the following condition: if sufficient similarity between
the source and the target population holds with regard to biological correspondence, disease progression,
and so on, then all the evidence regarding the truth of H′

1 can be translated into evidence for the truth
of H1. An example for such a translation could be a certain functional relation of the effect sizes in
both subpopulations. For the statement that there is sufficient similarity, we write E (short for ‘full
extrapolation is possible’, which we consider here as an equivalent formulation of the statement), whereas
the opposite statement is denoted as Ē.

To be specific, we consider the problem of extrapolating evidence from adults (source population) to
children (target population) and assume that the alternative H′

1 is ‘proven’ in adults by the conduct of a
sufficient study programme of clinical trials relying on statistical tests. This means that due to the principle
of statistical tests, there remains some uncertainty in the test decision. The assumption of a ‘proven’ H′

1
seems to be realistic because a failure in the proof of efficacy in the adult population in general would stop
any further development in the paediatric population. Hence, formally the following arguments condition
on the proof of efficacy in the adult population. Next, we model the beliefs in the truth of E and Ē as
probabilities and write P(E) = 1 − s and P

(
Ē
)
= s where the latter probability will be denoted as the

scepticism. Under the assumption that the way the adult trial was designed and conducted corresponds
to the benchmark scenario outlined earlier and that full extrapolation can be applied, the probabilities of
H′

1 and H1 are equal such that

P
(
H1|E) = P

(
H′

1|𝜑′ = 1
)
= 1 − 𝛾, (3)

where 𝜑′ is the indicator for a successful adult development programme (𝜑′ = 1 indicates proof of
efficacy). The quantity 𝛾 quantifies the remaining uncertainty, and we choose 1 − 𝛾 to be equal to
Pr

(
H1|𝜑b = 1

)
from the benchmark scenario. For the rest of the paper, we consider this as the basic

extrapolation assumption.
The probability that H1 holds conditional on the impossibility of full extrapolation P

(
H1|Ē) is denoted

by 1 − q. Now the probability of H1 can be written as

P
(
H1

)
= P

(
H1|E)P(E) + P

(
H1|Ē)P

(
Ē
)

(4)

= (1 − 𝛾) (1 − s) + (1 − q) s. (5)

Note that s refers to the disbelief in the ‘similarity’ (scepticism) between the source and the target
population, whereas 1− q refers to the prior probability of no effect in the target population, if similarity
cannot be applied as an argument: how likely is the alternative, if it is found that extrapolation regarding
efficacy cannot be applied? One may tend to choose q values close to 1 in such a situation, but certainty
with regard to existing differences between the population may not exclude that the drug is working in the
subpopulation; hence, values of q < 1 may be reasonable. In particular, there may be some information
from past use of the drug in the target population (e.g. from off-label use in the paediatric population).
Under our proposed extrapolation assumption (3), a lower boundary q ⩾ 𝛾 seems reasonable for logi-
cal consistency. Otherwise, the belief in H1 would be higher, if full extrapolation would be regarded as
not applicable.

With the aforementioned assumptions and fixed q and s, this describes the 𝛼-level adjustment scenario,
where a paediatric trial is designed to be conducted after a positive result in the corresponding adult trial.
With particular values of q and s, a prior probability of the alternative hypothesis is given by equation (5),
which will be denoted Ps

q

(
H1

)
from now on. The corresponding positive predictive value, derived by the

Bayes theorem will be written in a similar fashion as Ps
q

(
H1|𝜑 = 1

)
.
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2.2. Evidence based 𝛼-level adjustment

We aim to derive a new test 𝜑adj with error rates 𝛼adj and 𝛽adj. This test should provide the same degree
of belief Ps

q

(
H1|𝜑adj = 1

)
, as a positive test result would provide in the benchmark scenario (= 1 − 𝛾):

Pr

(
H1|𝜑b = 1

)
= 1 − 𝛾 = Ps

q

(
H1|𝜑adj = 1

)
. (6)

If this equation holds, in our framework, we consider positive test results for 𝜑b and 𝜑adj to be equally
convincing for regulators. By equation (6),

(1 − 𝛽) (1 − r)
(1 − 𝛽) (1 − r) + 𝛼r

=

(
1 − 𝛽adj

)
Ps

q

(
H1

)
(
1 − 𝛽adj

)
Ps

q

(
H1

)
+ 𝛼adjPs

q

(
H0

) , (7)

where, the left side of equation (7) refers to the benchmark scenario and 𝛼adj and 𝛽adj are chosen such that
the equation holds. Clearly, the type II error rate should not be different from what is usually chosen from
the sponsors (and regulators) perspective, because the main objective of the study is to obtain a positive
result conditional on the true H1, that is, 𝛽adj = 𝛽. This means, that 𝛼adj is the only remaining variable in
(7), from which [

Ps
q(H1)

1−Ps
q(H1)∕1−r

r

]
𝛼 = 𝛼adj, (8)

for r ≠ 1 and Ps
q

(
H1

) ≠ 0 is now easy to derive. Thus, the 𝛼 level is raised by a factor, representing the
ratio of prior odds in favour of the H1 in the 𝛼-level adjustment scenario and in the benchmark.

By using (5), equation (8) can be written as

𝛼
[ r

1 − r

] [ (1 − 𝛾) (1 − s) + (1 − q) s

1 − (1 − 𝛾) (1 − s) − (1 − q) s

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶cr
q(s)

= 𝛼adj. (9)

In the last equation, cr
q(s) is the 𝛼-level adjustment factor, which after fixing 𝛾 only depends on r, q

and s. By using 1 − 𝛾 from the benchmark scenario, we see from equation (9) that for s → 0, the 𝛼-
level adjustment factor cr

q(s) approaches 1−𝛽
𝛼

, so that the maximum value for 𝛼adj is 1 − 𝛽. Note that a
test with a level of 1 − 𝛽 has a constant rejection probability of 1 − 𝛽 irrespective of the null hypothesis
or the alternative being true. Such a test refers to full extrapolation, because in theory a test with this
property can be achieved with a sample size of zero by simply running a Bernoulli experiment with
p = 1 − 𝛽. No evidence is necessary also for the case q = 𝛾 , as 𝛼adj again takes its maximum value

1 − 𝛽. For s → 1, 𝛼adj approaches 𝛼
[

r
1−r

] [
1−q

q

]
and hence approaches 𝛼 for q = r: in case of full

scepticism about the similarity (s = 1), the only prior information on H1 to be used is the belief 1 − q. If
1−q = 1−r, we simply end up with the test in the benchmark scenario (𝜑adj = 𝜑b). An interpretation for
this particular case q = r is that early phase data in the paediatric population are available such that we
are in the same situation as if we were starting a regular phase III drug development programme in the
source population.

In Table I, the values of the 𝛼-level adjustment factor cr
q(s) are calculated according to equation (9)

for different values of s, r and q. With decreasing s, cr
q(s) increases. For fixed s and r, this factor also

increases with decreasing q. When only r is allowed to vary, then an increase of r leads to an increase of
cr

q(s). Note that the maximum inflation factor of 909.86 (r = 0.75, q = 0.1, s = 0.01 and 𝛾 = 0.0023) in
Table I results in an increase of 𝛼 = 0.0252 to an 𝛼adj of 0.57, which in practice would mean no further
study in the target population.

2.3. Eminence and evidence

To summarize, there are two sources of information, on which the final belief in the truth of H1 depends:

(1) Eminence: Information on which regulatory experts (e.g. a division of the Paediatric Committee)
base their choice of the design parameters r, q and the scepticism s. Note that at the time when
the PIP has to be laid down, often no data are available from efficacy trials in the adult population.

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2117–2132
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Table I. Different values of scepticism s (left column) motivate different values of cr
q(s) for calculating 𝛼adj =

cr
q(s) ⋅ 𝛼.

c0.5
0.1 c0.5

0.2 c0.5
0.3 c0.5

0.4 c0.5
0.5 c0.5

0.6 c0.5
0.7 c0.5

0.8 c0.5
0.9 c0.5

1

0.9 10.10 4.55 2.70 1.78 1.22 0.85 0.59 0.39 0.23 0.11
0.8 11.48 5.24 3.16 2.12 1.50 1.08 0.79 0.56 0.39 0.25
0.7 13.24 6.13 3.76 2.57 1.86 1.38 1.04 0.78 0.59 0.43
0.6 15.58 7.31 4.55 3.16 2.33 1.78 1.38 1.08 0.85 0.67
0.5 18.85 8.96 5.65 3.99 2.99 2.33 1.85 1.50 1.22 1.00
0.4 23.71 11.43 7.30 5.23 3.99 3.16 2.57 2.12 1.77 1.50
0.3 31.74 15.52 10.04 7.30 5.64 4.54 3.75 3.16 2.70 2.33
0.2 47.50 23.62 15.50 11.40 8.94 7.29 6.11 5.23 4.54 3.98
0.1 92.51 47.32 31.58 23.57 18.73 15.48 13.15 11.39 10.03 8.93
0.08 113.82 58.85 39.47 29.57 23.56 19.53 16.63 14.45 12.75 11.39
0.04 209.96 113.41 77.49 58.74 47.22 39.42 33.79 29.54 26.22 23.55
0.02 361.90 209.28 147.03 113.21 91.97 77.40 66.77 58.68 52.32 47.18
0.01 566.12 360.89 264.72 208.94 172.51 146.86 127.81 113.11 101.42 91.91

(a) r = 0.5, 1 − 𝛾 = 0.9992

c0.25
0.1 c0.25

0.2 c0.25
0.3 c0.25

0.4 c0.25
0.5 c0.25

0.6 c0.25
0.7 c0.25

0.8 c0.25
0.9 c0.25

1

0.9 3.37 1.52 0.90 0.59 0.41 0.28 0.20 0.13 0.08 0.04
0.8 3.83 1.75 1.06 0.71 0.50 0.36 0.26 0.19 0.13 0.08
0.7 4.42 2.05 1.25 0.86 0.62 0.46 0.35 0.26 0.20 0.14
0.6 5.21 2.44 1.52 1.05 0.78 0.59 0.46 0.36 0.28 0.22
0.5 6.32 3.00 1.89 1.33 1.00 0.78 0.62 0.50 0.41 0.33
0.4 7.97 3.83 2.44 1.75 1.33 1.05 0.86 0.71 0.59 0.50
0.3 10.71 5.21 3.36 2.44 1.89 1.52 1.25 1.05 0.90 0.78
0.2 16.16 7.96 5.20 3.82 2.99 2.44 2.04 1.75 1.52 1.33
0.1 32.25 16.14 10.69 7.95 6.30 5.20 4.41 3.82 3.36 2.99
0.08 40.14 20.20 13.42 10.01 7.95 6.58 5.59 4.86 4.28 3.82
0.04 78.16 40.09 26.88 20.18 16.13 13.41 11.47 10.00 8.86 7.95
0.02 147.68 78.06 52.98 40.06 32.18 26.87 23.06 20.18 17.93 16.13
0.01 265.36 147.51 102.09 78.01 63.10 52.96 45.61 40.05 35.68 32.17

(b) r = 0.25, 1 − 𝛾 = 0.9997

c0.75
0.1 c0.75

0.2 c0.75
0.3 c0.75

0.4 c0.75
0.5 c0.75

0.6 c0.75
0.7 c0.75

0.8 c0.75
0.9 c0.75

1

0.9 30.25 13.65 8.10 5.33 3.66 2.55 1.76 1.17 0.70 0.33
0.8 34.28 15.70 9.48 6.36 4.49 3.24 2.35 1.68 1.16 0.75
0.7 39.44 18.32 11.24 7.69 5.55 4.13 3.11 2.35 1.76 1.28
0.6 46.24 21.81 13.58 9.45 6.97 5.31 4.13 3.24 2.55 1.99
0.5 55.65 26.66 16.85 11.91 8.94 6.96 5.54 4.48 3.65 2.99
0.4 69.49 33.86 21.71 15.59 11.90 9.43 7.66 6.33 5.30 4.47
0.3 91.89 45.69 29.75 21.67 16.79 13.52 11.18 9.42 8.04 6.95
0.2 134.32 68.69 45.51 33.65 26.46 21.62 18.15 15.54 13.50 11.86
0.1 245.37 132.88 90.52 68.30 54.61 45.33 38.62 33.55 29.58 26.39
0.08 293.30 162.52 111.83 84.91 68.22 56.85 48.61 42.37 37.47 33.53
0.04 479.54 290.63 208.01 161.68 132.03 111.43 96.28 84.68 75.50 68.06
0.02 700.68 475.98 360.05 289.30 241.63 207.33 181.46 161.26 145.05 131.75
0.01 909.86 696.89 564.50 474.22 408.73 359.04 320.05 288.65 262.81 241.17

(c) r = 0.75, 1 − 𝛾 = 0.9977

The error rates 𝛼 and 𝛽 from the benchmark scenario are considered to be 0.0252 and 1 − 0.92 = 0.19, respectively.

The value of r is derived from some general arguments on the prior belief that the drug has no
relevant effect when a standard drug development programme has already passed phase II and has
arrived to plan phase III. We have suggested a plausible choice from general regulatory experience.
However, it may be advisable to choose different prior beliefs r depending on the type of disease
and type of drug under investigation. An increasing transparency of data from the regulatory drug
registration process [12] may in future help to choose appropriate prior beliefs. We have chosen

2122

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2117–2132



G. HLAVIN ET AL.

the slightly provocative term ‘eminence’ for expert opinion on similarity, modes of action, age
dependency, prior beliefs and so on to express our precautions about the possibility of elicitation
of all these types of information, accounting for the potentially high variability of the information
between experts. Choosing an appropriate value of s seems to be even more difficult, and special
techniques of eliciting prior knowledge in Bayesian statistics may be applicable [13, 14].

One way to simplify the arguments is to assume q = 1 throughout. This implies that if extrap-
olation between populations is not considered to be an option, then the belief in efficacy (H1)
would be zero. The framework allows to choose values q < 1, allowing a perspective for efficacy
even if there is a high certainty about relevant differences in the populations not allowing to use
extrapolation arguments. A crucial assumption in our framework is the extrapolation assumption
P
(
H1|E) = 1 − 𝛾 , meaning that if extrapolation is considered to be applicable, the proof of effi-

cacy in the source population can be extrapolated to the target population providing, after rejection
in the target population, the same posterior belief in the alternative as in the adult population with
registration according to the standard procedure.

(2) Evidence: Data from a trial in the target population designed to control the error rates 𝛼adj and
𝛽 of the test of the primary outcome variable. As formulated earlier, this adjusted significance
level results from all a priori knowledge, for example, from expert opinion and/or from trials in
the source population, covered by the additional design parameters r, q and s. In our simplified
scenario, 𝛼adj and 𝛽 are the criteria of statistical evidence to be reached for the trial to be performed
in the target population. Hence, from a regulatory perspective, 𝛼adj is used as the final decision
criterion for registering a treatment in the target population.

3. Extrapolation in normally distributed data

In this section, we propose a generalized framework for the test of one-sided hypotheses by introducing
general prior distributions. Then, we motivate the application of two-point priors and focus on the special
case of normally distributed outcome variables.

Let 𝜋 denote a prior distribution on a parameter Δ and 𝜑 denote a test procedure testing H0 ∶ Δ ⩽ Δ0
against H1 ∶ Δ > Δ0.

We redefine the test quality criteria from Section 2:

P𝜋

(
𝜑 = 1|HΔ

1

)
= ∫ ∞

Δ1
P (𝜑 = 1|Δ)𝜋 (

Δ|HΔ
1

)
dΔ = 1 − 𝛽𝜋 ⩾ 1 − 𝛽

P𝜋

(
H1|𝜑 = 1

)
= ∫ ∞

Δ0
𝜋 (Δ|𝜑 = 1) dΔ = 1 − 𝛾𝜋 ⩾ 1 − 𝛾 ,

where HΔ
1 = [Δ1,∞) and P (𝜑 = 1|Δ) denotes the probability of a rejection given Δ. The left-hand

side in the first inequality is the Bayesian power, defined as the average of the frequentist power across
alternatives Δ ∈ HΔ

1 according to the prior 𝜋. In the same sense, a Bayesian type I error rate can be
defined as P𝜋

(
𝜑 = 1|H0

)
= 𝛼̄𝜋 .

Similar to our model in the last section, we now take a look on the two scenarios, the benchmark and
the 𝛼-level adjustment scenario.

Benchmark scenario:Let 𝜋b represent the prior belief in this scenario and 𝜑NP
b with error rates 𝛼NP

b and
𝛽NP

b denote a standard trial in phase III that is usually chosen to be equivalent to a Neyman–Pearson test.
The posterior belief after rejection is then given by

P𝜋b

(
H1|𝜑NP

b =1
)
=

(
1−𝛽𝜋b

)
P𝜋b

(
HΔ

1

)
+P𝜋b

(
𝜑NP

b =1|Hnr
1

)
P𝜋b

(
Hnr

1

)
(
1 − 𝛽𝜋b

)
P𝜋b

(
HΔ

1

)
+P𝜋b

(
𝜑NP

b =1|Hnr
1

)
P𝜋b

(
Hnr

1

)
+𝛼̄𝜋b

(
1−P𝜋b

(
HΔ

1

)
−P𝜋b

(
Hnr

1

)) ,
where Hnr

1 = (Δ0,Δ1) is the subset of H1 that is considered to be non-relevant for the Bayesian power
calculation.

The question is now how to choose 𝜋b because different opinions about the effect Δ lead to different
posterior knowledge of the H1. Our suggestion is as follows: similarly to the formulation of the benchmark
scenario in the previous section, we first fix the prior probability 1− r, but this time this value represents
the belief on the parameter set HΔ

1 . In the Appendix, we will show, that every prior 𝜋b fulfilling 1 − r =
P𝜋b

(
HΔ

1

)
= ∫ ∞

Δ1
𝜋b (Δ) dΔ leads to a positive predictive value with the property
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P𝜋b

(
H1|𝜑NP

b = 1
)
⩾

(
1 − 𝛽NP

b

)
(1 − r)(

1 − 𝛽NP
b

)
(1 − r) + 𝛼NP

b r
.

The right-hand side of this inequality can be thought as the positive predictive value of the test 𝜑NP
b

coming from a Dirac distribution 𝜋NP(A) = r ⋅𝟏{A}
(
Δ0

)
+(1 − r)⋅𝟏{A}

(
Δ1

)
(here, 𝟏 denotes the indicator

function). It furthermore holds

P𝜋b

(
𝜑NP

b = 1|HΔ
1

)
⩾ 1 − 𝛽NP

b .

With the last two inequalities, we can conclude that after the choices of 𝜑NP
b and 1− r, both the Bayesian

power and the positive predictive value are controlled on a level 1−𝛽NP
b and on a level 1−𝛾b respectively

with 1 − 𝛾b ∶= (1−𝛽NP
b )(1−r)

(1−𝛽NP
b )(1−r)+𝛼NP

b r
, for the set of all prior distributions 𝜋b with P𝜋b

(
HΔ

1

)
= 1 − r.

Note that in the benchmark scenario, the restriction on two points in the parameter space is widely
used when planning a frequentist phase III study at a level 𝛼 and a power of 1 − 𝛽, so that focusing on
these two points is not an uncommon approach.

𝛼-Level adjustment scenario:Similarly to the restriction of possible prior distributions in the benchmark
scenario to such priors 𝜋b that fulfil the constraint 1 − r = P𝜋b

(
HΔ

1

)
, we will restrict the possible prior

distributions 𝜋adj in the 𝛼-level adjustment scenario. To this end, we repeat the approach from the last
section as follows: if full extrapolation can be considered as possible, all the evidence can be taken from
the source population; hence, P𝜋adj

(
HΔ

1 |E) = 1 − 𝛾b. Furthermore, P𝜋adj

(
HΔ

1 |Ē) = 1 − q has to be
specified. After specifying the scepticism s, this again leads to

P𝜋adj

(
HΔ

1

)
= (1 − 𝛾b)(1 − s) + (1 − q)s

as in equation (5), which we will use as a condition for the priors 𝜋adj in the 𝛼-level adjustment scenario.
By again defining a Neyman-Pearson test 𝜑NP

adj with error rates and 𝛼NP
adj and 𝛽NP

adj , as in the benchmark
scenario, it can be concluded that the Bayesian power is controlled at a level 1 − 𝛽NP

adj and the positive
predictive value

P𝜋adj

(
H1|𝜑NP

adj = 1
)
=

(
1 − 𝛽𝜋adj

)
P𝜋adj

(
HΔ

1

)
+ P𝜋adj

(
𝜑NP

adj = 1|Hnr
1

)
P𝜋adj

(
Hnr

1

)
(

1 − 𝛽𝜋adj

)
P𝜋adj

(
HΔ

1

)
+ P𝜋adj

(
𝜑NP

adj = 1|Hnr
1

)
P𝜋adj

(
Hnr

1

)
+ 𝛼̄𝜋adj

P𝜋adj

(
H0

)

is controlled at a level 1−𝛾adj with 1−𝛾adj =
(

1−𝛽NP
adj

)
P𝜋adj(HΔ

1 )(
1−𝛽NP

adj

)
P𝜋adj(HΔ

1 )+𝛼NP
adj

[
1−P𝜋adj(HΔ

1 )
] . Therefore, we again calculate

the positive predictive value of the Neyman–Pearson test with prior probabilities coming from a two-
point distribution with probabilities P𝜋adj

(Δ1) = (1 − 𝛾b)(1 − s) + (1 − q)s and P𝜋adj
(Δ0) = 1 − P𝜋adj

(Δ1)
to derive a lower bound for the positive predictive value under constraint (Appendix).

Given our prior assumptions in both scenarios, we aim to control the positive predictive value and the
Bayesian power in the 𝛼-level adjustment scenario at the level 1 − 𝛾b defined in the benchmark scenario.
To that end, we equate the lower bounds of the positive predictive values in both scenarios 1−𝛾b = 1−𝛾adj,
which can be written as

(
1 − 𝛽NP

b

)
(1 − r)(

1 − 𝛽NP
b

)
(1 − r) + 𝛼NP

b r
=

(
1 − 𝛽NP

adj

)
P𝜋adj

(
Δ1

)
(

1 − 𝛽NP
adj

)
P𝜋adj

(
Δ1

)
+ 𝛼NP

adj

[
1 − P𝜋adj

(
Δ1

)] .

This is exactly of the form of equation (7), and hence, for equal type II error rates 𝛽NP
b = 𝛽NP

adj , all the
results from Section 2 can be applied directly.

As an example, we now show how the previously developed framework can be applied in the set-
ting of normally distributed outcome variables (variance known). We consider two groups of patients,
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where the first group receives an experimental treatment (T) and the second group acquire either the
standard clinical intervention or a placebo (C). For nT measurements in the experimental group, and nC

measurements in the control group, YT |𝜇T ∼ N
(
𝜇T ,

1
nT

)
and YC|𝜇C ∼ N

(
𝜇C,

1
nC

)
denote independent

estimators for the respective group mean. In this setting, the variances for the observations are assumed
to be known and equal in both groups, and the measurements are given in units of this variance. Our
interest lies on the effect of the experimental treatment Δ = 𝜇T −𝜇C, which can be estimated in a natural
way by Xn|Δ = YT |𝜇T − YC|𝜇C ∼ N

(
Δ, 2

n

)
, where n = 2nT nC

nT+nC
. For our test problem, we consider the

null hypothesis H0 ∶ Δ ⩽ Δ0 and its alternative H1 ∶ Δ > Δ0. With the following rejection rule, 𝜑 = 1
if and only if √

n
xn − Δ0√

2
⩾ z1−𝛼 (10)

for specific 𝛼, n and where xn denotes a realization of Xn, we have the classical test that controls the type
I error rate at level 𝛼. The power is controlled by an adequate selection of n.

In Figure 1, the fractions
nadj

n
of the adjusted sample size based on 𝛼adj over the standard sample

size are drawn for different values of s, q and r = 0.5. Here, the formulae n = 2(z1−A+z1−𝛽)2

(Δ1−Δ0)2 with A = 𝛼adj

for nadj and A = 𝛼 = 0.025, 0.0252 for n were used, with a targeted power of 1−𝛽 = 0.9 and 1−𝛽 = 0.81,
respectively.

At first, we realize that for decreasing q (more prior belief in the alternative if extrapolation is not
assumed to be a possible option), the decrease in sample size becomes larger. Moreover, for q = 0.5, even
large scepticisms (s > 0.5) may lead to a saving of sample size. Savings of sample size (values below
the horizontal line) are possible up to scepticism values similar for high or low significance levels. Note
that if the scepticism is high, that is, putting more prior belief in the non-applicability of extrapolation
and/or in the lack of efficacy if extrapolation is not considered to be an option in our framework, larger
sample size than in the conventional test may be required to achieve the same high positive predictive
value in the end. The possible savings however are larger for the higher significance level 0.025 (left
panel in Figure 1). For the lower significance level (right panel), the sample size decrease is very steep
for very small scepticisms.

3.1. Rejection probabilities

In Figure 2, curves for the rejection probabilities in the aforementioned discussed two-sample normal
distribution scenario with common 𝜎 = 1 are drawn as a function of the true effect Δ. The 𝛼 level in the

Figure 1. Relative sample sizes depending on different scepticisms for r = 0.5. The horizontal lines indicate the
relative size of 1, that is, the adjusted significance level 𝛼adj is equal to 𝛼; hence, the sample size of the adjusted
test is equal to the sample size of the conventional test. The left figure refers to 𝛼 = 0.025 and 1 − 𝛽 = 0.9
(1 − 𝛾 = 0.973) and the right figure to 𝛼 = 0.0252 and 1 − 𝛽 = 0.81 (1 − 𝛾 = 0.999). For a detailed description,

see the text.
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Figure 2. Rejection probabilities for different parameters as a function of the true effect Δ. Descending grey
values of the solid curves represent ascending scepticisms s ∈ {0.1, 0.3, 0.5, 0.7, 0.9} in each plot (thus for
s = 0.1, the solid curve is dark grey). The dashed curve represents the traditional power curve outside of
our proposed framework (𝛼 = 0.025 (a) and 𝛼 = 0.0252 (b)), which serves as a reference design. The num-
bers in the right grey area of the panels show the relative sample sizes in relation to this reference design
for each value of s. The vertical solid line intersects the curves at their (adjusted) 𝛼 level. The horizon-
tal and vertical dotted lines represent the power and the predefined effect used for sample size calculation,

respectively.
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benchmark scenario is set equal to 0.025 in Figure 2(a) and 0.000625 in Figure 2(b). In these two figures,
the relative sample sizes were calculated to reach a power of 0.9 and 0.81, respectively, at the alternative
Δ = 1. The reference for calculating the relative sample size is a traditional parallel group comparison
with 𝛼 = 0.025 with 1 − 𝛽 = 0.9 (Figure 2(a)) and 𝛼 = 0.0252 with 1 − 𝛽 = 0.81 (Figure 2(b)),
respectively. Curves are drawn for a scepticism s equal to 0.1 (dark grey), 0.3, 0.5, 0.7 and 0.9 (light
grey). In both figures, 1 − r takes values of 0.75 (top line of plots), 0.5 (second line) and 0.25 (bottom
line of plots). In the first, second and third columns, 1 − q is set to 0, 0.25 and 0.5, respectively.

A decrease of q as well as an increase of r increases the 𝛼-level adjustment factor and therefore
decreases the needed sample size in our approach: the relative sample size as compared with the refer-
ence design is < 1. This is in complete accordance with the results already discussed for the framework
of simple null and alternative hypotheses in Section 2.

Figure 2 also illustrates the risk of erroneously relying on extrapolation. Let us assume that for the
paediatric population, there is no effect at all (H0 is true). Obviously, the probability for a false positive
claim in the paediatric population when applying the adjusted test is 𝛼adj. This can be considerably large
for large 1 − q, the prior belief in efficacy of the paediatric drug if extrapolation is not deemed to be
feasible, or small scepticism s (high confidence in similarity). Somehow counter-intuitive is the impact
of 1 − r: the smaller the belief in the alternative in the benchmark scenario, the larger the false positive
rate 𝛼adj in the adjusted test. This is because with increasing values of 1 − r, the level of evidence 1 − 𝛾
reached in the benchmark scenario is also increasing (see the left side of equation (6)). If on the other
hand the alternative is in fact true, then the power is 1 − 𝛽 by design (Figure 2).

4. Example: the Food and Drug Administration decision tree

The FDA designed a decision tree, where knowledge on the similarities in both, the disease progression
and the response to intervention in the adult and in the paediatric population, leads to reduced study pro-
grammes [6]. The magnitude of the reduction then depends on the similarity of the exposure–response
relationships in the two populations. The tree distinguishes three levels of extrapolation and the corre-
sponding levels of evidence to be supplied to the authority: full extrapolation, partial extrapolation and no
extrapolation. Under partial extrapolation, a single well-controlled trial, uncontrolled efficacy and safety
trials and single exposure response trials (not powered for efficacy) may be required. However for partial
extrapolation, the decision tree does not specify the required evidence in detail. Therefore, for the sake
of demonstration, we assume that under partial extrapolation a single (instead of 2) confirmatory trials
are required. This simplifies the decision tree to three levels:

(1) No additional trial (full extrapolation)
(2) A single confirmative trial (partial extrapolation)
(3) Two confirmative trials

In a recent review [15], it was shown that 68% of 166 paediatric products investigated used the concept
of partial extrapolation. This indicates a high confidence of experts that adult data can be extrapolated to
some extent to the paediatric population. Full extrapolation was only applied for 14% of the products,
which corresponds to a scepticism equal to 0 in our framework. The supplementary material of the review
contains tables listing the indications, the age groups and the products, for which no extrapolation, partial
extrapolation or full extrapolation have been applied. However, there is no quantitative description on the
amount of scepticisms leading to different study programme reductions. We tried to give a rough visu-
alization of the decision tree in terms of our framework based on scepticism. In Figure 3, the horizontal
lines indicate the three levels of evidence, and the lowest bar refers to two independent trials, both on a
one-sided significance level of 0.025. To apply our previous framework, we assumed instead that a sin-
gle trial with a significance level of 0.0252 would be performed. The middle bar corresponds to a single
trial at a one-sided significance level of 0.025; the highest point indicates full extrapolation (no clinical
trial needed). To mimic the FDA decision tree, the length of the bars for the distinct significance levels
have been chosen in a somehow demonstrative way such that the curve for the adjusted significance level
crosses the central bar right in the middle. We believe, that this is a fair approximation of the curve shar-
ing a fixed initial point and two piecewise constant levels. It should be noted, that our proposal could be
interpreted as a continuous generalization of the three levels of the FDA decision tree, assuming that they
correspond to three discrete levels of scepticism.

Figure 3 shows a sharp increase of 𝛼adj with decreasing scepticism s in the relevant regions where the
decision has to be made whether one or two pivotal studies have to be performed. Small differences in
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Figure 3. Translating the Food and Drug Administration (FDA) decision tree on extrapolation into our proposed
methodology of 𝛼 adjustment. The dashed line shows 𝛼adj as a function of the scepticism s in the simple extrapola-
tion model. The piecewise constant solid lines represent the FDA extrapolation tree when expressed in terms of the
framework of 𝛼 adjustment and scepticism. Points of discontinuity are chosen such that the left bar is intersected

by the continuous 𝛼 level curve right in the middle.

the assessment of s may have substantial consequences for the paediatric development programme. The
figure also shows that to achieve the same posterior probability for a relevant effect size, full extrapolation
(highest point at the left) is possible only if the experts are completely certain that extrapolation is fully
applicable (s = 0). But also relaxing the drug development to a single trial at level 0.025 (middle bar)
according to our framework and graphical approximation would require a very high belief in extrapolation
(in terms of a small s). This seems to be the case for most of the products in the experience of the FDA
[15]. If there is some belief in efficacy if extrapolation is not considered to be possible (q < 1), slightly
larger scepticisms may allow to avoid the full development programme (for the FDA following the two
pivotal studies paradigm).

5. Discussion

In drug development, several standards have evolved over time. Most of the statistical standards refer
to the planning and analysis of single trials (e.g. [16]). The important quality of reproducibility of trial
results for long time has been accounted for particularly at the FDA demanding the two pivotal studies
paradigm for phase III of drug development [17]. However, it is also possible to rely on a single adequate
and well-controlled study of a drug, if supported by additional evidence from other sources [17–19].
For drug development in small populations [8], to keep such standards may simply not be feasible. For
subpopulations, such as the paediatric population, an additional problem arises because when developing
a drug for children, in general, sufficient data are available from clinical trials having been performed for
authorization of the drug in the adult population. In this situation, parents will be very cautious to allow
their children to participate in paediatric trials, particularly in trials using a placebo control that will be
excluded in life-threatening diseases anyway. There is a never ending discussion if placebo-controlled
trials may be performed at all in paediatric populations when the drug has been registered for adults.
The consequence of all the ethical, feasibility and economic constraints in the past was that only a small
proportion of drugs registered for adults have been also registered in children. Off-label use of the drug in
children was the consequence if paediatric doctors believed that the drug would improve their patients’
health. Shifting such decisions to the responsibility of the individual paediatrician without any access to
systematic collection of efficacy data in the paediatric population is not an acceptable option from the
legal and medical perspective. Hence, the legislation has been changed. According to this new legislation,
a new drug for adults is only registered at the FDA or EMA when a programme for drug development
(at the EMA a PIP) in children has been provided by the drug developer and has been approved by the
regulators (at the EMA by the Paediatric Committee). To not to be late with the registration in children,
the development programme has to be proposed already early in the development programme for adults.
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Another advantage of an early development plan for children is that at this time it could be integrated
scientifically in the adult development by planning studies in adults that in turn provide specific data
relevant for the paediatric development. This is the crucial problem: the earlier a paediatric programme
is planned, the less information is available from adults. Hence, expert knowledge on the type of disease
and type of drug plays an important role in early deciding on the design of a paediatric development
programme to be accepted by regulators. Similar arguments may apply for very rare diseases where full
programmes are infeasible or could withhold the beneficial use of a potent drug for a long time. Moreover,
at the end of an overly long development programme, there could be no more interest in the drug because
other potent therapeutic options have been established meanwhile.

We have tried to structure this procedure to decide on a drug development programme under uncer-
tainty. Two quality criteria to compare different drug development programme have been fixed: first, the
power of detecting an effective drug in the end is prefixed at a certain value. This is in the interest of
the developer. Second, the posterior probability that there is indeed a relevant positive treatment effect,
after the test of the no effect null hypothesis has been rejected, is also fixed at a (large) value. This in our
framework is in the public interest of the regulator who aims at a large positive predictive value of the
final test decision. As a paradigm for standard drug development, we used a conventional clinical trial in
phase III analysed by a statistical test with significance levels 0.025 or 0.0252 and a certain prior belief
(1 − r) in effectiveness based on earlier phases before starting phase III. In contrast, we looked at a test
with an adapted significance level, where the adjustment of the significance level is depending on the
prior belief on the possibility of full extrapolation from another source (e.g. from another population).
Not surprisingly, noticeable sample size savings are only possible if the prior belief in efficacy is fairly
high. We looked also on how the results would change when we assume that there is still a positive belief
(1 − q) in efficacy although extrapolation is not considered to be applicable. Obviously, the opening of a
new track for a positive result by choosing q < 1 will increase the savings in sample size.

With regard to the FDA decision tree for extrapolation to paediatric populations (full extrapolation, a
single trial and two pivotal studies) to apply full extrapolation, we need complete confidence in extrapo-
lation. The reason is that a standard programme of drug development with a reasonably high power (e.g.
0.9) and plausible prior odds of 1 (r = 0.5) results in very large positive predictive values given the
programme has succeeded to reject the null hypothesis of no efficacy (0.973 for a test at level 0.025 and
0.999 at level 0.0252). If no trial is run, there should be no doubt at all in the appropriateness of extrap-
olation in order to end up formally with a positive predictive value of the magnitude in the benchmark
scenario. But even for relaxing the statistical rigour to the degree that only a single trial at a conven-
tional significance level has to be run, the scepticism about the appropriateness of extrapolation has to
be very small. It will be difficult to settle on such borderline prior beliefs in expert panels accounting for
potential differences in eminence-based information. Moreover, as also pointed out in the reviewing pro-
cess, the approach ‘is highly dependent on a number of assumptions related to the key parameters used
to determine the adjusted level of 𝛼 for the target population’. In Figure S1 of the Supporting Informa-
tion, we present results of a sensitivity analysis, quantifying the impact of varying assumptions on the
relationship between 𝛼adj and s within our simple framework. Here, we also look at the situation, where
the assumption of equal levels of evidence and equal power in the adult and paediatric programme is
dropped. The relationship varies considerably with varying probability 1− q of effectiveness without the
option of extrapolation, and with varying levels of evidence 1 − 𝛾c to be reached in the paediatric study
programme (dropping the assumption of equal level of evidence for adults and children in equation (3)).
To understand the high dependency on 1 − 𝛾c, it is helpful to look at the level of evidence in terms of
odds: assuming 1 − 𝛾c = 0.9 the corresponding odds in favour of the alternative against the null hypoth-
esis are 9:1, whereas for 1 − 𝛾c = 0.9992 in the two-pivotal study programme, the odds are 1249:1. Less
variability is observed when the power in the paediatric study programme 1 − 𝛽c is chosen differently to
that in the adult population. Variation of the targeted level of evidence in the adult population 1− 𝛾a does
also not severely impact on the relationship.

A common regulatory practice to ask for a single study in the paediatric population would – in our
framework – correspond to low scepticism of experts about the appropriateness of extrapolation from the
adult population. To this end, it seems to be questionable, in particular with regard to the significance
level 0.0252 (which mimics the two pivotal studies paradigm of drug regulation), whether the 𝛼-level
adjustment approach in small populations is a feasible way from the perspective of the responsible experts
who have to decide at an early stage of the drug development process. In very small populations, this
will have to be further relaxed for feasibility reasons, so that only smaller positive predictive values
following a successful development programme will be achievable. Such a relaxation, in combination
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with post-marketing research, may be very reasonable in indications were no accepted efficacious therapy
is available. One of the purposes of this paper is to bridge frequentist and Bayesian arguments and create
a framework to compare different approaches and counter weight evidence from data in (smaller) trials
and eminence (expert knowledge) in this specific environment of decisions under uncertainty in medicine.
The importance of decisions on extrapolation, for example, in the paediatric population can be seen from
the review [15].

A methodological spin off in our framework is that simple two point priors may be used in the argu-
mentation as they, under some constraint, have some useful limiting properties among all other prior
distributions. It should be noted that we tried to use our framework to portray existing decision struc-
tures in drug regulation. However, it could also be used in different contexts, for example, fixing the
positive and negative predictive values of regulatory decisions, including utilities/losses or simply back-
ward calculating a ‘virtual’ scepticism if only a small sample size in the target population is available
and cannot be based on calculations with a targeted power. It has to be stressed that our framework refers
to a very early phase of drug development in the target population: on the one hand, it is understandable
that regulators aim at binding commitments of drug developers on which and how much evidence will
be supplied for the registration of a new drug in children. In the present legislation, such a commitment
is even a condition for registration of the drug in adults. On the other hand, the actual trials in the paedi-
atric population are often starting not before or even quite delayed after the drug has been registered in
adults. Hence, the environment of extrapolation is likely to change if data from adult studies will become
available. Consequently, by the logic of science, it is reasonable to consider adaptations of the agreed
paediatric development programme. In the legislation, the request for modification of an approved PIP, in
the EU to be dealt with by the Paediatric Committee of the EMA, is an appropriate way to deal with this
learning from experience situation. Other Bayesian approaches using data from the source population
[20–23] may be applied to adaptively modify the preplanned paediatric development programme. This
may be achieved in practice by allowing for the option of an adaptive PIP as an example of an adaptive
licensing approach [24]. It seems to be reasonable that more emphasis in research and application should
be put also on this stage of developing new drugs in children.

Appendix A

The Neyman–Pearson test and the use of two-points prior in Bayesian context
Let Θ denote the parameter space. By setting two points Δ0 and Δ1 with Δ0 < Δ1, three subsets of Θ
can be distinguished, namely, the null hypothesis H0 = (−∞,Δ0], and furthermore, Hnr

1 = (Δ0,Δ1) and
HΔ

1 = [Δ1,∞).
We will prove the following result for tests applied on data x coming from distributions fulfilling the

monotone likelihood ratio property in T(x) for some statistic T:
Given P

(
HΔ

1

)
= c > 0, calculating the positive predictive value of a Neyman–Pearson test 𝜑NP (where

𝜑NP = 1 again means rejection of the null hypothesis) by using a two-points prior results in a lower
bound in the sense that for any other prior 𝜋 with P𝜋

(
HΔ

1

)
= c, the Bayesian averaged power for the

rejection of the null hypothesis P𝜋

(
𝜑NP = 1|HΔ

1

)
and the posterior probability P𝜋

(
H1|𝜑NP = 1

)
both

will never be smaller. Moreover, the Bayesian averaged type I error rate P𝜋

(
𝜑NP = 1|H0

)
will not exceed

the corresponding frequentist type I error of the Neyman–Pearson test.
This result will be proven in two steps:

(I) First, we show, that for any test 𝜑 the posterior probability P
(
H1|𝜑 = 1

)
can always be reduced

by choosing P
(
Hnr

1

)
= 0 and P

(
H0

)
= 1 − P

(
HΔ

1

)
.

(II) Then, we derive that in the class of priors with P𝜋

(
HΔ

1

)
= c and P𝜋

(
Hnr

1

)
= 0, by using a two-

point prior together with a Neyman–Pearson test, we have a lower bound for P𝜋

(
𝜑NP = 1|HΔ

1

)
and P𝜋

(
H1|𝜑NP = 1

)
and an upper bound for P𝜋

(
𝜑NP = 1|H0

)
.

Let P𝜋̈ denote a mixture of two Dirac distributions: P𝜋̈(A) ∶=
[
1 − p

]
𝟏A

(
Δ0

)
+ p𝟏A

(
Δ0

)
with an

arbitrary p > 0. When 𝜑NP denotes a Neyman–Pearson with error rates 𝛼NP and 𝛽NP, it holds that the
positive predictive value is

P𝜋̈

(
H1|𝜑NP = 1

)
=

(
1 − 𝛽NP

)
P𝜋̈

(
HΔ

1

)
(
1 − 𝛽NP

)
P𝜋̈

(
HΔ

1

)
+ 𝛼NP

[
1 − P𝜋̈

(
HΔ

1

)] ,2130
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with P𝜋̈(HΔ
1 ) = p. For the sake of completeness of our description, we note that the Neyman–Pearson

test in our setting is described by the statistic T(x) that occurs in the monotone likelihood ratio condition,
and a threshold kNP, which defines the rejection region {x ∶ T(x) > kNP}.

It is easy to show that calculating the positive predictive value of a Neyman–Pearson test by using the
earlier defined two-points prior with P𝜋̈

(
HΔ

1

)
= c results in a lower bound for both, the set of all possible

positive predictive values and the Bayesian averaged power for all priors with fixed prior probability
P𝜋

(
HΔ

1

)
= c. First, we notice that generally the positive predictive value has the following form:

P
(
H1|𝜑=1

)
=

P
(
𝜑=1|HΔ

1

)
P
(
HΔ

1

)
+P

(
𝜑=1|Hnr

1

)
P
(
Hnr

1

)
P
(
𝜑=1|HΔ

1

)
P
(
HΔ

1

)
+P

(
𝜑=1|Hnr

1

)
P
(
Hnr

1

)
+P

(
𝜑=1|H0

) [
1−P

(
HΔ

1

)
−P

(
Hnr

1

)]
.

The partial derivative of this function with respect to P(Hnr
1 ) is then

𝜕P
(
H1|𝜑=1

)
𝜕P

(
Hnr

1

) =
[
P
(
𝜑=1|Hnr

1

) (
1−P

(
HΔ

1

))
+P

(
𝜑=1|HΔ

1

)
P
(
HΔ

1

)]
P
(
𝜑=1|H0

)
[
P
(
𝜑=1|HΔ

1

)
P
(
HΔ

1

)
+P

(
𝜑=1|Hnr

1

)
P
(
Hnr

1

)
+P

(
𝜑=1|H0

)[
1−P

(
HΔ

1

)
−P

(
Hnr

1

)]]2
,

which is positive. Therefore, decreasing P
(
Hnr

1

)
to its smallest possible value 0 minimizes the positive

predictive value:

P(H1|𝜑 = 1) ⩾
P(𝜑 = 1|HΔ

1 )P(H
Δ
1 )

P(𝜑 = 1|HΔ
1 )P(H

Δ
1 ) + P(𝜑 = 1|H0)

[
1 − P(HΔ

1 )
] .

This concludes part I of the proof.
For part II of the proof, we now show that for any prior 𝜋 with P𝜋

(
HΔ

1

)
= P𝜋̈

(
HΔ

1

)
= c, it holds

P𝜋

(
H1|𝜑NP = 1

)
⩾ P𝜋̈

(
H1|𝜑NP = 1

)
.

From part I, we have P𝜋(H1|𝜑NP = 1) ⩾ P𝜋 (𝜑NP=1|HΔ
1 )P𝜋 (HΔ

1 )
P𝜋 (𝜑NP=1|HΔ

1 )P𝜋 (HΔ
1 )+P𝜋 (𝜑NP=1|H0)[1−P𝜋 (HΔ

1 )]
. If it can be shown that

the inequalities P𝜋(𝜑NP = 1|HΔ
1 ) ⩾ 1 − 𝛽NP and P𝜋(𝜑NP = 1|H0) ⩽ 𝛼NP hold, then we obtain

P𝜋

(
𝜑NP=1|HΔ

1

)
P𝜋

(
HΔ

1

)
P𝜋

(
𝜑NP=1|HΔ

1

)
P𝜋

(
HΔ

1

)
+P𝜋

(
𝜑NP=1|H0

) [
1−P𝜋

(
HΔ

1

)] ⩾
[
1−𝛽NP

]
P𝜋̈

(
HΔ

1

)
[
1−𝛽NP

]
P𝜋̈

(
HΔ

1

)
+𝛼NP

[
1−P𝜋̈

(
HΔ

1

)]
(note that the partial derivative of the left side with respect to P𝜋(𝜑NP = 1|HΔ

1 ) is positive and P𝜋(HΔ
1 ) =

P𝜋̈(HΔ
1 ) = c), and our main result is proven because the right side of the last inequation is equal to

P𝜋̈(H1|𝜑NP = 1).
We now prove P𝜋(𝜑NP = 1|H0) ⩽ 𝛼NP: by using the Fubini–Tonelli theorem, we have

𝛼NP = ∫ 𝟏{(kNP,∞)} (T(x)) f (x|𝜃0)dx

= ∫ 𝟏{(kNP,∞)} (T(x))∫ f (x|𝜃0)𝜋(𝜃|H0)d𝜃 dx

= ∫ ∫ 𝟏{(kNP,∞)} (T(x)) f (x|𝜃0)𝜋(𝜃|H0)dx d𝜃

= ∫ ∫ 𝟏
{(kNP,∞)}

(T(x)) f (x|𝜃0)dx 𝜋(𝜃|H0)d𝜃

⩾ ∫ ∫ 𝟏
{(kNP,∞)}

(T(x)) f (x|𝜃)dx 𝜋(𝜃|H0)d𝜃

= ∫ 𝟏{(kNP,∞)} (T(x))∫ f (x|𝜃)𝜋(𝜃|H0)d𝜃 dx = P𝜋

(
𝜑NP = 1|H0

)
.
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The inequality of the fifth line of the last inequation follows from the monotonicity of the power function
as a direct result of the Neyman–Pearson lemma for one-sided tests.

The second inequality P𝜋(𝜑NP = 1|HΔ
1 ) ⩾ 1− 𝛽NP follows analogously by using again Fubini–Tonelli

and the monotonicity of the power.
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