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Abstract: In this study, the in-situ compatibilization reaction between recycled acrylonitrile–butadiene–
styrene copolymer (rABS) and functional styrene–ethylene–butylene–styrene block maleic anhydride
(SEBS-g-MAH) was confirmed, which contributed to the toughening phenomenon of rABS, especially
the notched impact strength. As mechanical test that manifested, the rABS/SEBS-g-MAH blends are
stronger and more ductile than the rABS/SEBS blends. Prominently, the former has great advantage
over the latter in terms of improving the impact performance. Scanning electron microscope (SEM)
images showed that the compatible segments that were generated by reaction not only improve the
interface adhesion of rABS/SEBS-g-MAH blends but also promote the evolution of co-continuous
structures, which can be evidently observed after etching. Furthermore, the SEM micrographs of
tensile fracture surfaces indicated that the formation of the co-continuous phase and the improvement
of interface adhesion are the most profound reasons for the excellent tensile properties of the
rABS/SEBS-g-MAH blends. The impact fracture surface revealed that two-phase interface affects
crack propagation and shear yielding absorbs more impact energy than simple interface debonding
does at higher deformation rates. Meanwhile, rheological analysis demonstrated that the complex
viscosity of the rABS/SEBS-g-MAH (80/20 wt%) blend with a co-continuous structure exhibits a
maximum positive deviation at low frequencies from the theoretical value calculated using the rule
of logarithmic sum, which indicated a connection between co-continuous structure and complex
viscosity. In addition, the storage modulus vs. loss modulus curves of the blends revealed that the
viscoelastic behavior of rABS/SEBS-g-MAH blends is very similar to that of rABS.

Keywords: in-situ reaction; co-continuous structure; yield; debonding; crack propagation

1. Introduction

Recycled plastic has been emphasized due to the increasingly scarce petroleum resources, as well
as the gradually ascending demand of protecting environment [1–3]. Acrylonitrile–butadiene–styrene
(ABS), which is a typical engineering polymer, has a huge market share in raw materials, in view of its
excellent properties, such as outstanding notch impact resistance, high modulus caused by the benzene
ring, and the oil resistance that is brought by the nitrile group [4–6]. Nevertheless, the repeated use
of waste ABS has faced with a series of conundrums, including the loss of toughness, the decline in
molecular weight, and the deterioration of surface quality, which has resulted in serious obstacles in
the extensive application of recycled acrylonitrile–butadiene–styrene copolymer (rABS) [7,8].
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In recent decades, the toughening modification of recycled plastics has been extensively studied [9,10].
Among these studies, it is generally thought that the microstructures have a significant effect on
the mechanical properties of blends. Moreover, in-situ reactive compatibilization has been proved
to be an efficient approach for reducing interfacial tension [11,12] and promoting the evolution of
phase morphology of blends [13,14]. Besides, the performance of in-situ reactive compatibilization
generally depends on the reaction between maleic anhydride (MAH) and –OH [15,16], and the reaction
between glycidyl methacrylate (GMA) and –COOH or –OH [17,18]. In the blend with ABS as the
main phase, generally the compatibilizer is compatible with ABS and react with another phase.
For example, Liu et al. [19] added a core-shell impact modifier, styrene-maleic anhydride (SMA), in the
rABS/polyamide (PA), which was successfully applied to enhance the interfacial adhesion between
the ABS phase and PA phase. This is because the SMA is miscible with the styrene-acrylontrile (SAN)
phase in ABS and the MAH group can react with PA. Similarly, the in-situ compatibilization reaction
was applied to the rABS/wood-plastic composites (WPCs)/SMA blend [20]. Yeh et al. [20] suggested
that the coupling agent (SMA) can effectively improve the mechanical properties of the blend due to
the reaction of MAH with the –OH on the surface of cellulose. Such PA and cellulose, which contain
functional chain-end groups, can offer the possibility of further chemical reaction. For this reason,
the method for functionalizing the ABS was investigated. Fu et al. [21] prepared ABS-GMA by
polymerizing the acrylonitrile, styrene, and GMA on polybutadiene particles, which can be utilized for
improving the compatibility of the ABS/Poly (butylene terephthalate) (PBT) blend. However, adding
the third component as a compatibilizer and grafting on the one of the polymer are both complicated
and uneconomical. Under this scenarios, it is generally ignored that rABS can be oxidized to form a
group, which can be applied to the in-situ reaction.

In previous reports, Shimade [22] and Adeniyi [23] have indicated that rABS will generate
some oxygen-containing groups (hydroxyl, carbonyl, etc.) after thermal aging [24]. In this study, an
experimental scheme of reactive compatibilization is designed on the basis of the fact that hydroxyl
groups may be generated by rABS after oxidizing. The rABS/SEBSblends and rABS/SEBS-g-MAH
blends are compared and analyzed while using mechanical test, infrared spectroscopy, scanning electron
microscope observation, and rheological characterization. We mainly focus on the micro-morphology
of the blends as well as the discrepancy in the crack propagation and fracture behavior between
rABS/SEBS blends and rABS/SEBS-g-MAH blends, and discuss the possible reasons behind these
phenomena. This is a new idea that the functional group of rABS itself can be used to compatibilize
the rABS/SEBS-g-MAH blends.

2. Materials and Methods

2.1. Materials

Black rABS pellets with a melt flow index (MFI) that is equal to 1.63 g/10 min. (220 ◦C/2.16 kg)
were supplied by Guangzhou Blonde Technology Co., Ltd. (Guangzhou, China). The commercial
SEBS powder, Kraton G1651 (Kraton Corporation, Belpre, OH, USA) with an MFI less than 1 g/10 min.
(230 ◦C/5 kg) and the styrene/ butadiene ratio of 30/70 was used in this study. SEBS-g-MAH,
KratonFG1901 with an MFI of 22 g/10 min. (230 ◦C/5 kg) and the same styrene/ butadiene ratio,
was purchased from Kraton Polymer Inc.(Belpre, OH, USA) The graft degree of maleic anhydride is
about 1.4–2.0 wt%.

2.2. Blend Preparation

Prior to melt processing, rABS, SEBS, and SEBS-g-MAH were dried at 80 ◦C for 12 h, 8 h, and
8 h, respectively, in a convection oven. The rABS/SEBS and rABS/SEBS-g-MAH blends with different
composition ratios (100/0, 95/5, 90/10, 85/15, 80/20 wt%) were first mixed by a high-speed mixer
for 5 min. at room temperature. Subsequently, the melt blending of these premixed materials was
performed by using a self-made triple screw extruder with a screw diameter of 25 mm, an aspect ratio
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of 40, a driving power of 75 kW, a maximum output of 30 kg/h, respectively. The temperature from
the hopper to die was set as 150-170-190-200-200-200-200-195 ◦C, and the speed of screw was 80 rpm.
Figure 1 shows the possible reaction routes. After extrusion, the extrudates were dried at 80 ◦C for 12 h
in a convection oven. An injection molding machine (105GE, DongHua Machinery Co. Ltd., Dongguan,
China) was utilized to prepare the standard dumbbell-shaped specimen based on ISO 527-2(type A)
and rectangular specimens for the following mechanical test. The injection temperature from the
hopper to nozzle was set as 190-200-210-210 ◦C, and the holding pressure, cooling temperature, and
time are 3 MPa, room temperature, and 20 s, respectively.
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2.3. Mechanical Testing

The uniaxial tensile properties of the blends were measured at room temperature while using
an Instron 4302 universal tensile tester. All of the tests were conducted at a constant cross-head
speed of 20 mm/min according to ISO 527-2 standards. The Izod impact strength of the blends with
specimen dimension of 60 × 10 × 4 mm3 was tested while using an impact tester (Zwick5117, Zwick
GmbH, Ulmer, Germany) according to ISO 180. The results presented are an average of at least five
independent tests and the standard deviation.

2.4. Scanning Electron Microscopy (SEM)

The morphology of the blends was observed while using a Quanta FEG 250 SEM (Thermo
Fisher Scientific, Hillsboro, OR, USA). The samples were cryo-fractured after immersing in liquid
nitrogen. The SEBS phase was etched by xylene. All of the specimens, including the cryo-fracture
surfaces, tensile fractured surfaces, and impact fractured surfaces, were coated with a thin layer of
gold before observation.

2.5. Fourier Transform Infrared (FT-IR) Spectroscopy

The FT-IR equipment (Bruker vector 3, Bruker Optics, Karlsruhe City, Germany) was used to
study the characteristic functional group reactions between rABS and SEBS-g-MAH. The samples were
recorded at 32 consecutive scans and a resolution of 4 cm−1 within the wave numbers from 4000 to
400 cm−1.

2.6. Rheological Characterization Measurements

The rheological properties of the rABS/SEBS-g-MAH blends were studied while using a rotational
rheometer (MCR 302, Anton Paar Gmbh, Graz, Austria) with the aim of evaluating the possible
changes in viscoelastic behavior due to the in-situ reaction between rABS and SEBS-g-MAH.
The viscosity-frequency scanning was performed under the protection of nitrogen at 210 ◦C, the scanning
frequency was from 0.0628 to 628 rad/s, and the strain amplitude was kept at 1%.
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3. Results and Discussion

3.1. Mechanical Properties

Table 1 presents the results of the tensile and impact tests. It is common knowledge that the
toughness will be increased, whereas the modules will be decreased when elastomer is added. However,
Figure 2a shows that the impact strength of rABS/SEBS blends decreases with the addition of SEBS
and the impact strength of rABS/SEBS blends is not sensitive to the content of SEBS. On the contrary,
the impact strength of rABS/SEBS-g-MAH blends rises with the increase of the SEBS-g-MAH content,
which shows a positive correlation. After adding 15 wt% SEBS-g-MAH, the impact strength of the
blends starts to become higher than that of recycled ABS.

Table 1. The mechanical properties of neat rABS, rABS/SEBS, and rABS/SEBS-g-MAH blend.

Sample Tensile
Strength (MPa)

Modulus of
Tensile (MPa)

Elongation at
Break (%)

Impact Strength
(kJ/m2)

Fracture
Energy (J/m3)

rABS 37.5 ± 0.5 845.1 ± 25.9 15.8 ± 2.6 11.3 ± 0.9 477.3
rABS/SEBS:95/5 34.1 ± 0.5 807.6 ± 11.7 34.0 ± 5.3 8.1 ± 0.4 1020.1
rABS/SEBS:90/10 30.6 ± 0.2 748.0 ± 8.7 49.6 ± 10.8 8.1 ± 0.4 1383.0
rABS/SEBS:85/15 28.8 ± 0.2 679.3 ± 18.7 71.9 ± 8.7 8.0 ± 0.5 1880.6
rABS/SEBS:80/20 25.7 ± 0.1 625.2 ± 5.7 84.4 ± 5.0 8.1 ± 0.6 2049.1

rABS/SEBS-g-MAH:95/5 34.3 ± 0.3 805.2 ± 6.7 41.4 ± 4.3 9.5 ± 0.5 1225.9
rABS/SEBS-g-MAH:90/10 31.7 ± 0.3 736.8 ± 8.8 57.6 ± 6.7 10.0 ± 0.1 1685.2
rABS/SEBS-g-MAH:85/15 29.2 ± 0.1 681.9 ± 5.6 76.2 ± 2.8 11.8 ± 0.7 2023.1
rABS/SEBS-g-MAH:80/20 26.8 ± 0.4 608.9 ± 7.1 85.8 ± 4.5 15.2 ± 0.8 2131.6
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Figure 2. The tensile and impact properties of neat rABS, rABS/SEBS, rABS/SEBS-g-MAH blends:
(a) impact strength; (b) tensile strength; (c) strain-stress curves; and, (d) fracture energy and yield strength.

Under the condition of 20 wt% SEBS-g-MAH content, the impact strength of rABS/SEBS-g-MAH
blend increases to 15.2 kJ/m2, which is higher than that of the recycled ABS and rABS/SEBS (80/20 wt%)
blend by 35% and 88%, respectively. This particular phenomenon can be ascribed to the discrepancy of
interface compatibility between the two blend systems. The improvement of interface compatibility
between rABS and SEBS-g-MAH was achieved due to the in-situ compatibilization reaction between
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maleic anhydride and hydroxyl-terminated groups generated by oxidative degradation of rABS
molecular chains in the processing process to ensure that SEBS-g-MAH can experience deformation
and effectively absorb impact energy. SEM analysis and FT-IR analysis were conducted in the following
sections in order to further study and confirm this conjecture. As shown in Figure 2b, the tensile
strength decreases with the increase of the content of SEBS, whether the SEBS is grafted or not. However,
it is worth noting that the rABS/SEBS-g-MAH blends are stronger and tougher than the rABS/SEBS
blends (Figure 2c). As depicted in Figure 2d, the tensile fracture energy of the rABS/SEBS-g-MAH
blends and the rABS/SEBS blends, i.e., the area under the stress strain curve, increases when the
content of SEBS-g-MAH or SEBS increases, which is consistent with the dependence of the elongation
at break on the content of SEBS-g-MAH or SEBS. The rABS/SEBS-g-MAH blends have better tensile
toughness and yield strength than their counterpart. Therefore, the tensile toughness improvement of
rABS/SEBS-g-MAH blends is not achieved through the reduction in the yield strength.

As shown in Figure 3, both of the blend systems have obvious plastic deformation with the
increase of the content of SEBS or SEBS-g-MAH. Large cracks and new surfaces can be observed on the
surface of the rABS/SEBS-g-MAH blends after the tensile test, while the stress-whitening dominates in
the rABS/SEBS blends. The new surfaces absorb certain deformation energy and the tensile toughness
can be further improved, according to the theory of nonlinear fracture theory [25]. At the early stage of
stretching, the elastomer particles first yield and deform, while the rigid plastic particles do not reach
yield point. Subsequently, the two-phase interface will begin to generate voids. The strength of the
interface determines the efficiency of stress transmission, and rABS/SEBS-g-MAH is undoubtedly even
better. Good stress transfer between matrix and dispersed phase can promote deformation. SEM was
used to observe the phase morphology and interfacial adhesion in order to investigate the main failure
reasons of the two blend systems during tensile process.
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Figure 3. Photo of tensile sample.

3.2. Morphological Analysis

The effect of microstructure on polymer properties has been extensively studied [26–28]. It is
widely accepted that morphological analyses, such as geometric analysis of dispersed phase and
morphological analysis of the interface between matrix and dispersed phase, are helpful in analyzing the
mechanical properties of polymer blends [29,30]. Figure 4 shows the SEM micrographs of cryo-fractured
surfaces of the rABS/SEBS blends and rABS/SEBS-g-MAH blends. Additionally, the SEM micrographs
of etched cryo-fractured surfaces of rABS/SEBS-g-MAH blends are shown in the insert of Figure 4a’–d’.
Apparently, the compatibility of the rABS/SEBS blend is worse than that of the rABS/SEBS-g-MAH
blend. For the same blend system, the microstructure of blend varies with the composition ratios of
blend. In Figure 4a, the large SEBS phases with non-spherical shape are irregularly distributed in the
matrix and there is an obvious interface between the rABS phase and SEBS phase. With the increase
of SEBS content, the dispersed phase particles start to uniformly distribute in the matrix, but the
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compatibility between the rABS phase and SEBS phase is still poor. However, as clearly depicted
in Figure 4a’, the rABS/SEBS-g-MAH blend has good compatibility with the matrix and its phase
interface is quite fuzzy. It is because the in-situ compatibilization reaction plays the role of interfacial
emulsification [31], which reduces the surface tension of the dispersed droplets and enables them to be
better dissolved in the matrix. With the increase of the content of SEBS-g-MAH, the morphology of the
dispersed phase has evolved into a shape with longer aspect ratio, such as ellipsoid, strip, and slice.
Particularly, as shown in Figure 4d’, when the concentration of SEBS-g-MAH increases to 20 wt%,
the blend makes great progress in the improvement of interfacial compatibility, which was indicated
by the disappearance of the phase interface. The adhesion of the interface is also improved, which is
consistent with the improvement of mechanical properties. In addition, the co-continuous structure
was found in the rABS/SEBS-g-MAH blends containing 20 wt% SEBS-g-MAH.
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(a) rABS/SEBS 95/5; (a’) rABS/SEBS-g-MAH 95/5; (b) rABS/SEBS 90/10; (b’) rABS/SEBS-g-MAH 90/10;
(c) rABS/SEBS 85/15; (c’) rABS/SEBS-g-MAH 85/15; (d) rABS/SEBS 80/20; and, (d’) rABS/SEBS-g-MAH 80/20.

Figure 5 shows SEM micrographs of impact fracture surfaces of the rABS/SEBS blends and
rABS/SEBS-g-MAH blends.
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rABS/SEBS-g-MAH blends: (a) rABS/SEBS 95/5; (a’) rABS/SEBS-g-MAH 95/5; (b) rABS/SEBS 90/10;
(b’) rABS/SEBS-g-MAH 90/10; (c) rABS/SEBS 85/15; (c’) rABS/SEBS-g-MAH 85/15; (d) rABS/SEBS 80/20;
and, (d’) rABS/SEBS-g-MAH 80/20.

As shown in Figure 5a–d, the SEBS elastomer particles were seriously pulled out after impact.
It is worth mentioning that, although the content of elastomer has increased, the debonding situation
has not changed. The fracture surfaces show that the elastomer still retains a substantially ellipsoidal
shape with severe voids between the two phases. In contrast, Figure 5a’–d’ show a small interfacial
gap between the two phases and a significant deformation of the elastomer. In the rABS/SEBS-g-MAH
(80/20 wt%) blend with the co-continuous structure (Figure 5d’), the two phases that penetrated
each other exhibit consistent deformation. Therefore, for the rABS/SEBS blends, the main approach
for releasing fracture energy is the rapid propagation of unstable cracks during the notch impact
test, which cannot absorb a large amount of energy. Although SEBS acts as a stress concentrator, its
induced microcracks rapidly expand into large cracks at the weak interface at a high deformation
rate. Such unstable large cracks are hard to be terminated. Moreover, this phenomenon does not alter
with the change of SEBS content. In other words, the increase of SEBS content has no effect on the
impact performance of the rABS/SEBS blends, which is consistent with the experimental results of the
impact strength test. Nevertheless, for the rABS/SEBS-g-MAH blends, the combination of interface
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is better than that of its counterpart, as shown in Figure 5. When the content of SEBS-g-MAH is
below 20 wt%, the release of impact fracture energy was mainly attributed to the interfacial debonding
and the deformation of SEBS-g-MAH. Therefore, the increase of SEBS-g-MAH content affected the
improvement of impact toughness of the blends, which were attributed to the occurrence of the
in-situ compatibilization reaction and the increase of the reaction degree [32]. What really makes a
significant difference is the rABS/SEBS-g-MAH blend with 20 wt% SEBS-g-MAH. The elastomer in the
rABS/SEBS-g-MAH blends has a short forced movement under shear stress due to the co-continuous
structure and the great adhesion between the two phases, which suggests that partial impact fracture
energy was consumed by the deformation of entire material, rather than only SEBS-g-MAH.

Figure 6 presents the SEM micrographs of tensile fracture surfaces of the rABS/SEBS blends and
rABS/SEBS-g-MAH blends. As depicted in Figure 6a–d, all of the rABS/SEBS blends contain crazes that
were highly oriented along the direction of the external force. With the addition of SEBS increasing,
the distribution of crazes became denser. When it comes to the rABS/SEBS-g-MAH blends, deformation
of SEBS-g-MAH can be clearly observed, in addition to the deformation of matrix (rABS). As shown
in Figure 6a’, the crazes are of larger size than that in Figure 6a, it has better tensile toughness than
the rABS/SEBS (95/5 wt%). As the addition of SEBS-g-MAH increased, bigger plastic deformation
was observed in the rABS/SEBS-g-MAH blends. In previous mechanical analysis, it was known
that the yield strength decreased, with the elastomer increasing not only in the rABS/SEBS blends,
but also in the rABS/SEBS-g-MAH blends. Though the yield strength of the latter is higher than the
former, the enhanced interfaces supported the bigger plastic deformation of SEBS-g-MAH, so the
ductility of the latter are slightly higher than the former. Besides, the fracture mechanism of the
rABS/SEBS-g-MAH (80/20 wt%) blend is likely to be the inconsistent critical shear conditions of rABS
phase and SEBS-g-MAH phase when considering the large cracks on the surface of the tensile sample
of the rABS/SEBS-g-MAH (80/20 wt%) blend and the co-continuous structure of the rABS/SEBS-g-MAH
(80/20 wt%) blend shown in Figure 4d’. When subjected to a triaxial stress, the two phases begin to
debond due to inconsistent deformation. Although the rABS phase has broken because its deformation
goes beyond the elastic limit, the SEBS-g-MAH phase can continue to provide tensile strength, owing to
the continuous structure (Figure 7). The failure occurs in the region where the co-continuous structure
is not formed, such as the weak interface and defective area.

Materials 2019, 12, x FOR PEER REVIEW 8 of 14 

 

results of the impact strength test. Nevertheless, for the rABS/SEBS-g-MAH blends, the combination 
of interface is better than that of its counterpart, as shown in Figure 5. When the content of 
SEBS-g-MAH is below 20 wt%, the release of impact fracture energy was mainly attributed to the 
interfacial debonding and the deformation of SEBS-g-MAH. Therefore, the increase of SEBS-g-MAH 
content affected the improvement of impact toughness of the blends, which were attributed to the 
occurrence of the in-situ compatibilization reaction and the increase of the reaction degree [32]. What 
really makes a significant difference is the rABS/SEBS-g-MAH blend with 20 wt% SEBS-g-MAH. The 
elastomer in the rABS/SEBS-g-MAH blends has a short forced movement under shear stress due to 
the co-continuous structure and the great adhesion between the two phases, which suggests that 
partial impact fracture energy was consumed by the deformation of entire material, rather than only 
SEBS-g-MAH. 

Figure 6 presents the SEM micrographs of tensile fracture surfaces of the rABS/SEBS blends and 
rABS/SEBS-g-MAH blends. As depicted in Figure 6a–d, all of the rABS/SEBS blends contain crazes 
that were highly oriented along the direction of the external force. With the addition of SEBS 
increasing, the distribution of crazes became denser. When it comes to the rABS/SEBS-g-MAH 
blends, deformation of SEBS-g-MAH can be clearly observed, in addition to the deformation of 
matrix (rABS). As shown in Figure 6a’, the crazes are of larger size than that in Figure 6a, it has 
better tensile toughness than the rABS/SEBS (95/5 wt%). As the addition of SEBS-g-MAH increased, 
bigger plastic deformation was observed in the rABS/SEBS-g-MAH blends. In previous mechanical 
analysis, it was known that the yield strength decreased, with the elastomer increasing not only in 
the rABS/SEBS blends, but also in the rABS/SEBS-g-MAH blends. Though the yield strength of the 
latter is higher than the former, the enhanced interfaces supported the bigger plastic deformation of 
SEBS-g-MAH, so the ductility of the latter are slightly higher than the former. Besides, the fracture 
mechanism of the rABS/SEBS-g-MAH (80/20 wt%) blend is likely to be the inconsistent critical shear 
conditions of rABS phase and SEBS-g-MAH phase when considering the large cracks on the surface 
of the tensile sample of the rABS/SEBS-g-MAH (80/20 wt%) blend and the co-continuous structure of 
the rABS/SEBS-g-MAH (80/20 wt%) blend shown in Figure 4d’. When subjected to a triaxial stress, 
the two phases begin to debond due to inconsistent deformation. Although the rABS phase has 
broken because its deformation goes beyond the elastic limit, the SEBS-g-MAH phase can continue 
to provide tensile strength, owing to the continuous structure (Figure 7). The failure occurs in the 
region where the co-continuous structure is not formed, such as the weak interface and defective 
area. 

 
Figure 6. Cont.



Materials 2019, 12, 2352 9 of 14
Materials 2019, 12, x FOR PEER REVIEW 9 of 14 

 

 
Figure 6. SEM micrographs of tensile fracture surfaces of the rABS/SEBS blends and 
rABS/SEBS-g-MAH blends: (a) rABS/SEBS 95/5; (a’) rABS/SEBS-g-MAH 95/5; (b) rABS/SEBS 90/10; 
(b’) rABS/SEBS-g-MAH 90/10; (c) rABS/SEBS 85/15; (c’) rABS/SEBS-g-MAH 85/15; (d) rABS/SEBS 
80/20; and, (d’) rABS/SEBS-g-MAH 80/20. 

 
Figure 7. Fracture model of the tensile specimen of the rABS/SEBS-g-MAH (80/20) blend. 

3.3. The FTIR Analysis 

Infrared spectroscopy has been considered to be an effective method for chemical structure 
characterization due to its high sensitivity as well as clear, fast and accurate detection of peaks [33]. 
The offset of characteristic absorption peaks of some functional groups provides extremely effective 
evidences for the occurrence of chemical reactions [34]. In this work, as demonstrated in Figure 8, it 
can be recognized that rABS has hydroxyl association peak at 3300 cm−1. This indicates that the 
existence of hydroxyl groups in rABS can react with MAH, which creates conditions for rABS 
blending modification. Moreover, a stretching vibration peak of carboxyl at 1733 cm−1 was observed 
at the infrared spectrum of the rABS curve, which corresponds to the results that oxidative 
degradation of carbon-carbon double bond in rABS will also generate other oxygen-containing 
groups, such as carboxyl, as reported in the literature [23,24]. Two strong absorption peaks of 1713 
cm−1 and 1780 cm−1 were observed at the SEBS-g-MAH curve. The former is related with free 
carboxyl group and the latter is related to the stretching vibration of the carbonyl group of MAH 
[35]. The results suggested that the carbonyl peak in MAH was gradually weakened with the 
increase of SEBS-g-MAH content and there was no sharp strong peak in the rABS/SEBS-g-MAH 

Figure 6. SEM micrographs of tensile fracture surfaces of the rABS/SEBS blends and
rABS/SEBS-g-MAH blends: (a) rABS/SEBS 95/5; (a’) rABS/SEBS-g-MAH 95/5; (b) rABS/SEBS 90/10;
(b’) rABS/SEBS-g-MAH 90/10; (c) rABS/SEBS 85/15; (c’) rABS/SEBS-g-MAH 85/15; (d) rABS/SEBS 80/20;
and, (d’) rABS/SEBS-g-MAH 80/20.
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3.3. The FTIR Analysis

Infrared spectroscopy has been considered to be an effective method for chemical structure
characterization due to its high sensitivity as well as clear, fast and accurate detection of peaks [33].
The offset of characteristic absorption peaks of some functional groups provides extremely effective
evidences for the occurrence of chemical reactions [34]. In this work, as demonstrated in Figure 8,
it can be recognized that rABS has hydroxyl association peak at 3300 cm−1. This indicates that the
existence of hydroxyl groups in rABS can react with MAH, which creates conditions for rABS blending
modification. Moreover, a stretching vibration peak of carboxyl at 1733 cm−1 was observed at the
infrared spectrum of the rABS curve, which corresponds to the results that oxidative degradation
of carbon-carbon double bond in rABS will also generate other oxygen-containing groups, such as
carboxyl, as reported in the literature [23,24]. Two strong absorption peaks of 1713 cm−1 and 1780 cm−1

were observed at the SEBS-g-MAH curve. The former is related with free carboxyl group and the latter
is related to the stretching vibration of the carbonyl group of MAH [35]. The results suggested that the
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carbonyl peak in MAH was gradually weakened with the increase of SEBS-g-MAH content and there
was no sharp strong peak in the rABS/SEBS-g-MAH blends as the content of SEBS-g-MAH was over
5 wt%. However, a red shift of the characteristic peak of carbonyl group to 1774 cm−1 has occurred.
It is well known that the reaction of MAH with -OH will shift the absorption peak of carbonxyl to a low
wavenumber, which was attributed to the destruction of cyclic structure in possession of high-energy
anhydride groups. Meanwhile, the carboxy peak of the rABS/SEBS-g-MAH blends moved toward
high wavenumber (1735 cm−1). This might be ascribed to the stronger polarity of R-COOH, which was
the product of the in-situ reaction. A direct conclusion can be drawn that the in-situ reaction between
rABS and MAH indeed exists although the relationship between reaction degree and the mass fraction
of SEBS-g-MAH cannot be deduced merely from infrared spectrogram.
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Figure 8. FT-IR spectra of neat ABS, neat rABS, neat SEBS-g-MAH and rABS/ SEBS-g-MAH blends:
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3.4. Rheological Properties

As is known, the microstructure of the material has significant effect on its rheological properties.
Utracki and Sammut [36,37] hold that the viscosity of the blend and the sum of logarithm of the
viscosity of each component have a positive deviation, which can indicate a strong interaction between
the phases.

lnηblend =
∑

wi ln(ηi), (1)

where: wi is the mass fraction of the ith component of the blend and ηi is its viscosity [38].
The values have been obtained from the dynamic rheology according to the Cox–Merz rule:

η* = ηss(γ =ω), (2)

where: η* is the complex viscosity (Pa·s), ηss, steady shear viscosity (Pa·s), steady shear rate,
frequency [39].

From Figure 9a, it can be concluded that the η* of rABS/SEBS-g-MAH blends was bigger than that
of any pure component in the frequency range of 80~100 rad/s (for polymer processing). Furthermore,
the statistical results show that the rABS/SEBS-g-MAH blends with different composition have a
positive deviation. Noteworthy, the rABS/SEBS-g-MAH (80/20 wt%) blend exhibits a different deviant
behavior. Firstly, its positive-deviation is the largest at low frequency, which might be attributed to the
higher degree of in-situ reaction, the stronger interactions. Secondly, as the deviation sharply decreases
with the increase of frequency, its deviation degree becomes the smallest of all rABS/SEBS-g-MAH
blends finally. In a co-continuous model, the response of the two phases to strain is approximately equal,
while the stress was transmitted through the continuous phase in the matrix-droplet model. On the
one hand, in a co-continuous model, the blends undergo substantially the same external stress and the
blends will exhibit high recoverable elasticity even if one phase (SEBS-g-MAH) is highly elastic and the
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other phase (recycled ABS) is not. On the other hand, even if the discontinuous phase (SEBS-g-MAH)
is elastic in a matrix-droplet model, it is difficult to have large elastic recovery if the continuous phase
is not elastic [40]. Consequently, as shown in the inset of Figure 9a, the rABS/SEBS-g-MAH (80/20 wt%)
blend shows a unique positive deviation, owing to its high elastic recovery.

The rABS/SEBS-g-MAH blends can store more energy under external force due to the formation
of new long branched-chain structures during the in-situ reaction. Therefore, as depicted in Figure 9b,
increasing the content of SEBS-g-MAH results in a gradual raise of G’. The tanδ curve shows that the
loss angle of the rABS/SEBS-g-MAH blends increases to a maximum value and then decreases. It is
attributed to the lag and large internal friction of viscoelastic response in the intermediate frequency
region [41]. In addition, with the increase of SEBS-g-MAH content, the loss peak moves to a high
frequency, which indicates that the compatibility of the blend is also improved by the formation of
more compatible segments. Particularly, viscoelastic transition points occur simultaneously at both
low and high frequencies, as shown in Figure 9b. Moreover, the viscoelastic behavior of neat SEBS is
dominated by the elastic response, which is determined by the distinctive structure of this thermoplastic
elastomer [42]. Likewise, it can be observed that the viscoelastic properties of rABS/SEBS-g-MAH
blends are still dominated by rABS, which is the main component of the blends.
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The curves of the Han diagram can better illustrate this point [43]. It can be clearly seen from
Figure 9c that the rheological behavior of the rABS/SEBS-g-MAH blends was close to that of rABS,
but slightly shifted with the increase of SEBS-g-MAH content in the blends. In Figure 9d, The Cole–Cole
graph does not show two relaxation arcs, which proves that the rABS/SEBS-g-MAH blends have good
compatibility [44,45]. Notwithstanding, the Cole-Cole curve of the rABS/SEBS-g-MAH (80/20 wt%)
blend still shows apparent dissimilarity from the remaining three curves. For one thing, the Cole–Cole
curve of the rABS/SEBS-g-MAH (80/20 wt%) blend extends further away, which indicates a longer



Materials 2019, 12, 2352 12 of 14

relaxation process. For the other thing, it is the only curve that all test points are higher than that of
rABS curve, which can be ascribed to the peculiarity of SEBS-g-MAH phase morphology in the blend.
The original rheological characteristics of continuous SEBS-g-MAH phase emerges, rather than being
weakened on account of the discontinuous phase morphology.

4. Conclusions

In this work, the effect of maleic anhydride grafted SEBS on the properties of rABS/SEBS
blends was investigated, especially the fracture phenomenon. FTIR results reveal that there are
hydroxyl groups in rABS, which provides the possibility for in-situ compatibilization reactions.
The rABS/SEBS-g-MAH blends show different mechanical properties, microstructure, and rheological
behavior from the rABS/SEBS blends. Through the analysis of mechanical properties, we found that
the rABS/SEBS-g-MAH blends have more excellent tensile strength, ductility, and impact resistance
than rABS/SEBS blends and rABS do. Through the analysis of microstructure, a conclusion can be
drawn that the good phase interface and the co-continuous structure are the fundamental reasons for
the improvement of mechanical properties of the rABS/SEBS-g-MAH blends. The observation of SEM
micrographs of impact fracture surfaces demonstrates that simple debonding cannot provide strong
assistance for impact modification, whereas stronger interface and matrix deformation are the effective
ways of absorbing a lot of impact energy. The SEM micrographs of the tensile fracture surfaces prove
that crazes and shear band deformation can all contribute to the improvement of ductility during
the large deformation stage of the amorphous polymer. The rABS/SEBS-g-MAH (80/20 wt%) blend
with co-continuous structure exhibits unique failure phenomenon that stretching of elastomer makes
further contribution to the improvement of ductility. Rheological behavior further confirmed that a
co-continuous phase structure was formed when 20 wt% SEBS-g-MAH was added. The rheological
performance of the rABS/SEBS-g-MAH blends was disturbed by the long branched-chain structure
that was generated in the in-situ compatibilization reaction. Moreover, the viscoelastic properties
of rABS/SEBS-g-MAH blends were close to that of rABS due to the dominance factor of component
composition. Ultimately, the primary reasons for toughening of rABS are proposed, which provides
guidance for the toughening modification of rABS and it is beneficial in better understanding the
fracture failure phenomenon.
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