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ABSTRACT
Mutations in the NSMF gene have been related to Kallmann syndrome. Conflicting results have been
reported on the subcellular localization of Jacob/NELF, the protein encoded by the NSMF gene.
Some reports indicate an extracellular localization and a function as a guidance molecule for
migration of GnRH-positive neurons from the olfactory placode to the hypothalamus. Other studies
have shown protein transport of Jacob from synapse-to-nucleus and indicate a role of the protein in
neuronal activity-dependent gene expression. A recent publication casts doubts on a major role of
Jacob/NELF in Kallmann syndrome and neuronal migration of GnRH-positive neurons during early
development. Instead a murine NSMF gene knockout results in hippocampal dysplasia, impaired
BDNF-signaling during dendritogenesis, and phenotypes related to the lack of BDNF-induced
nuclear import of Jacob in early postnatal development.
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Introduction

Kallmann syndrome (KS) is a rare neurodevelopmen-
tal disorder considered as a subtype of idiopathic
congenital hypogonadotropic hypogonadism (IHH).
Symptoms associated with IHH include absence or
delay of puberty due to gonadotropin-releasing hor-
mone (GnRH) deficiency, hypogonadism, infertility
and, in case of KS, anosmia or hyposmia.1,2 The
incidence of IHH is 3–5 times higher in males than
in females with a prevalence of 1/5000 to 1/10000,
and 50–60% of patients display olfactory dysfunction
and KS.

The release of GnRH from a relatively small number
of neurons in the hypothalamus (in humans about 7.000-
12.000) is a prerequisite for normal hypothalamic-pitui-
tary-gonadal function in puberty and reproduction.3

During embryonic development these GnRH-positive
neurons migrate together with olfactory axons from the
olfactory placode region into the forebrain and distur-
bances in migration or proper cellular functions like
defective secretion result in KS or IHH, respectively.4,5

In recent years more than 31 different putative can-
didate loci have been identified and many studies sug-
gested digenic or oligogenic causations for the
development of IHH or KS, however, the degree and
frequency of oligogenicity is still under debate. Among
candidate genes that are mutated in KS and IHH are
genes coding for cell adhesion and guidance molecules
(KAL1, SEMA3A, SEMA7A), DNA-binding proteins /
transcriptional repressors (FEZF1, HESX1, CHD7,
SOX10) and molecules involved in placodal develop-
ment and neurogenesis (FGF8, FGFR1).2,6 Another
candidate gene for KS is NSMF (NMDA Receptor
Synaptonuclear Signaling And Neuronal Migration
Factor). Several publications suggested a link between
mutations in the NSMF gene and KS.7-14 So far, 5 dif-
ferent mutations were identified, most of them in a
digenic pattern together with mutations in other can-
didate genes.7,9,13 Only in one case a monogenic cau-
sation of Kallmann syndrome was suggested by a
point mutation in NSMF.13 All mutations occurred
heterozygously, 3 are intronic mutations from which
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an 8-bp intronic deletion might result in a splicing
defect and premature stop codon and 2 missense
mutations lead to exchange of a polar to unipolar
amino acids or vice versa. Given that a candidate gene
was sequenced in numerous patients with KS and in
only very few cases a mutation was found, and the
lack of any association studies as well as reverse or for-
ward genetics, the evidence for a causal link between
KS and a loss-of-function or gain-of-function-muta-
tions in the NSMF gene is less than compelling.

Nuclear import of Jacob couples the NMDAR-Ca2C-
signal to activity-dependent gene expression

The cellular function of Jacob, the protein encoded by the
NSMF gene, has been investigated by us in recent years
and we could show that Jacob is involved in N-Methyl-
D-Aspartate-Receptor (NMDAR) signaling to the
nucleus.15-17 NMDAR are ligand- and voltage-gated
sodium / calcium channels that play a key role in neuro-
nal signaling. In addition to calcium signals, which repre-
sent a major route for communication of NMDAR
activity to the nucleus, macromolecules and synapto-
nuclear protein messengers have recently appeared to
connect synapses and nucleus enabling bidirectional
transfer of information.18,19 Several lines of evidence
demonstrate that protein transport from synapse-to-
nucleus has a role in synaptic function and plasticity.18,19

NMDAR are present at both synaptic and extrasynap-
tic sites, and the subcellular localization of each receptor
profoundly and differentially affects the nuclear response
to its activation. Activation of synaptic NMDAR induces
the expression of cell survival and plasticity genes, while
their extrasynaptic counterparts primarily drive the
expression of cell death genes, linking the pathway to
disease. Extrasynaptic NMDAR activation induces
nuclear translocation of Jacob, which results in sustained
dephosphorylation and transcriptional inactivation of
the transcription factor CREB, a loss of synaptic con-
tacts, a retraction of dendrites and eventually cell death.15

Moreover, evidence was provided that amyloid-b (Ab), a
causative agent for Alzheimer disease, drives Jacob into
the nucleus.20,21 Nuclear import depends upon activation
of extrasynaptic NMDAR and is part of pathological Ab-
signaling. However, Jacob also transits to the nucleus of
CA1 neurons following induction of Schaffer collateral
dependent long-term potentiation (LTP), a form of syn-
aptic plasticity that essentially requires opening and cal-
cium influx through synaptic NMDAR and hence acts

as a messenger for both synaptic and extrasynaptic
NMDAR pathways.22 In previous work we addressed
how the protein gets to the nucleus. Neuronal importins
are present in axons, dendrites and synapses and they
can associate with a dynein motor for active retrograde
transport along microtubuli to the nucleus. Jacob utilizes
this transport system after activation of both types of
receptors and, in a recent study, we found that Jacob, fol-
lowing its nuclear import, can even encode the synaptic
and extrasynaptic origin of NMDAR signals.17 ERK1/2-
kinase binding and ERK-dependent phosphorylation of
the serine 180 residue in Jacob encodes synaptic but not
extrasynaptic NMDAR activation. A stable trimeric
complex with proteolytically cleaved fragments of the
neurofilament a-internexin is formed which protects
Jacob and active ERK against phosphatase activity dur-
ing retrograde transport. In the nucleus, this signalo-
some-like complex enhances “plasticity-related” and
“CREB-dependent” gene expression as well as synaptic
strength. Collectively, the evidence suggests that Jacob
operates as a mobile hub that docks NMDA receptor-
derived signalosomes to nuclear target sites and thereby
plays a role in activity-dependent gene transcription.

Discrepant reports on NELF and Jacob

It has been reported by others that a protein knock-
down of the mouse ortholog of Jacob, NELF, results in
migration deficits of Gonadotropin-releasing hormone
(GnRH) positive neurons from the olfactory bulb to
the hypothalamus during early brain develop-
ment.23,24 In addition, it was claimed that NELF is an
extracellular guidance / migration factor for routing of
GnRH positive cells along vomeronasal olfactory-
derived axons and eventually to the hypothalamus
(for overview see Table 1).

Thus, the discrepancies in reports on Jacob and
NELF concern not only the subcellular localization
but also their function.15-17,23-25 This prompted us to
delete the gene in vivo and to address the questions of
whether inactivation of the Nsmf gene in mice results
in phenotypes related to KS and whether a gene
knockout supports a role of Jacob for hippocampal
circuitry and function.

Jacob/Nsmf komice are fertile and do not show
clear signs of Kallmann syndrome

In the first set of experiments, we found that mice that
are constitutively deficient for the Nsmf gene do not
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present phenotypic characteristics related to KS.26

Along these lines, we found no indication of hyposmia
and hypogonadotropic hypogonadism in neither male
nor female knockout mice.26 The mice are viable,
fertile and displayed normal life span. The morphol-
ogy of reproductive organs display no abnormalities
in both males and females.26 Sex hormone levels and
the estrous cycle are only slightly altered in compari-
son to wild-type littermates and had no impact on
reproduction.26

Collectively, these data are at variance with a recent
study of Quaynor et al. (2015) that reported a reduced
number of hypothalamic GnRH positive neurons and
delayed puberty in female Jacob/Nsmf ko mice.27 Our
analysis was mainly focused on male mice but we also
found no evidence for subfertility in female mice.
Nonetheless, it is possible that sex differences exist
and that female knockout mice exhibit subtle altera-
tions toward hypogonadotropic hypogonadism.

The involvement of Jacob/NELF in the pathogene-
sis of KS was plausible because of previous reports
that claimed a role of NELF as a guidance molecule.
However, no evidence was presented that the protein
can be secreted and, in fact, Jacob/NELF lacks a signal
peptide that is mandatory for trafficking through the
secretory pathway.15 In addition, we could not support
an extracellular localization of Jacob, which would be

consistent with a role in axon growth cone guidance.26

Instead, the results show, in accordance to previous
results, a nuclear and synaptic localization of Jacob in
mouse and rat pyramidal neurons.25 Finally, both
Jacob protein and mRNA levels are relatively low dur-
ing early brain development, when cell migration and
axon extension takes place, and increase during den-
drito- and synaptogenesis in the second postnatal
week in rodents.15,16 Thus, a major functional role of
Jacob as a growth cone-associated molecule for the
migration of GnRH-positive neurons during develop-
ment appears unlikely.

Nuclear import of Jacob is important for dendrite
development in the hippocampus

Our further analysis then revealed that these mice
exhibit hippocampal dysplasia with a reduced number
of synapses and simplification of dendrites, reduced
hippocampal long-term potentiation (LTP) at CA1
synapses and deficits in hippocampus dependent
learning.26 Further structural anomalies include an
altered catecholaminergic innervation and mossy
fiber projection.26 Brain-derived neurotrophic factor
(BDNF) activation of CREB-activated gene expression
plays a documented role in hippocampal CA1 synapse
and dendrite formation. We found that BDNF induces

Table 1. Overview of different phenotypes observed after Jacob/Nsmf knockdown or knockout approaches with respect to KS.

Reference Type of approach Species Phenotypes

Influence on GnRH neurons Fertility Olfaction

Kramer and
Wray, 2000

knockdown in cell
culture / nasal explants
(antisense oligos)

mouse (NIH-Swiss) decrease of olfactory axon
outgrowth, decreased no. of
migrating GnRH neurons.

— —

Palevitch
et al., 2008

knockdown (antisense
oligo injecton, embryos)

zebrafish absence / misguidance of
GnRH3 axonal outgrowth,
impaired migration of GnRH3
perikarya

— —

Xu et al, 2009 knockdown in GnRH
cell lines (micro-RNAi)

mouse immortalized
GnRH neuronal cell
lines

higher Jacob/Nsmf expression in
migratory vs postmigratory
GnRH neurons, impaired cell
migration after knockdown

— —

Quaynor
et al., 2015

knockout (“knockout
first” approach, no gene
deletion, splice acceptor
site after
exon 3)

mouse (C57BL6) reduced no. of GnRH neurons
(female mice, age 4-6 months)

puberty: delayed in females
reproductive organs: reduced
uterine weight
sex steroids: no difference
breeding performance:
subfertility

organization / morphology
of BO is normal (data not
shown)

Spilker et al.,
2016

knockout (deletion
of exons 1-3)

mouse (C57BL6J) no differences in GnRH cell
no. and distribution
(male mice, age 5 months).

puberty: not tested
reproductive organs: normal
sex steroids: reduced estradiol
levels in females (estrus/
metestrus phase)
breeding performance: normal

organization / morphology
of BO is normal mice are
not anosmic
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the nuclear translocation of Jacob in an NMDAR-
dependent manner in early development, which
results in increased phosphorylation of CREB and
enhanced CREB-dependent Bdnf gene transcription.26

Most strikingly, the BDNF-induced nuclear import of
pERK, which likely acts upstream of CREB, was
clearly reduced in Jacob-deficient neurons. In conse-
quence, Nsmf knockout mice show reduced hippo-
campal Bdnf mRNA and protein levels as well as
reduced pCREB levels during dendritogenesis.26

Moreover, BDNF reexpression can rescue the mor-
phological deficits in hippocampal pyramidal neurons
devoid of Jacob. Taken together, the data suggest that
the absence of Jacob in early development interrupts a
positive feedback loop between BDNF signaling, sub-
sequent nuclear import of Jacob, activation of CREB,
and enhanced Bdnf gene transcription, ultimately
leading to hippocampal dysplasia (see Fig. 1).26

Conclusions

We think it is unlikely that Jacob/NELF plays a major
role in early development as an extracellular guidance
molecule for the migration of GnRH-positive neurons
from the olfactory bulb to the hypothalamus. In con-
sequence, a monogenic causation of Kallmann syn-
drome by mutations in the Jacob/Nsmf gene that lead
to a loss of function is unlikely, although the previous
work that reported migration deficits was based on
acute antisense-mediated protein knockdown (see

Figure 2. Genomic structure of the mouse Jacob/Nsmf gene, key motifs and phosphorylation sites of the Jacob protein. (A) The Nsmf
mouse gene consists of 16 exons. Exons 3, 5, 6, 8, 9 (marked in green) can be alternatively spliced. In addition, intron 9 has been pre-
dicted to constitute for one further isoform (denoted 9a) (B). The Jacob/Nsmf protein is largely unstructured but contains several motifs
like a N-myristoylation site, a bipartite NLS, an IQ domain, central a-helical region, ERK-1 kinase binding site, and Triple a-helical spectrin-
like repeats described before. Disorder Enhanced Phosphorylation Predictor (DEEP) revealed numerous phosphorylation sites (blue; only
phosphorylation sites with DEEP score above 0.7 were included). Analysis of Jacob mouse protein with PhosphoSitePlus tool (Cell Signal-
ing) revealed numerous phosphorylation sites reported by more than one Mass Spectrometry analysis studies (red). In bold, a S180 phos-
phorylation site confirmed by site-specific method, i.e. site-directed mutagenesis, mass-spectrometry and specific antibodies.25-27

Figure 1. Translocation of Jacob/Nsmf to the nucleus is a key fac-
tor for a positive feedback loop involved in BDNF synthesis. BDNF
induces the NMDAR-dependent translocation of phosphorylated
Jacob to the nucleus in a trimeric complex with pERK1/2 and
a-internexin. Higher levels of nuclear pJacob and pERK1/2 sub-
stantially contribute to expression of CREB-dependent genes
including bdnf. BDNF synthesis enhances dendritic and synaptic
development, necessary for unaltered synapto-nuclear communi-
cation, cell survival and expression of plasticity-related genes.
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Table 1) and compensatory mechanisms of a constitu-
tive gene knock-out cannot be completely excluded.

On the other hand, we found several indications for
a role of the protein in hippocampal dendrito- and
synaptogenesis. It will be interesting to see whether
this role is specific for certain brain regions and
whether it might play a role in human disease. The
human, mouse, and rat genes are highly conserved
with 96% identity across species at the amino acid
level and an identical exon/intron organization in all
mammals. Of note, Jacob undergoes extensive splicing
and more than 20 splice isoforms can arise from tran-
scription of the gene (see Fig. 2).16 This high degree of
conservation in amino acid sequence and gene organi-
zation is surprising since Jacob harbors no clear-cut
domains. In silico analysis predicts a protein with long
disordered stretches and it is likely that the protein
will only acquire a defined structure when bound to a
target. Jacob is most likely a phosphoprotein that con-
tains several motifs for protein interactions (Fig. 2)
and we are currently underway to establish a larger
Jacob-interactome (Fig. 2). Database and literature
searches have so far revealed very few mutations and
polymorphisms in the human NSMF gene and it will
be interesting to test whether mutations, including
those already identified, might interfere with protein
function within this interactome. Finally, we speculate
that a role in human disease might be related to tran-
scriptional regulation of the gene, aberrant splicing
and pathological signaling similarly to what has been
reported for Ab-signaling.
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