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Abstract

Computational models have gained popularity as a predictive tool for assessing proposed

policy changes affecting dietary choice. Specifically, they have been used for modeling die-

tary changes in response to economic interventions, such as price and income changes.

Herein, we present a novel addition to this type of model by incorporating habitual behaviors

that drive individuals to maintain or conform to prior eating patterns. We examine our

method in a simulated case study of food choice behaviors of low-income adults in the US.

We use data from several national datasets, including the National Health and Nutrition

Examination Survey (NHANES), the US Bureau of Labor Statistics and the USDA, to pa-

rameterize our model and develop predictive capabilities in 1) quantifying the influence of

prior diet preferences when food budgets are increased and 2) simulating the income elas-

ticities of demand for four food categories. Food budgets can increase because of greater

affordability (due to food aid and other nutritional assistance programs), or because of

higher income. Our model predictions indicate that low-income adults consume unhealthy

diets when they have highly constrained budgets, but that even after budget constraints are

relaxed, these unhealthy eating behaviors are maintained. Specifically, diets in this popula-

tion, before and after changes in food budgets, are characterized by relatively low consump-

tion of fruits and vegetables and high consumption of fat. The model results for income

elasticities also show almost no change in consumption of fruit and fat in response to

changes in income, which is in agreement with data from the World Bank’s International

Comparison Program (ICP). Hence, the proposed method can be used in assessing the

influences of habitual dietary patterns on the effectiveness of food policies.

Introduction

Computational models can serve as powerful tools that complement existing evidence-gather-

ing techniques to develop human health policies [1]. These models can simulate multiple sce-

narios of policy change at low risk and cost. An important application for such models is in the
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area of food policy, where we can study the dietary effects of interventions such as food aid or

nutritional assistance programs [2–4]. These policy-driven interventions are generally consid-

ered as our major tools to improve health outcomes such as obesity and malnutrition [5].

One technique that has been widely used to study food dietary choices is linear program-

ming (LP) [6]. Specifically, LP has been used to generate simulated diets through algorithms

that minimize the deviation from average population dietary patterns [7] while satisfying bud-

getary constraints [8]. LP has been frequently used to assess the economic feasibility of recom-

mended diet guidelines [9, 10] and explore approaches to improve the nutritional impact of

food aid policies [11–14].

LP models are appealing, particularly in regard to their mathematical optimization capabili-

ties: they always converge to a unique solution, which is the diet with the minimum deviation

from a target diet [15]. Hence, different initial diets that reflect variations in prior eating habits

would lead to the same result for the final diet under the LP algorithm. While solution unique-

ness is a strength in many respects, in some circumstances it can be a limitation, particularly

when history-dependence is of interest. Studies have shown that food preferences develop

throughout life in response to food experiences and attitudes [16] starting from neurological

and physiological development during childhood [17, 18] or even before the childbirth [19]. In

other words, taste preferences and eating habits are formed early in life and persist into adult-

hood, resulting in dietary habits that are resistant to change. In addition, there has been an

increasing realization of the role of the brain reward system in affecting both liking (palatabil-

ity) and wanting (appetite) of food [20]. These changes affect various hedonic, cognitive and

homeostatic aspects of food choice [21]. Thus, habitual dietary choices have important influ-

ences that may be highly relevant when modeling responses to policy changes.

In this work, we demonstrate how an agent-based model (ABM) can be used for the analy-

sis of dietary choices under budgetary constraints. An ABM is a software tool wherein a collec-

tion of simulated agents, representing individuals, are endowed with characteristics and

behaviors that reflect the demographics and behaviors of a population of interest. While ABMs

have only recently been introduced in the field of public health nutrition, they are gaining

acceptance as a tool that provides insights that complements other existing tools such as LP

[22–24]. In the authors’ previous work on agent-based modeling [25], dietary behaviors of

individuals from low-income families were examined. The goal of that work was to evaluate

the effects of three price metrics (prices in relation to calories, servings and weight) on food

choices. It was found that when simulated individuals in the ABM made food decisions based

on price per calorie, the results most closely matched the average observed intake of low-

income individuals.

In the present paper, we extend this ABM to examine the effects of changes in food budget

constraints on dietary choices. We consider two scenarios: in the first, food budgets of low-

income individuals are increased to the budget corresponding to the cost of the mean diet for

all income groups, as determined by National Health and Nutrition Examination Survey

(NHANES). The purpose of this analysis is to examine the extent to which prior dietary habits

of low-income individuals would affect dietary behavior when food budget constraints are

relaxed. In the second scenario, we analyzed the income elasticity of demand. The income elas-

ticity of demand for each of the main food categories is defined as the percent change in the

amount of consumed food in response to a one-percent increase in income. We compute the

income elasticities of demand for four food groups, milk, grains, fruit and fats, which are cho-

sen so that they can be compared with the available income elasticities reported by the USDA.

Here, the changes in the quantity of the consumed food are considered separately for each

food category. Both scenarios examine the effects of food budget changes; the primary differ-

ence is that an incremental change is examined in the second scenario.
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Materials and methods

We present our method through a case study based on dietary behaviors of low-income adults

in the US. Each agent is assigned an age, gender and BMI, which are randomly generated with

means and variances that match the population with the lowest 41% income in the NHANES

data set, as described in more detail in the next section. In our model, each simulated individ-

ual (agent) adjusts its diet by trying to keep her/his diet as close as possible to the mean diet. By

mean diet, we refer to the average consumption pattern of our population, given by the average

calorie intake for the main food groups (as defined by the USDA). In previous studies of the

behavioral influences of food prices, the implicit assumption is that individuals are budget

optimizers who consider price-calorie tradeoffs to determine their diets [7–11, 26–28]. This

assumption is based on observations that show that people change their sources of calories,

rather than their total caloric intake, when faced with changes in food budgets or prices [7]. It

has also been reported that low-income individuals maintain their identity and self-respect by

retaining familiar dietary patterns instead of purchasing the least expensive source of nutrients

to achieve a healthy diet [7, 29].

Based on these observations, we follow the process shown in Fig 1A in our ABM to simulate

an individual agent’s diet choices under a food budget constraint. Here, an agent’s initial diet

is set equal to the mean diet, and is then iteratively and incrementally altered until its cost is

less than the agent’s food budget. The iteration begins by randomly choosing an increasing

Fig 1. The process used by the agents (individuals as represented in the agent-based model) to update their

diet. (A) Normal scenario: agents begin with the mean diet and adjust food intake to meet their food budget constraints.

(B) Reversed scenario: agents begin with the diet derived from part (A) and adjust food intake when the food budget is

increased to be equal to the cost of the mean diet. The difference between the two scenarios is shown using dotted

circles, and boxes similar to the Normal Scenario are shown in gray.

https://doi.org/10.1371/journal.pone.0178348.g001
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food category (C-I) and decreasing food category (C-D). The probability pi of food category i
being chosen as the increasing food category C-I (i = 1. . .N, where N is the number of food cat-

egories) is calculated by:

ti ¼ mi � ei

pi ¼
ti

PN
k¼1

tk

where mi refers to the average percentage of calorie intake from food category i. The term ei is

the absolute value of the own price elasticity of demand for food category i, defined as the per-

centage change in the demand for food category i in response to a one-percent rise in the price

of that food category. (The absolute value is used because the own price elasticity of demand is

negative.) Variable ti, which is the product of mi and ei, is divided by its sum to obtain the final

set of probabilities pi.
The probability p0j of food category j being chosen as the decreasing food category C-D pro-

ceeds with a similar set of expressions:

m0j ¼ 1 � mj=ðN � 1Þ

t0j ¼ m0j � ej

p0j ¼
t0j

PN
k¼1

t0k

It can be seen that m0j acts in a complementary manner in relation to mi, in that an increase

in mi results in a decrease in m0j. It is noted that since
Pn

i¼1
mi ¼ 1, we will also have

Pn
j¼1
m0j ¼

1. A higher m0j corresponds to a greater likelihood of being chosen as the decreasing category;

as before, this likelihood is adjusted by multiplying by the price elasticity ej.
Once the two food categories are chosen, then a candidate for an iterative change in diet is

determined by increasing the amount of energy received from food category C-I by a small

amount (ε%), while simultaneously decreasing food category C-D by the same amount. This

candidate change in diet is accepted only if the price (per calorie) of the first food category is

less than the second; otherwise the food category choice algorithm is repeated. In this manner,

the total net caloric intake remains unchanged, while the net cost of the diet decreases because

of the differential pricing of the two food categories.

This algorithm uses the mean diet as one measure of the preferences while incorporating

the influences of the price elasticity of demand, which reflect the willingness of an individual

to change food purchases when faced with a price increase. Individuals are more resistant to

changing consumption of foods with lower price elasticities. This means that for a food cate-

gory i, a higher mi (average percentage of calorie) would result in a higher probability of being

chosen as the C-I category, but this probability is adjusted by multiplying by ei (absolute value

of the own price elasticity of demand) to account for the resistance to change the intake of this

food category. It is noted that the use of the mean diet to determine the probability of choosing

food categories implicitly considers other factors that affect food choices such as taste, conve-

nience and cultural considerations, since all of these factors have already contributed to the

diets that were used to calculate the mean diet.
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Study population, design, and data sources

To assess the performance of our proposed method, we have simulated the food consumption

patterns of the adult (>20 years) US population in the year 2001 using our ABM. The size of

our agents’ population was set to 201 million, equal to the number of adults in the US on April

2000 [30]. Age and gender of the simulated individuals are assigned based on the US Census

data [30] while income and food expenditure data are assigned based on the US Bureau of

Labor Statistics (BLS) dataset for 2001 [31]. The non-food portion of food expenditures (such as

tips, labor and restaurant taxes) were excluded from the BLS food expenditure values, based on

US Department of Agriculture (USDA) datasets on the expenditure of food away from home

(FAFH) [32, 33]. This adjustment was necessary because our data on food price (described

below) only relates to the price of food itself. In this model, since our focus is on the changes in

dietary patterns associated with budgetary factors, we assume that all food is prepared at home.

Each agent is assigned a value for average daily energy intake (EI). Based on the age and

gender of each agent, its EI was drawn from the EI distributions as calculated from the

NHANES 2001–2002 dataset. These EI values were sampled from 6 normal distributions as

reported by Ford and Dietz [34] for the following subpopulations: 2 genders � 3 age groups

(i.e., 20–39 yr, 40–59 yr and 60–74 yr). Diets are represented as a list of numbers containing

the percentages of EI from the nine major food categories. These nine categories, as indicated

by the USDA [35], are: 1) milk and milk products; 2) meat, poultry, and fish; 3) eggs; 4) dry

beans, legumes, nuts and seeds; 5) grain products, 6) fruit; 7) vegetables, 8) fats, oils, and salad

dressings; and 9) sugars, sweets, and beverages. The mean diet list is denoted as [m1, m2, . . .,

m9] in this paper. To calculate the mean diet, the average proportion of total EI from each of

the nine major food categories was derived from the NHANES 2001–02 data [36]. We used

the food code variable in the dietary food recall dataset of the same NHANES survey [35] to

identify food categories. For adults, the calculated mean diet was: [10.7, 18.6, 1.9, 3.1, 33.4, 4.8,

7.8, 3.0, 16.6]. To avoid generating uncommon and unrealistic diet patterns in our model, the

maximum possible value for each category of food is set to the 85th percentile of the NHANES

population. Similarly, the minimum value is set to the 15th percentile.

The mean price per calorie ($/100 kcal) of each of the nine food categories is obtained from

the work by Drewnowski, et al. [37]. This data was originally calculated using the USDA Food

and Nutrient Database for Dietary Studies 1.0 (FNDDS 1.0) [36] and the Center for Nutrition

Policy and Promotion (CNPP) food prices database [38], all for the year 2001. Additionally,

food price elasticities for all food categories were obtained from Andreyeva et al. [39], except

for the beans category, which was obtained from [40].

Experiments

We begin with a set of validation simulations in which we compare the results of our model

with dietary patterns observed in the NHANES datasets. The purpose of this comparison is

to ensure that our model is able to correctly simulate the food choices of individuals. We com-

pare the food consumption patterns of our simulated individuals who had the lowest 41% of

income against similar individuals in the NHANES 2001–2002 dataset. To identify the indi-

viduals with the lowest 41% of income from the NHANES dataset, we used the total family

income variable in NHANES. Agents use the process shown in Fig 1A to adjust their diets

based on their food budget. It should be noted that the NHANES dataset does not include

food expenditure data; hence, we used the BLS dataset [31] for assigning both incomes and

food expenditures of our simulated individuals.

The next set of simulations is designed to evaluate the ability of our method to account for

the behavioral influence of prior diets. We begin by running our model until the diets of the
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agents are adjusted according to their food budget (which is essentially the same as our valida-

tion simulations described above). We then increase the food budget of the individuals in the

lowest 41% income bracket so that the food budgets of these agents are set equal to the cost of

mean diet, and then continue running the model until the cost of their diets reaches the new

(increased) food budgets. When the food budgets are increased, the diet adjustment follows a

similar logic as the process that was presented in Fig 1A. Details of this process are shown in

Fig 1B. Instead of trying to decrease the cost of her/his diet, an agent changes her/his diet to

increase its overall cost. The values for the increasing (C-I) and decreasing (C-D) food catego-

ries are updated only if the price of C-I is greater than C-D; otherwise the food category choice

algorithm is repeated. After the simulation is complete, we check our results to see if the result-

ing final diets after the increase in food budget is affected by prior diets. If our model is insensi-

tive to prior diets, then the final diet would be similar to the mean diet; otherwise, the final diet

would be significantly different.

We conclude with a set of income elasticity experiments, in which we simulate the income

elasticity of demand by using our ABM, and then compare the results to US data. Income elas-

ticity of demand (not to be confused with the price elasticity of demand) refers to the change

in the demand of a certain good in response to a 1% increase in income. We use our model

to calculate the income elasticity of demand for four food categories: milk, grains, fruit and

fats, which were compared with the available income elasticities in the World Bank’s Interna-

tional Comparison Program (ICP), as reported by the USDA [41]. These four categories were

selected because these were the only four food categories in our analysis that had correspond-

ing matches in the ICP dataset. We also developed a linear programming (LP) method to com-

pare techniques for simulating the income elasticity of demand. This LP model uses the same

set of inputs as our ABM, and is based on the minimization of the distance of the agents’ diets

from the mean diet. Other constraints have been also added to this method, including mini-

mum and maximum allowable value for the consumption of each category of food. More

details about the LP model are provided in the S1 Text.

The model was developed in the NetLogo environment [42]; the model and its source code

is publicly available [43]. Because of the stochastic nature of ABMs, we run our models 100

times, and report the average and confidence intervals of the obtained results. Additional

details about our ABM are provided in S2 Text. We formally test the null hypothesis that the

simulated diets are identical to the NHANES mean diet, with significance level set to p = 0.05.

We focused primarily on the individuals with the lowest 41% of income. We report our simu-

lation results for other income percentiles in S3 Text.

Results

Comparison with NHANES data

Fig 2 shows the average percentage of energy intake from the nine major categories of foods

for the simulated individuals who have the lowest 41% of income. In four of nine cases, the

confidence intervals of the simulated results overlap with the average intake of individuals of

this income bracket that is recorded in NHANES. We performed a series of t-tests on the sim-

ulated results, and at p = 0.05, no significant statistical difference was found between the

NHANES data and our simulated results for the Dairy, Grains, Fruits and Sugars food groups.

Dietary response to increasing budgets

In this series of simulations, the budgets of agents in the lowest 41% income bracket were

increased, and set equal to the cost of the mean diet. This simulates the effects of removing

budgetary constraints on low-income individuals. The final diets generated by our method are
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compared with the NHANES’ mean diet in Fig 3. None of the nine simulated categories had

95% confidence intervals that overlapped with mean diet values, indicating significantly differ-

ent results between the ABM-generated diet and the mean diet. In fact, after performing t-tests

Fig 2. Mean diets of the adult U.S. population with income on or below the 41st percentile, as determined from the NHANES 2001–02

data and simulated by our method. 95% confidence intervals are also shown.

https://doi.org/10.1371/journal.pone.0178348.g002

Fig 3. Mean diets of the adult U.S. population as determined from the NHANES 2001–02 data vs. the

simulated diets from our model that included the effects of prior eating behaviors. In this scenario, the

food budget of the individuals with the lowest 41% of income is increased and is set equal to the cost of mean

diet. 95% confidence intervals are also shown.

https://doi.org/10.1371/journal.pone.0178348.g003
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comparing the NHANES data with our model’s results, statistically significant differences were

observed in all 9 food groups (p<0.001 for Dairy, Meat, Eggs, Beans, Grains, Fats and Sugars

and p<0.05 for Fruits and Vegetables). S4 Text shows the results obtained from a similar

experiment using the LP method.

Income elasticities of demand

Fig 4 shows a comparison of the income elasticity of demand, obtained using the ABM, the LP

model and data from the World Bank’s International Comparison Program (ICP). The ABM

results are close to the actual data with overlapping confidence intervals. More importantly,

the ABM results correctly identified the normal goods (i.e., those goods that are consumed at

higher levels when the consumer experiences an increase in income, which in this case are

milk and fruit), as well as the inferior goods (i.e., those goods that are consumed at lower levels,

which in this case are grains and fats). In general, changes in income resulted in exaggerated

dietary changes in the LP model, leading to overestimates in the magnitudes of the income

elasticities of demand.

Discussion

Previous work has shown that dietary behaviors are resistant to change because of habits that

have been built up over a lifetime [44]. Experiences affecting food choices start from preg-

nancy, and as children grow, parental modeling and familiarity plays an important role in

their developing food preferences [45]. Studies on older adults found that their food choices

Fig 4. Income elasticity of demand for four different categories of food. The results correspond to the ABM,

the LP model and data from the World Bank’s International Comparison Program (ICP).

https://doi.org/10.1371/journal.pone.0178348.g004
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are strongly influenced by past experiences and beliefs [46]. Life course factors are suggested to

be the major component of food choice process, which refer to personal roles and the social,

cultural, and physical environments to which a person has previously been exposed [47].

For these reasons, we have developed an ABM for simulating dietary choices that is sensi-

tive to prior dietary habits. We did observe slight increases in the consumption of Fruits and

Vegetables after the increase of food budgets, which is in line with other studies on the out-

comes of food assistance programs like the Supplemental Nutrition Assistance Program

(SNAP) [48]. Nevertheless, our simulated results show that when the income of low-income

individuals was increased so that they afford the cost of the mean US diet, their diets did not

approach the proportions found in the mean diet. Instead, the diets retained some of the

unhealthy characteristics of the former diets under more constrained budgets. In particular,

the consumption of Fruits and Vegetables was lower and the proportion of Fats is higher than

what is found in the mean diet calculated from NHANES. In a relevant study, it was found

that conditional cash transfer programs (a type of welfare assistance program) increased

household fruit and vegetable consumption, but also led to excess energy consumption in poor

communities in Mexico. An application of our method could be in determining those food

categories that require special attention in food policies, as we have demonstrated variable

resistances of low-income individuals in adopting healthier choices in different food categories.

Our method can be also used as a virtual laboratory to test the potential outcomes of a range of

candidate interventions, so that we can determine the interventions that maximize desired

health outcomes, such as higher consumption of fruits and vegetables.

We have also observed that the income elasticity values of demand that were simulated by

our model are closer to the World Bank ICP values as compared with LP results. One impor-

tant reason for the difference between ABM and LP results is that the LP algorithm always

leads to the same diet, regardless of the initial diet used in the procedure. The influence of

initial diet in the LP analysis is only on the computation time required to arrive at the final

result. It is noted that the uniqueness of the LP result for each level of the income constraint is

mathematically appealing, and is an attribute that is suited for many studies of dietary behav-

iors [3, 8]. For instance, LP models have been proven to be useful because they can isolate the

effects of economic and other constraints and examine their impact on food selection [6].

ABMs, which have been used by researchers to study other areas of nutrition [22, 23, 49, 50],

can complement LP methods when complex effects of individual and environmental charac-

teristics are of interest. These complex effects can include prior diets, which is the focus of

the present study, or other behaviors, such as food dependence on high-fat and high-sugar

foods, which have been implicated as a driver of obesity [51]. Hence, policy makers interested

in analyzing the potential effects of candidate interventions and policies would benefit from

the complementary information they can gain from both LP and ABM models. When com-

pared with other commonly used methods, the only extra data requirement for the proposed

method is the price elasticity of demand. These data are easily accessible in reports such as [39]

and [40].

The present study has some limitations. The values for the price elasticity of different food

categories were determined in terms of consumption patterns of an entire population (in-

cluding both low- and high-income individuals); however, low-income individuals tend to

be more price sensitive, with slightly higher price elasticities. Additionally, our model was

designed with a set of simple rules for the dietary choices. While we believe that the current

design suffices for the purpose of this work (i.e., assessing the effects of habitual dietary ten-

dencies), in future investigations, more complex models will be needed if additional behaviors

are of interest.
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