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Abstract— Temporal-lobe epilepsy in humans is often
associated with widespread, synchronized neuron firing
that co-occurs with traveling waves in local field potential.
These traveling waves generate stochastic oscillations in a
time series of microelectrode voltage, and previous work
has deemed it informative for traveling-wave analysis to
study the mean periodicity. This manuscript reveals that:
a) mean voltage (i.e., traveling-wave periodicity) adequately
explains the observed voltage periodicity only for a select
few time intervals during seizure; and b) mean voltage has a
7 Hz cosine-series representation indicative of a nonlinear
system response given alpha-rhythm input. The a) result
implies that residual noise should be modelled explicitly,
while b) motivates a departure from the conventional plane-
wave modeling regime in source-localization efforts. The
7 Hz fundamental frequency is unsurprising given the rel-
ative transparency of the brain to 14 Hz alpha rhythms in
neurophysiological diseases (14 Hz being a subharmonic
frequency of the 7 Hz signal).

Index Terms— Alpha periodicity, Epilepsy, Cosine series,
Microelectrode array, Multitaper spectral analysis

I. INTRODUCTION

THE electrophysiological manifestation of temporal-lobe
epilepsy is high-synchronization spatiotemporal organi-

zation of neocortical multiunit firing. When multiunit activity
is outstanding, synaptic potential also exhibits stereotyped
behaviour: producing traveling waves in local field potential
(LFP). This manuscript considers voltage recordings from
a microelectrode array (MEA) in a deep-lying neocortical
layer 1. In previous literature 2, the phase of an ictal-discharge
traveling wave is used to localize a spherical-wave source.;
that is, the signal is assumed a wavepacket 3. In [21], the
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1Specific details of this setup are discussed in [29].
2e.g., [5], [21], [29].
3What [9] describes as a narrowband superposition of normal modes that

destructively interfere to make the resultant appear as if the superposition of
two equal-amplitude, different-frequency plane waves.

spatiotemporal LFP model is refined: the traveling-wave peri-
odicity is thought to approximate steady-state dynamics of a
Turing-Hopf dynamical system with stochastic forcing. To this
end, the wavepacket represents time-evolutionary mean MEA
voltage whose normal modes have high signal-to-noise ratio
(SNR).

This manuscript introduces a cosine-series model for mean
MEA voltage. In assuming a nonlinear system function, the
new model departs from the wavepacket modeling convention
because: a MacLaurin polynomial whose argument is a neural
rhythm 4 can have large enough order that the normal modes
of the system-response function are highly dispersed across
the nonnegative half of the principal domain. An advantage
of the new model is that it admits nonlinearity and stochastic
periodicity that are realistic qualities of the underlying cortical
dynamics. To this end, the identified normal modes are less
likely to be spurious signal elements than in the wavepacket
model. This manuscript discusses the results of a novel mul-
titaper spectral analysis of MEA-voltage data, accounting for
the time evolution of voltage periodicity during the course of
a human seizure.

All code and results used for the analysis of this manuscript
can be found at the code repository of [17]. There at that
repository can be found a useful README.docx file, which
itself makes reference to that important instructions document
which is referenced here as [16]. The remainder of this section
presents the model. Then Section II presents a longitudinal
analysis for one human-subject / MEA-electrode element of
the complex survey. The analysis reveals: how the periodicity
of mean voltage specifies a partition of the voltage record
during seizure into four epochs (Section II-A); and convincing
evidence for a 7 Hz fundamental frequency of the cosine series
(Section II-B). Finally: the discussion proposes a nominal
biophysical mechanism to explain the source of periodicity for
two of the epochs, while motivating further work to understand
mechanisms responsible for the other two epochs (Section III).

For ∆t > 0 a sampling period and x : R→ R, the time
series, x ∈ RN , of MEA-voltage is given by

xT = [x(tn) ]N−1
n=0 , (1)

where, for n ∈ Z: the n’th time, tn is given by

tn = n ·∆t. (2)

4Here, a neural rhythm is thought to be a nonrandom, narrowband L2-signal
that has a cosine-series expansion.
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Model x by the generative random vector, X, where 5

X[n] = X

(
tn
TN

)
, (3)

with the terms given as follows.
1) X is a real-valued Lp-process on R 6, where p ∈ N>1. 7

2) TN is the record length, where TN = tN−1.
The MEA-voltage has the signal-plus-noise decomposition,

X = x(SGN) + X(NSE), (4)

where x(SGN) and X(NSE) respectively denote the mean
signal (SGN) and noise (NSE). Denote by JSGN the order
of the cosine series.

In this manuscript, the data considered comprise a 30 kHz
voltage series from a single MEA electrode and have been
drawn from a complex clinical survey of neocortical seizure
activity. Details of the survey can be found in [29], while
the data are available at [28]. The electrode having unit
identification index is considered from the Subject C5 study
(refer to Table 1 in [29] for details).

II. RESULTS

A. The Time-evolutionary Periodicity of Microelectrode
Voltage

For a survey of time sections, preliminary MEA-voltage
multitaper power-spectral and harmonic analyses reveal for
x(SGN)-reconstructions how a sparse cosine-series signal can
explain the X mean signal. Fig. 1 presents the following.

1) First column:
• x (black, |∆t|−1 = 3× 104, N = 6× 104).
• An x(SGN)-reconstruction (grey) 8.

2) Second column: A reconstruction of the expected value
of

X(NSE) ‖ {X = x}.

In each plot row of Fig. 1, the 30 kHz trace (x) exhibits
periodicity stereotypical of one of four epochs. Table I displays
how each plot row indicates the dominance of one or the other
of x(SGN) and X(NSE) during the considered section window.
The table includes rows entitled “Alpha periodicity” because -
in the corresponding epochs - the fundamental frequencies of
the x(SGN) cosine series are 7.2 Hz and 21.9 Hz, respectively;
both are approximately mode frequencies of a 7 Hz cosine se-
ries 9. Yet stronger evidence for the 7 Hz hypothesis is that the

5For 3, the notation of T−1
N in the X argument is a reminder that tn enters

as tn · T−1
N in any timelimiting function - the custom for Fourier analysis,

as discussed in [4].
6Refer to [11] for details about Lp stochastic processes.
7Justification for the choice of p is provided in [15].
8The reconstructions have been obtained using a modified version of the

50% section-overlap method of [19] (in particular, the same choice of multita-
per time-bandwidth and zero-padding parameters). The modifications regard:
the estimation of mode frequencies; and linear extrapolation of this nominal
reconstruction at the record ends. The modifications and general reconstruction
algorithm are all detailed in Algorithm 3 of [16]. The reconstruction is denoted
by x̌(SGN) in Section IV A of [16]. For N = 6 × 104, the size of the grid of
the zero-padded fast Fourier transform is 1.31072 × 105. Refer to Section II
of [16] for details of these parameter initializations.

9Details of the frequency calculations are specified in the section forthcom-
ing; for now, remark that 14 Hz - a multiple of 7 Hz - is the alpha-band upper
bound specified by [30].
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Fig. 1. A cosine-series signal accurately represents mean MEA-voltage
in some epochs but not others. Left: a 30 kHz section trace (black)
overlaid by a cosine-series reconstruction (grey). Right: residuals of the
cosine-series reconstruction.

third plot row shows approximately 12 full troughs occurring
between 30.0 and 31.8 s - and 12 cycles in 1.8 s yields 6.7 Hz.
As for the “Ictal wavefront” and “Ictal discharges” epoch
names, these have been chosen based on the terminology of
[27]. The table also includes columns for the base time and
the time interval of that plot row of Fig. 1 which the table
row details. Mean voltage accurately explains the observed x-
periodicity (first and third plot rows, with x(SGN) included
in the “Dominant” column of Table I) whenever the grey
x(SGN)-reconstruction trace: tracks the black x-trace; and has
comparable amplitude to that of the x-trace fluctuations. In
cases where x(SGN) does not so well explain x (i.e., second
and fourth plot rows of Fig. 1), Table I identifies X(NSE) as
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the main contributing X-component. In other words, it may
well be possible to make the assumption that X(NSE) has
nonzero mean signal and then add more of those modes to
x(SGN) in the revised model; however, this would lead to a
cosine series that is less sparse and so having higher estimation
variance 10.

TABLE I
THE EPOCHS OF AN MEA-VOLTAGE RECORD

Epoch Base Interval Dominant
min s

Alpha periodicity, early seizure 16 [54.0,56.0] x(SGN)

Ictal wavefront 17 [12.0,14.0] X(NSE)

Alpha periodicity, late seizure 17 [30.0,32.0] x(SGN)

Ictal discharges 17 [54.0,56.0] X(NSE)

Fig. 1 shows how the epochs of MEA-voltage during a
human seizure can be identified simply using the cosine-series
signal element of mean voltage. For the first row, x-points
produce: a dense, black, central region; and a sequence of
local minima and maxima more resolved in time. Absence of
these minima and maxima in the corresponding residuals plot
reveals these points to belong to x(SGN). For the third plot
row, the smooth curvature of x in a time interval between
sharp-trough events explains the good fit of x(SGN) (the grey
and black curves line up). By contrast, remark the sharp x
peaking that occurs in the second and fourth plot rows - it is
said that X is anharmonic (i.e., its variability dominated by
that of X(NSE)) during the epochs of ictal wavefront and ictal
discharges (second and fourth plot rows).

Plotting the frequency-domain signals that characterize the
finite-dimensional distribution of X provides useful diagnos-
tics to explain the functional behaviours observed in the plots
of Fig. 1. To this end, consider the diagnostic plots of Fig. 2:
whose four plot rows correspond to those of Fig. 1, and whose
contents are as follows 11.

1) First column:
• Spectral power - multitaper jackknife mean esti-

mates (black, [36]).
• Multitaper 95% confidence intervals (grey, [36]).

2) Second column:
• Multitaper F-statistic spectrum [35].
• Bonferoni

(
1− 1

N

)
level - horizontal line 12.

During the early-seizure alpha and ictal-wavefront epochs, the

10Details are provided in [15] about constructing a sparse cosine-series
model for the autocorrelation function of X(NSE) - typically, a more efficient
signal-processing method than simply adding more normal modes to x(SGN)

whenever x contains sharp-edged waveforms.
11The power-spectrum reconstructions have been obtained using the multi-

taper estimation scheme discussed in [15].
12Refer to [15] for details about the Bonferoni level. Algorithm 1 includes

a data-adaptive step for test-threshold assignment that ensures at least a user-
specified number (3 the default) of identified x(SGN) normal modes, but
since the Bonferoni threshold satisfies the 3-detection criterion the threshold
adaptation was unncessary.
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Fig. 2. The amplitudes and frequencies of mean-voltage normal modes
are revealing about generative oscillations. Left: spectral power - jack-
knifed estimates of mean (black) and 95% confidence bounds (bounded
grey region) of the multitaper spectral-power estimator - point-by-point
across the non-negative part of the principal domain. Right: spectra of
multitaper harmonic F-statistic values (99.998% the Bonferroni level, i.e.
10−2 p-value).

power spectrum (first and second plots, respectively) displays
three notable features, as follows.

1) A 60 Hz spectral peak (alternating current 13). This is the
tallest peak in both plots, occurring midway along the
frequency axis.

2) Conspicuous high-frequency spectral peaks right of the
60 Hz peak.

3) A log-linear decay indicative of red noise 14

13Refer to Section 6.2.2 in [10].
14Refer to [7], [32] for a description of red noise.
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As for the late-seizure alpha and ictal-discharge epochs, re-
mark how the 60 Hz spectral peak disappears, but that the
log-linear trend and high-frequency peaks remain similar to
what they are for the other two epochs.

In the second column of Fig. 2, the F-statistic spectra reveal
a plethora of level-99.99% peaks. The reason that the peak
frequencies extend all the way out to the 30 kHz Nyquist rate
is because no one of the considered time sections has pure-
sinusoid periodicity; for example, even given the accurate fit in
the third plot row of Fig. 1, there remains significant residual
periodicity (refer to the residuals plot right of the 30 kHz-trace
/ fit overlay). That F-statistic peak height does not decay prior
to the Nyquist rate is evidence that alpha periodicity enters the
system as an alpha rhythm in the argument of the nonlinear
system function.

B. Period Estimation for the Mean Signal
The multitaper F-statistic spectra in Fig. 2 revealed normal

modes in x(SGN). For each of the early- and late-seizure
alpha epochs, this section reveals further that the collection
of identified normal modes corresponds to those of just a
single cosine series - as opposed to the alternative, which
is a sum of indepedent cosine series: each having unique
fundamental frequency. In addition, the inferred fundamental
frequency of x(SGN) in either epoch suggests the presence
of an alpha-rhythm source. Table II displays both results and
performance diagnostics of the estimation algorithm for funda-
mental frequency 15. For fundamental-frequency inference the
early-seizure alpha epoch (Table II, first row), both the table
contents and estimation method are now described making use
of Fig. 3, which itself includes the following.

1) Top Scatter plot (solid, blue diamonds) of mode fre-
quency versus sequence index (the sequence indices
being

{1, 2, · · · , J̌SGN},

with J̌SGN the number of identified mode frequencies
and an integer estimate of JSGN - “No. ID” in Table II).
Solid, orange discs and table entries are discussed in the
second list item below. Linear correlation occurs across
a number of scatter-point clusters, as illustrated with the
use of the plotted linear trendline (remark from the plot
insert that R2 = 0.94).

2) Bottom The same plot as the top one, except now with
the following two changes so that all scatter points
approximately correspond to just a single cosine series.

a) Dynamic scale expansion of the spacing between
pairs of sequence indices (corresponding to har-
monic indices - that is: integral multiples of a
single fundamental frequency).

b) A zero-intercept constraint in the linear regression
of identified frequencies on the harmonic indices.

Up to a sequence index of 21, the scatter points of
the top plot (solid, blue diamonds) exhibit high linear
correlation. So too, do the scatter points having sequence
indices between 22 and 26 (the 22nd scatter point is

15For a detailed overview, refer to Algorithm 4 in [16].

a changepoint for the slope; in both top and bottom
plots a solid, orange disc is overlaid on the solid,
blue diamond). To align both of these two scatter-point
clusters, different trial spacings are introduced between
sequence indices to produce trial harmonic indices. As
seen in the bottom plot on either side of the orange
disc: a 20-step spacing suffices (the 1(20) entry under the
Table II “Changepoint (Steps)” column). Now, the first
two clusters combined exhibit strong linear correlation;
however, neither this cluster nor the cluster of remaining
scatter points are collinear with the resulting linear
trendline. Thus: sequence indices of the second cluster
in the bottom plot are converted to harmonic indices
by raising the sequence-index separation size from 1 to
15 (the 22(15) Table II entry). This action makes more
of the scatter points collinear in total - and so brings
the scatter points nearer the trendline on average. Next,
the top plot is used to identify a third high-correlation
cluster (sequence indices 27 through 37; solid, orange
disc overlaid on the 37’th scatter point of both top
and bottom plots) inside the larger cluster of remaining
scatter points. Then, this third cluster is aligned with the
first two of the bottom plot (the 27(80) Table II entry).
The process is continued until all scatter points align
both with each other and with the resulting trendline
(remark from the plot insert that R2 = 0.998).

TABLE II
FUNDAMENTAL-FREQUENCY CALCULATIONS FOR THE MEAN-VOLTAGE

COSINE SERIES

Base Interval Frequency No. ID Changepoint R2R2R2

min s Hz (Steps)

16 [54.0,55.8] 7.2 65 1(20),
22 (15),
27 (80),
38 (40)

0.9983

17 [30.0, 31.8] 21.9 60 1(1), 7(20),
10 (5),
24(15),
33(20)

0.9953

Fig. 4 displays the same contents as Fig. 3, except now for the
late-seizure alpha epoch. The second row of Table II contains
the relevant estimates and performance diagnostics. Given the
high R2-value, it would appear that a single cosine series is
adequate to explain the periodicity in mean voltage.

III. DISCUSSION

In Table II, 21.9 Hz is approximately three times the 7.2 Hz
fundamental frequency; therefore, both of the associated co-
sine series have a 7 Hz fundamental frequency. The alpha band
- (9, 14] Hz [30] - contains the basebands of several oscilla-
tions in temporal-lobe 16, extracellular, electric potential whose
spatial range is appreciable. Alpha oscillations are attributed

16Here, an oscillation is distinguished from a rhythm because the former
is just an L2-demodulate of the generative, random neural data signal - there
is no constraint about it being nonrandom or narrowband.
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Fig. 3. Between them, mean-voltage mode frequencies in the early-
seizure alpha epoch reveal a 7.2 Hz fundamental frequency. Top: Iden-
tified mode frequency vs. sequence index, given the training section
that corresponds to the first row in Table I. Bottom: Same as the top,
but now with scale expansions to sequence-index step size (resulting in
harmonic indices, changepoints correspond to scale changes). Display
box: fitted trendline model and the R2-value.

to the following connectivity dynamics during human seizure,
and long range of the oscillations indicates that the temporal
lobe during epileptic seizure is relatively transparent to 14 Hz
oscillations.

1) During medial refractory seizures, MEA recordings re-
veal how the (4, 14] Hz oscillation accurately predicts
action potential (AP) timing [40] 17

2) Both during the wake and natural-sleep brain states, the
[10, 20] Hz-oscillation is excited in the mesial temporal
lobe [38]. In addition, [38] lists the following references
that sighted a limbic-system 14 Hz normal mode during
rapid eye movement (REM) sleep: [14], [22], [23].

3) Recent literature specifies a spindle as an x(SGN)-mode
whose line power is approximately the average spectral
mass in the [10, 15] Hz sigma frequency band during
States 2,3 nonREM sleep 18. In [38], 14 Hz is deemed
characteristic of sleep spindles 19: citing Fig. 6 of [3],

17For a complex survey of MEA-recordings including three cell strata, the
number of cases where LFP successfully predicts spike timings falls from 26
down to 8 when shifting from the (4, 14] Hz band to the (14, 30] Hz band.

18Refer to Section 3.2.7 in [33]. Section 3.3.1 in that reference specifically
considers: [1], [24]–[26], [37]

19The “spindle” term was coined in [13], and the phenomenon first
identified in [2] - see [8] for an overview.

Fig. 4. Between them, mean-voltage mode frequencies in the late-
seizure alpha epoch reveal a 21.9 Hz fundamental frequency. The same
as Fig. 3, except now with the training section corresponding to the third
row in Table I.

in which occurs an outstanding 14 Hz spectral peak in
simultaneous electrode recordings of both the hippocam-
pal gyrus and interior 20. Whereas [3] itself presents
no evidence of 14 Hz spindles in electroencephalogram
(EEG) recordings 21, it does provide other evidence for
long-range connectivity.

In [34], it is suggested that the spike-and-wave discharges
in epilepsy during nonREM sleep might be generated in
ways similar to spindles 22: in the same spirit for proposing
biophysical models under a common-source hypothesis, it is
here proposed that the mechanism responsible for the inferred
7 Hz oscillation arises in part due to the presence of an alpha
rhythm. A candidate mechanism is the action of a nonlinear
MEA system function on a 7 Hz wavepacket; [6] shows how
the result is a 7 Hz cosine series 23.

20Remarkable evidence for this 14 Hz power is also encountered in Fig. 5
of the more recent work, [8]: in the frontal and parietal cortices, coincident
14 Hz peaks occur during nonREM sleep.

21In more recent works, Section 3.3.1 in [33] states that the following
works have indeed observed in EEG recordings large-scale propagation via
an association between spindle voltage and sigma power: [8], [39].

22In particular, refer to the spindle / spike-and-wave discharge comparison
in Fig. 1 of [12].

23The order, JSGN , depends on how many derivatives the nonlinear system
function has at the origin - a consequence of MacLaurin series expansions.
The greater the number of derivatives, the smoother the system function.
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IV. CONCLUSION

This manuscript has revealed that the sparse cosine-series
modeling of mean MEA-voltage fails to explain the out-
standing periodicity during epochs of ictal wavefronts and
of ictal discharges. As such, rigorous dynamical modeling
should include nonlinear and/or stochastic noise specification.
It appears that the epochs of early- and late-seizure alpha
periodicity both share a common 7 Hz source (suggesting the
presence of a source alpha rhythm), but that a 7 Hz rhythm
appears only as a driver for the MEA system function. This
hypothesis precludes spatiotemporal localization of the source
because more about the system function must be known before
asserting that the plane-wave dynamics of a single source are
generative of mean MEA-voltage.
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ACRONYMS

AP action potential. 5

EEG electroencephalogram. 5

LFP local field potential. 1, 5

MEA microelectrode array. 1, 5, 6

NSE noise. 2

REM rapid eye movement. 5

SGN signal. 2
SNR signal-to-noise ratio. 1
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