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Metals serve important roles in the human body, including the maintenance of

cell structure and the regulation of gene expression, the antioxidant response,

and neurotransmission. High metal uptake in the nervous system is harmful

because it can cause oxidative stress, disruptmitochondrial function, and impair

the activity of various enzymes. Metal accumulation can cause lifelong

deterioration, including severe neurological problems. There is a strong

association between accidental metal exposure and various

neurodegenerative disorders, including Alzheimer’s disease (AD), the most

common form of dementia that causes degeneration in the aged. Chronic

exposure to various metals is a well-known environmental risk factor that has

become more widespread due to the rapid pace at which human activities are

releasing large amounts ofmetals into the environment. Consequently, humans

are exposed to both biometals and heavymetals, affectingmetal homeostasis at

molecular and biological levels. This review highlights how these metals affect

brain physiology and immunity and their roles in creating harmful proteins such

as β-amyloid and tau in AD. In addition, we address findings that confirm the

disruption of immune-related pathways as a significant toxicity mechanism

through which metals may contribute to AD.
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GRAPHICAL ABSTRACT

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder

(NDD) that causes dementia in the elderly and has diverse

implications (Islam et al., 2022b; 2022a). Neuropathological

changes in the AD brain are linked to the aggregation of

amyloid-β (Aβ) and the microtubule-associated tau protein in

neurofibrillary tangles (NFTs), leading to cognitive impairment

of neuronal connectivity and neuron loss (Kolarova et al., 2012).

Aβ′s structure and harmful effects in causing oxidative stress

(OS), autophagy, and neuroinflammation have been widely

studied (Jomova et al., 2010; Uddin et al., 2020b). Several

pharmacological candidates that remove or reduce Aβ
production in AD treatment have been identified (Uddin

et al., 2020a). In recent years, it has been determined that Aβ
aggregation is not the initial event in AD pathogenesis but rather

a later event (Kepp, 2017).

New research methodologies are required to develop

successful AD treatments. According to various studies,

homeostasis of key biometals such as calcium, magnesium,

manganese, copper, zinc, and iron is disrupted in AD.

Moreover, these metals play an important role in tau and Aβ
metabolism and aggregation. It has been hypothesized that

targeting metal interactions with Aβ may be effective in

preventing AD (Li et al., 2017; Huat et al., 2019). The

pathophysiological effects of metal imbalance in the brain

have been established by several studies (Zhang Z. et al.,

2016). Akhtar et al. found that intervention with chromium

picolinate reduced streptozotocin-induced cognitive impairment

(Akhtar et al., 2020). Furthermore, chromium picolinate

treatment improved cognition and reduced oxidative damage,

mitochondrial dysfunction and neuroinflammation, and

increased insulin signaling, reversing AD pathophysiology.

Nonetheless, some argue that impaired biometal activity is the

cause of AD. The blood-brain barrier (BBB) makes treating brain

disorders challenging. Because biometals cannot passively

permeate the BBB, the metal imbalance in the AD brain

cannot be attributed solely to decreased or increased exposure

to metals but rather to a more complex initial intracellular ion

distribution. Metal exporting, importing, and sequestering

proteins maintain metal homeostasis in the brain (Harilal

et al., 2020). Heavy metal accumulation in the human body

harms various organs, particularly the brain. Several studies have

focused on the neurological functions of cadmium, mercury, and

lead in the brain (Kabir et al., 2021).

This review highlights the effects of biometals and heavy

metals on the brain, including how they contribute to AD and

immune system dysregulation. It also identifies treatment

options for metal-induced neurotoxicity and important

directions for future research.

Pathogenic mechanisms of
biometal–induced AD pathology

Iron (Fe)

Iron (Fe) is an essential trace metal that causes oxidative

damage and may contribute to NDD development. Several

studies have shown a correlation between AD and oxidative

damage (Levine, 1997). The putamen and globus pallidus have

been found to contain higher iron levels in the brains of AD

patients (Levine, 1997; Moon et al., 2016). However, serum iron

levels in these AD patients were lower or unchanged compared

to healthy individuals. The iron levels in the cerebrospinal fluid

(CSF) were not affected by AD (Ficiarà et al., 2021). However,
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further research is required to confirm this observation due to

the limited sample size of this CSF study.

Ferritin is an iron storage protein present at high levels in AD

brain tissue (Quintana et al., 2006). Therefore, CSF ferritin may

be a suitable measure of the amount of iron in the brain. Ferritin

production (Thirupathi and Chang, 2019) and secretion (Zhang

et al., 2006) by glial cells is dependent on cellular iron levels in

cultured systems. CSF ferritin levels are thought to be

representative of iron levels in the brain and can be useful in

clinical settings. CSF ferritin levels are reduced in restless legs

syndrome, a condition caused by low brain iron levels that are

treated with iron supplements (Chawla et al., 2019). CSF ferritin

levels were reportedly higher in AD patients (Kuiper et al., 1994).

However, this observation was not confirmed in later studies with

larger clinical cohorts (Paterson et al., 2014). Meta-analysis and

cross-referenced statistical methods have been used to assess the

iron content of twelve different regions of the brain. They found

iron levels were higher in eight brain regions that were

statistically linked to clinical AD diagnosis, and yellow blood

iron levels and iron overload symptoms in the brain were present

in AD patients whose iron homeostasis was unbalanced (Tao

et al., 2014). However, a meta-regression analysis found that

disparities in serum iron levels might result from differences in

average participant age between trials (Wang et al., 2015).

Unfortunately, there is no well-supported explanation for

these anomalies that lead to increased oxidative stress in AD

patients because of their higher iron levels. For iron homeostasis

to be maintained, there must be a dynamic interaction between

iron efflux and influx in which many transporter proteins play a

significant role. Iron accumulation in affected regions of the

brain may be partially caused by dysfunction of the iron exporter

ferroportin (FPN) and iron importers such as lactoferrin (Lf),

melanotransferrin (MTf), divalent metal transporter 1 (DMT1),

and transferrin (Tf) in AD patients (Figure 1). DMT1 and FPN

are iron metabolism-related proteins involved in AD progression

(Raha et al., 2014).DMT1 is not expressed in oligodendrocytes or

astrocytes. The Fe2+ influx process is associated with DMT1

(Song et al., 2007), which has two isoforms, DMT1+IRE and

FIGURE 1
The involvement of iron in Alzheimer’s disease pathogenesis. DMT1 allows ferrous iron (Fe2+) to pass through the cell directly, while transferrin
(Tf)-ferric iron (Fe3+) penetrates via endocytosis mediated by the transferrin receptor (TfR). Increased Fe2+ levels trigger the Fenton reaction, which
produces the hydroxyl radical (•OH), resulting in oxidative stress and neurotoxicity. Moreover, Fe2+ can increase tau phosphorylation by activating
glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5), resulting in neurofibrillary tangle development (NFTs). GSK3 and
CDK5 are inhibited by iron chelators, which diminish tau phosphorylation. Fe2+ interacts to the iron responsive element (IRE) in the 5′ UTR area of
amyloid precursor protein (APP) mRNA in the biological environment, resulting in the stimulation of APP translation and the production of amyloid
beta (Aβ).
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DMT1-IRE, that colocalize with Aβ in AD brain plaques.

Additionally, levels of both isoforms were found to be

increased in the hippocampus and frontal cortex of amyloid

precursor protein (APP)/presenilin-1 (PSEN1) transgenic mice

and associated with decreased FPN expression (Xian-Hui et al.,

2015). The colocalization of FPN and hepcidin in astrocytes was

associated with decreased FPN expression in the brains of AD

patients. When hepcidin is repressed, the iron export process is

inhibited, causing an iron buildup within cells (Raha et al., 2014).

Studies have found that inhibition of APP-induced iron export

reduces soluble tau levels leading to increased iron retention,

which can be achieved using lithium (Lei et al., 2012, 2017) or an

iron chelator (Lei et al., 2015). Moreover, sirtuin two regulates

cellular iron homeostasis by deacetylating nuclear factor

erythroid-derived 2-related factor 2, a transcription factor

involved in the FPN synthesis regulation (Yang et al., 2017).

DMT1 and FPN expression is reduced by chemicals present

in Chinese herbs that may represent a novel approach for

reducing iron overload-related impairment in AD patients

(Xian-Hui et al., 2015). The Tf-transferrin receptor (TfR)

complex facilitates iron uptake in BBB endothelial cells.

Endocytosis of Tf-bound iron across the BBB can be

facilitated by receptors, enabling iron transport. Significantly

different CSF Tf levels were found in individuals carrying

mutations than in relatives who did not have these mutations

(Moos and Morgan, 2000; Ringman et al., 2012). Tf and Lf

consist of two lobes, each with a Fe3+ binding site (Baker et al.,

1994). Lf expression is elevated in macrophages and monocytes

and fibrillar-type side population cells (SPs) in the cerebral cortex

of AD patients. In addition, the aging process is mediated by SP

creation. The endocytic process that eliminates Aβ is associated

with the cell surface receptor lipoprotein receptor-related protein

(LRP). Another beneficial function of Lf is its binding to LRP,

dramatically improving the soluble amyloid removal instead of

production (An et al., 2009; Wang et al., 2010). An Lf-based

liposomal delivery method for neuron growth factors has been

developed and used clinically, helping to prevent or reduce the

spread of AD (Meng et al., 2015).

Magnesium (Mg)

Magnesium helps keep intracellular calcium concentrations

high under normal conditions by preventing calcium-induced

excitatory responses (Levitsky and Takahashi, 2013). However,

calcium and magnesium imbalances affect multiple processes

that contribute to various health problems, including dementia

(Volpe, 2013). Several studies have explored the effect of

magnesium in AD pathogenesis. Hyperphosphorylated tau

aggregation in vitro has been associated with magnesium

deficiency (Yang and Ksiezak-Reding, 1999). Moreover,

magnesium-L-threonate supplements reduce the enzyme β-
secretase (BACE1), reducing levels of APP C-terminal

fragments and free APP, reducing AD-associated cognitive

impairment and synaptic loss (Li et al., 2014). Magnesium

sulfate therapy reduces hyperphosphorylated tau levels by

lowering glycogen synthase kinase 3 (GSK3) levels and

blocking its phosphorylation, and enhancing

phosphatidylinositol three kinase (PI3K) and protein kinase B

(PKB) activity (Gomez-Ramos et al., 2006; Xu et al., 2014).

Therefore, a neuroprotective magnesium effect may contribute

to AD development.

Magnesium has been shown to alleviate chronic

neuroinflammation by decreasing the calcium influx through

N-methyl-D-aspartate receptors (NMDARs), a type of calcium-

permeable cationic channel that contributes to the formation of

long-term memories and learning activated by glutamate.

Aggregation-induced NMDAR overactivation is observed in

early-stage AD (Parameshwaran et al., 2008). There are two

NMDAR subtypes identified in brain regions affected by ADwith

which magnesium interacts as an endogenous inhibitor

(Kotermanski and Johnson, 2009).

Calcium influx into post-synaptic neurons was reduced by

adding magnesium to block channels, reducing excitotoxic cell

death in dementia. The activation of adenosine triphosphate

(ATP)-gated P2X purinergic receptors (P2XRs) has also been

associated with the onset of NDDs (Witting et al., 2004). Calcium

enters and leaves cells through membrane pores formed by

microglia using P2X7R oligomers (North, 2002). P2X7R and

purinergic receptor-mediated neuroinflammation has been

alleviated by magnesium in tissue culture, suggesting that

increased magnesium levels may be an effective inhibitor of

calcium entry via cell surface channels (Lee et al., 2011).

Transporters, exchangers, channels, and various buffering

proteins maintain cellular calcium and magnesium levels.

Magnesium transporter 1 (MagT1), cyclin M (CNNM)

transporter, and transient receptor potential melastatin six

and 7 (TRP-M6) enhance magnesium entry into cells.

Magnesium release is through solute carrier family

41 member 1 (SLC41A1) and a sodium-independent

magnesium exchanger (Romani, 2011; de Baaij et al., 2015).

Several transporters, including calcium channels, are involved in

maintaining intracellular calcium equilibrium. Calcium levels in

the brain are increased by NMDAR, voltage-gated calcium

channels, and store-operated channels. Buffer proteins such as

calbindin can store calcium in the endoplasmic reticulum (ER),

while the calcium-ATPase pump and sodium-calcium exchanger

promote cellular calcium release. The AD brain’s ER-Ca

dynamics are significantly affected by the activation of two

types of calcium receptors and plasma membrane calcium-

permeable channels (Tu et al., 2006; Cheung et al., 2008).

However, the role of magnesium transporters in AD

pathogenesis remains unknown. It was found that the

physiological function of transient receptor potential cation

channel subfamily M member 7 (TRPM7) is coordinated by

presenilins, leading to familial AD (Oh et al., 2012). TRPM2 was
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removed from APP/PS1 mouse models to reduce ER stress and

age-dependent memory impairments. In addition, in vitro

studies showed that TRPM2 knockdown prevented an

increase in the magnitude of the whole-cell current induced

by Aβ, highlighting the importance of TRPM2 in the neuronal

toxicity caused by Aβ. TRPM2 alterations have also been

connected to calcium imbalance, despite their role in

controlling magnesium associated with AD (Ostapchenko

et al., 2015).

Calcium (Ca)

Calcium has been identified as a widespread second

messenger and regulator of cell functions (Komuro and

Kumada, 2005). An in vitro study found it to contribute to

the aggregation of hyperphosphorylated tau (Yang and Ksiezak-

Reding, 1999). Calcium ion concentrations in the nervous system

are tightly regulated by several mechanisms, including calcium

channels, pumps, and binding proteins, and other metal ions

such as magnesium. Magnesium has been found to be a calcium

antagonist (Levitsky and Takahashi, 2013). There are a number

of processes altered by calcium disturbances, including in NDDs

such as AD (Volpe, 2013). Calcium-mediated

neuroinflammation associated with NMDAR stimulation is

reduced by magnesium through this pathway, preventing the

long-term activation of the NMDAR-induced calcium influx.

Because of their role in synaptic activities such as memory and

learning, NMDARs are crucial calcium-permeable cationic

channels. Overactivation of NMDARs by Aβ aggregation can

occur in the early stages of AD (Parameshwaran et al., 2008).

Continuous calcium influx can increase intracellular calcium

concentrations, activating various enzymatic activities resulting

in neuronal death, protein degradation, and oxidative stress

(Mota et al., 2014). Several calcium transporters maintain

intracellular calcium equilibrium. NMDARs and voltage-gated

calcium channels are some of the receptors responsible for

elevated calcium concentrations in the body. Calcium-ATPase

pump and sodium-calcium transporter drive calcium release

from cells, while buffer proteins such as calbindin store it in

the ER. ER-Ca dynamics in the AD brain are significantly

influenced by mutated presenilins, which activate two types of

calcium receptors and plasma membrane calcium-permeable

channels (Tu et al., 2006; Cheung et al., 2008). It has also

been shown that Aβ oligomers can either activate calcium-

permeable channels or bind to NMDARs, facilitating calcium

influx into cells (Diaz et al., 2009; Arbel-Ornath et al., 2017).

Aluminum (Al)

Aluminum is the third most abundant element in the

earth’s crust and the most abundant metal. It is used in

many applications, including food preservation, cans,

cookware, automobiles, and vaccine adjuvants (Shaw and

Tomljenovic, 2013). In mammals, specific functions of

aluminum are obscure because of its toxicity to living

organisms due to its strong reactivity with carbon and

oxygen. The kidney quickly eliminates aluminum from

food and environmental sources in humans. However,

aluminum salts in vaccine adjuvants are biologically active

and accumulate in the nervous system. Aluminum has been

associated with AD and other NDDs (Aoun Sebaiti et al.,

2018). It was found to accumulate with Aβ peptide in the

brains of individuals with dialysis-associated encephalopathy

(Ogunlade et al., 2022). Surprisingly, their symptoms

disappeared soon after its removal from the dialysis

solution (Exley and Mold, 2019). A recent meta-analysis

found that chronic aluminum exposure increased the

incidence of AD by almost 70% (Wang et al., 2016).

Furthermore, an association between numbers of AD

patients and their exposure to aluminum-adjuvanted

vaccines was identified (Shaw and Tomljenovic, 2013), with

increased levels of aluminum found in their hair, blood, and

urine (Dórea, 2020). Aluminum hydroxide injections cause

long-term memory loss, anxiety, and neurodegeneration in

the spinal cord and motor cortex in mice (Shaw and

Tomljenovic, 2013). Oxidative stress and mitochondrial

dysfunction may also be responsible for neurological

damage. However, several studies do not account for

confounding factors such as genetic backgrounds that may

predispose an individual to aluminum-induced neurological

dysfunction. Aluminum-induced neurotoxicity is likely due to

a combination of genetic and environmental factors (Wong-

Guerra et al., 2021).

Pathogenic mechanisms of heavy
metal-induced AD pathology

Copper (Cu)

The neurological system is very sensitive to heavy metals.

Copper is an important transition metal involved in numerous

biological processes, including energy metabolism and

antioxidant defense. In addition, copper is involved in

protecting against free radicals, cell respiration, and

neurotransmitter synthesis (Zatta and Frank, 2007; Scheiber

and Dringen, 2013). Copper deficiency may affect the

production and maintenance of myelin causing neuronal

degeneration (Table 1). In NDDs such as AD, copper levels

are altered. However, the role of copper in AD remains

enigmatic. Copper levels in senile plaques are abnormally high

(Lovell et al., 1998). A deficiency in total copper in AD brain

tissue has been observed in various studies (Deibel et al., 1996)

and a recent meta-analysis that also found elevated plasma and
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TABLE 1 Some heavy metal-induced Alzheimer’s disease-associated molecular objects.

Physical/
chemical/
clinical
properties

Arsenic (As) Lead (Pb) Cadmium (Cd) Mercury (Hg)

Absorption Organic: also binds as trivalent
and pentavalent>90%;
inhalation: absorption is
dependent on particle size;
GI inorganic: trivalent and
pentavalent salts >90%

Skin: alkyl lead compounds
(methyl and tetraethyl lead)
because of their lipid solubility;
inhalation: up to 90% depending
on particle size; GI: Adults have a
GI of 5–10%, whereas children
have a GI of 40%

Inhalation 10–40%; GI 1.5–5% GI: inorganic salts can be absorbed and
transformed to organic mercury by
bacteria in the stomach; inhalation:
elemental mercury is entirely absorbed

Distribution Concentrates in the skin, nails,
and hair; accumulates in the
lungs, heart, kidney, liver,
muscle, and brain tissue

Initially carried in red blood cells
and dispersed to soft tissues
(kidney and liver); primarily as a
phosphate salt in bone, teeth, and
hair

Binds to albumin and blood cells at
first, then to metallothionene in the
liver and kidney

Hg (vapor) penetrates membranes
easily and quickly from the lungs to the
CNS. Organic salts (lipid soluble) are
equally distributed and eliminated by
intestinal (intracellular) feces. Salts
that are inorganic concentrate in the
blood, plasma, and kidneys (renal
elimination)

Half-life 7–10 h Blood: 30–60 days; bone:
20–30 years

10–20 years 60–70 days

Sources of
exposure

GI: food and well water
Environmental: smelting ore
waste, such as Ga in
semiconductors, herbicides, and
insecticides; inhalation: smelting
fumes and dust

GI: paint, pottery, moonshine;
inhalation: metal fumes skin:
tetraethyl lead in gasoline

Inhalation: industrial, metal fumes,
tobacco; environmental:
electroplating, galvanization, plastics,
batteries; GI: pigments, polishes,
antique toys

Environmental: electronics and plastic
industry; seed fungicide treatment;
dentistry

Mechanism of
toxicity

Membranes: Capillary
endothelium protein damage
increased vascular permeability,
resulting in vasodilation and
vascular collapse; inhibition of
sulfhydryl group containing
enzymes; suppression of
anaerobic and oxidative
phosphorylation (substitutes for
inorganic phosphate in synthesis
of high-energy phosphates)

Heme production is inhibited;
heme is a key structural
component of hemoglobin,
myoglobin, and cytochromes

Binds to proteins’
sulfhydryl groups
(-SH groups)

Inhalation: emphysema, local
irritation, and suppression of
alpha1-antitrypsin; oral: kidney:
proximal tubular damage
(proteinuria) linked to beta2-
acroglobulin

Protein precipitation and
destruction of mucosal
membranes due to salt
dissociation; necrosis of the
proximal tubular epithelium;
inhibition of sulfhydryl (-SH)
group containing enzymes

Treatments Exclusion from exposureAcute:
supportive therapy: fluid,
electrolyte replacement, blood
pressure support (dopamine);
chronic: penicillamine w/o
dialysisrsine gas (AsH3) acts as a
hemolytic agent with secondary
to renal failure. Supportive
therapy: transfusion; chelators
have not been proved to be
effective

Treatment with chelators such as
CaNa2EDTA, BAL, dimercaprol,
and D-penicillamine after removal
from exposure

Removal from exposure, chelation
therapy using CaNa2EDTA, and BAL,
although the BAL-Cd combination is
exceedingly toxic and is not utilized

Removal from exposure; Hg and Hg
salts >4 μg/dl: 2,3-
dimercaptopropanol (BAL), β, β-
dimethyl cysteine (penicillamine),
most effective is N-acetyl-β, β-
dimethyl cysteine (N-acetyl-
penicillamine); methyl Hg-supportive
treatment (nonabsorbablethiol resins
can be given orally to reduce methyl
Hg level in gut)

Humans’
maximum
allowable dosage

10–50 μ gkg −1 (EPA
References)

5 μ gkg −1day −1 (EPA
References)

0.5–1 μ gkg −1day −1 (EPA
References)

0.1–2 μ gkg −1day −1 (EPA
References)

References (Yadav et al., 2010; Sharma et al.,
2014)

(Sharma et al., 2014; Kumar Singh
et al., 2018)

(Sharma et al., 2014; Batool et al.,
2019)

(Sharma et al., 2014; Patel and Rao,
2015)
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serum copper levels in AD patients (Klevay, 2008). However, no

significant difference in copper levels was observed in the CSF of

healthy individuals and AD patients (Ventriglia et al., 2012; Vaz

et al., 2018).

Copper precipitates in large amounts in senile plaques,

causing copper insufficiency elsewhere in the body. Copper

has been shown to negatively influence the pathological

mechanisms of Aβ and tau (Sparks and Schreurs, 2003;

Kitazawa et al., 2009), potentially explaining this

heterogeneity. Copper has a strong affinity for Aβ and

stimulates the production of its oligomers (Tõugu et al.,

2008; Jin et al., 2011). Because copper and Aβ can

catalytically produce hydrogen peroxide in vitro, oxidative

stress may be a factor in copper-mediated Aβ oligomer

cytotoxicity. Copper chelators such as clioquinol can

counteract Cu-Aβ toxicity (Adlard et al., 2008; Matlack

et al., 2014). Copper is also present in A precursor-like

protein 2 (APLP2) and APP (Barnham et al., 2003). Indeed,

higher copper levels in the cerebral cortex of mice missing APP

or APLP2 indicate that the copper transporter APP may also

function as a chelator (White et al., 1999b). However, another

study by the same authors found that APP deletion in cortical

neurons had no impact on copper uptake (White et al., 1999a),

suggesting that they may not be a copper carrier but instead

reflect improper copper interactions.

Copper increases exocytosis and decreases endocytosis,

facilitating the redistribution of APP to the cell membrane

(Acevedo et al., 2011). Copper has also been shown to

enhance the GSK3-mediated dephosphorylation of

endogenous APP and facilitate its proteolytic degradation

into Aβ (Acevedo et al., 2014). In addition, the binding of

copper to the microtubule-binding domain of tau causes its

aggregation in vitro (Su et al., 2007). Hydrogen peroxide

production was induced by copper exposure in a mouse AD

FIGURE 2
Amodel that depicts the copper transit system and its link to AD. Copper transporter 1 (CTR1) transports Cu+ into brain cells. Cu2+ uptake is aided
by DMT1. Various Cu chaperones, including such copper chaperone for superoxide dismutase (CCS), cytochrome oxidase enzyme complex
(COX17), and antioxidant protein (ATOX1), sequester accumulated Cu into particular cellular sites. ATOX1 is thought to transfer Cu+ to ATP7A
(copper-transporting P-type ATPase) and ATP7B, which aid in the import of Cu+ into synaptic vesicles for release and/or facilitate Cu export
straightforwardly. Increased oxidative stress may be caused by excessive intracellular Cu+ activating the Fenton reaction. Cu2+ also leads to tau
hyperphosphorylation by stimulating the glycogen synthase kinase 3β (GSK3β) pathway, which is implicated in the production of the matrix
metalloproteinases (MMP) important for Aβ breakdown. Copper interacts to Aβ in the synaptic cleft, facilitating the production of senile plaques.
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model (Kitazawa et al., 2009). The activation of cyclin-

dependent kinase 5 (CDK5) and GSK3 pathways is

believed to be how copper mediates tau phosphorylation

(Crouch et al., 2009).

Copper trafficking mechanisms in the AD brain are well

understood. P-type ATPases, particularly ATP7A and ATP7B,

play a crucial role in controlling monovalent copper in cells

together with the transporters, high-affinity copper uptake

proteins 1 (CTR1) and 2 (CTR2) (Kuo et al., 2006; Yu et al.,

2017). Copper-containing enzymes are synthesized by DMT1 in

cells that receive divalent copper from DMT1 (Zheng and

Monnot, 2012). However, ATP hydrolysis can reduce copper

overload in cells, and this process is used by both ATP7A and

ATP7B to export copper from cells.

In addition to transporters, many molecular chaperones such

as antioxidant protein 1, the enzyme complex cytochrome

oxidase, and copper chaperone for superoxide dismutase

(SOD) contribute to copper delivery (Harris, 2001). Studies

found that genetically deleting the copper transporter 1C

(CTR1C) gene, a member of the CTR1 family with high

homology to its human ortholog, in a Drosophila AD model

drastically decreased levels of copper accumulation in the brain

(Lang et al., 2013). In addition, when another copper importer,

copper transporter 1B (CTR1B), was suppressed or when the

copper exporter ATPase copper transporting 7 (ATP7) gene was

overexpressed in this ADmodel, the same outcome was observed

(Figure 2). Flies with CTR1 knocked down had higher levels of

Aβ production but lower levels of oxidative stress, suggesting that
increased Aβ oligomers or Aβ aggregates are less harmful with

reduced copper influx (Lang et al., 2013). When amyloid plaques

are present, ATP7-alpha (ATP7A) levels are increased in nearby

activated microglial cells, leading to a dramatic shift in copper

trafficking. AD can be associated with inflammation-induced

copper dyshomeostasis in microglia based on this

neuromechanism (Zheng et al., 2010). An accumulation of

single nucleotide polymorphisms in the ATP7-beta (ATP7B)

gene is associated with an increased risk of AD development,

indicating that changes in copper homeostasis may accelerate

AD-associated neurodegeneration (Bucossi et al., 2011; Squitti

et al., 2013).

Manganese (Mn)

Manganese is an essential trace element contributing to the

growth of human tissues and the regulation of intracellular

homeostasis (Prakash et al., 2017). SOD and glutamine

synthetase are two important manganese-dependent enzyme

cofactors. There is increasing evidence that manganese

overload is associated with NDDs and that even a slight

manganese excess can cause symptoms that are comparable

with manganese (Park et al., 2014). This cell toxicity is caused

by various mechanisms, including oxidative stress and

mitochondrial dysfunction, abnormal energy metabolism,

toxic chemical accumulation, cellular depletion of antioxidant

defenses, and autophagy (Guilarte, 2013; Martinez-Finley et al.,

2013). Manganese levels in the brains of AD patients with

dementia were found to be significantly higher than in healthy

individuals, with the highest concentrations in the parietal cortex

(Srivastava and Jain, 2002; Tong et al., 2014). Plaques were

disseminated in monkeys exposed to chronic manganese

levels. The p53 pathway targets the most affected gene in the

frontal cortex, amyloid-beta precursor-like protein 1 (APLP1)

(Guilarte, 2010). The frontal cortex appears to be a primary target

of manganese exposure, contributing to early dementia

(Schneider et al., 2013). The mechanism by which manganese

treatment elevates Aβ peptide levels is likely related to the

disruption of Aβ degradation (Tong et al., 2014). A recent

study found, similar to other biometals, manganese can

weakly bind to a specific region of Aβ (Wallin et al., 2016).

Additional research is required to fully understand these initial

findings and determine how manganese binding to Aβ affects Aβ
aggregation.

The antioxidant enzyme Mn-SOD contains manganese and

is crucial for maintaining mitochondrial health. Oxidative

respiration is inhibited by increased manganese, increasing

reactive oxygen species (ROS) generation and mitochondrial

dysfunction (Gunter et al., 2006). Aβ plaque deposition and

tau phosphorylation in a transgenic AD mouse model were

elevated when Mn-SOD was partially inhibited (Li et al., 2004;

Melov et al., 2007). However, the overexpression of Mn-SOD

reduced the load of cortical plaques associated with AD

pathology (Dumont et al., 2009), associating AD pathogenesis

with mitochondrial oxidative stress. Because manganese and iron

compete to some extent for binding sites and transport channels

in the Golgi apparatus, it has been hypothesized that excessive

manganese absorption causes Golgi iron deficiency (Carmona

et al., 2010).

Manganese transport is mediated by numerous importers,

such as the dopamine transporter (DAT), DMT1, Tf/TfR, zinc

transporters 4 (ZIP4) and 8 (ZIP8), secretory route Ca2+-ATPase

1 (SPCA1), ATPase cation transporting 13A2 (ATP13A2/

PARK9), solute carrier family 30 member 10 (SLC30A10),

and FPN (Figure 3) DMT1 was the first mammalian

transporter for cellular manganese absorption and an iron

influx transporter. When iron is scarce, DMT1 facilitates the

efficient transfer of manganese across the BBB (Garrick et al.,

2006). Trivalent manganese enters cells by ligand-receptor

endocytosis, while divalent manganese enters cells via DMT1

(Subramaniam et al., 2002). Zinc-binding ZIP8 and zinc

transporters 14 (ZIP14) have been found by multiple studies

to contribute to manganese absorption in the liver and lungs

(Aydemir et al., 2017; Lin et al., 2017).

Recent studies have focused on the role of exporter proteins

in maintaining manganese levels. The cell surface-located efflux

exporter SLC30A10 was identified in genome research to be a

Frontiers in Pharmacology frontiersin.org08

Islam et al. 10.3389/fphar.2022.903099

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.903099


potential zinc and manganese transporter. There is an increased

accumulation of manganese in the brain of Parkinson’s disease

patients who carry SLC30A10 mutations (Tuschl et al., 2016). In

the frontal cortex of AD patients and APP/PS1 transgenic mice,

SLC30A10 levels are consistently lower, indicating that its

dysregulation may be a contributing factor to the AD onset

and progression (Bosomworth et al., 2013).

Several studies have shown that the iron exporter FPN

operates as a cellular manganese exporter in a pH-dependent

manner to reduce manganese buildup and cytotoxicity in the

body (Madejczyk and Ballatori, 2012). The ATP13A2 cation

transporter transports manganese and zinc, among others.

Overexpression of ATP13A2 has been shown to lower

intracellular manganese concentrations, lowering manganese-

induced mortality. ATP13A2 loss-of-function mutations are

associated with increased α-synuclein and Aβ plaques in Lewy

body dementia (Murphy et al., 2014).

SPCA1 homolog calcium-transporting ATPase 1 (PMR1) has

been shown to mediate calcium and manganese transport, and

the ectopic expression of SPCA1 in yeast increases their

susceptibility to manganese poisoning (Ton et al., 2002).

While SPCA1 has been proposed as a secondary regulator of

cellular manganese homeostasis, the affinity between SPCA1 and

manganese and the roles of SPCA1 in AD pathogenesis requires

further research.

Zinc (Zn)

The brain is the organ with the highest concentration of zinc

in the body. Zinc-dependent transcription factors and enzymes

represent more than 2,000 proteins in the brain, and zinc is found

in 70% of all brain proteins studied so far (Takeda, 2000). Zinc is

transported into the brain parenchyma across the BBB and CSF

barriers. For example, zinc can be transported across the BBB

through its interaction with L-histidine in both plasma and CSF

(Takeda, 2001). In the CSF and extracellular fluid compartments,

zinc can be readily exchanged following its uptake by the body

(Takeda, 2001). One of the three families of proteins that

regulates zinc homeostasis in the brain is the zinc-binding

proteins (ZBPs), which are primarily responsible for

regulating intracellular zinc levels (Mocchegiani et al., 2001;

FIGURE 3
The manganese transport mechanism, and its association with Alzheimer’s disease. DMT1, ZIP8/ZIP14, and dopamine transporter (DAT) are
involved for Mn2+ inflow on the cell membrane, whereas Tf/TfRmediates Mn3+ entrance into the endosome via endocytosis and is then released into
the cytoplasm by DMT1. SLC30A10 and Fpn, on the other hand, transport Mn2+ out of cells. ATP13A2 and SPCA1 also transport Mn2+ into the
lysosomes and Golgi for bioavailability, or produce secretory vesicles that aid Mn2+ efflux. Mn2+ conditions can cause mitochondrial oxidative
stress in the AD brain, which accelerates tau phosphorylation. In addition, elevated Mn2+ levels boost the production of p53 and its transcriptional
target gene, amyloid-b precursor-like protein 1 (APLP1), which encodes amyloid precursor protein (APP). The production of Aβ peptides is aided by
enhanced APLP1 expression. Mn2+ could potentially attach to Aβ and help its aggregation.
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Vanea et al., 2014; Islam et al., 2022c, 2022c, 2022c). Zinc uptake

from extracellular fluids into neurons and glia is regulated by zinc

and iron-like regulatory proteins, while zinc outflow from cells is

regulated by zinc transporters (Liuzzi and Cousins, 2004; Kambe

et al., 2015). Interestingly, many zinc regulatory proteins also

regulate other metal anions.

Glutamatergic nerve terminals in the brain are particularly

rich in zinc ions, which can be released into the environment

during neuronal activity (Paoletti et al., 2009; Sensi et al., 2011).

Synaptic zinc release influences the development and function of

glutamatergic receptors such as NMDA and receptors for glycine

ionotropic and gamma-aminobutyric acid (GABA) and other

neurotransmitters (Smart et al., 2004). Therefore, zinc is crucial

for memory and behavior since it is associated with the balance

between excitation and inhibition in the brain (Frederickson and

Danscher, 1990).

There is a broad spectrum of neurological disorders caused

by the disruption of zinc homeostasis (Doraiswamy and

Finefrock, 2004; Mocchegiani et al., 2005). While zinc lacks

redox activity, high zinc levels in the extracellular fluid have

been shown to cause neurotoxicity and alter protein aggregation

(Cuajungco and Lees, 1997; Frederickson et al., 2005). The

discovery that zinc can precipitate Aβ into plaques at

concentrations >300 nM generated interest in its function in

AD (Bush et al., 1994). Synaptic transmission boosts the

concentration of zine in the extracellular fluid, potentially

explaining why Aβ deposition occurs in the brains of AD

patients (Deshpande et al., 2009). Plaques and the cerebral

amyloid angiopathy around affected blood vessels contain

zinc-rich metalloprotein Aβ, itself a metalloprotein containing

zinc binding sites (Bush et al., 1993; Suh et al., 2000; Maynard

et al., 2005). The increase of Zn2+ in presynaptic vesicles in

Tg2576 transgenic mice crossed with zinc transporter three

knockout mice have been shown to reduce plaque load,

demonstrating that synaptic zinc contributes to Aβ deposition

(Lee et al., 2002). When zinc is sequestered by Aβ, it inhibits APP
ferroxidase function, resulting in increased iron and ROS levels

(Mucke et al., 2000; Duce et al., 2010).

Extrinsic zinc-chelator CEDAA combined with cadmium

can reverse the attenuation of long-term potentiation (LTP) in

dentate granule cells produced by Aβ and zinc treatment in

dentate granule cells in vivo (Takeda et al., 2017). Consequently,

zinc chelators or ionophores can restore the physiological metal

ions sequestered inside extracellular Aβ aggregates, resulting in

biochemical and anatomical alterations that contribute to

improved cognition (Adlard et al., 2008, 2011, 2015). Despite

the overwhelming evidence that zinc and copper chelators

minimize Aβ accumulation, it has recently been shown that

this may have unintended negative consequences for brains in

good health (Adlard et al., 2008). The zinc/copper chelator

clioquinol decreased memory function in young mice

(2.5 months old) by depleting zinc levels in their brains. The

brain-derived neurotrophic factor (BDNF) associated with

synaptic plasticity and dendritic spine density has been shown

to increase in vivo (Frazzini et al., 2018). The hippocampus,

cortex, and striatum were all affected, but the cerebellum, which

is devoid of zinc reservoirs, was unaffected (Wall, 2005; Frazzini

et al., 2018). The role of zinc in promoting its effects, particularly

at the cellular and molecular levels of the brain, remains to be

studied in greater detail.

Lead (Pb)

One of the most common names for the heavy metal

plumbum (Pb) is lead. While the dangers of lead poisoning

had been understood for many years, the association between

white lead paint on porches and railings in Brisbane, Australia,

and severe neurological abnormalities in children was not

recognized until 1892 (Needleman, 2009). The half-life of

environmental lead in the bloodstream is 30 days. Lead

attaches to blood cells and travels throughout the body,

eventually accumulating in the bones. Bone-deposited lead has

a half-life of 20–30 years. Bone demineralization during

pregnancy, menopause, lactation, and aging induces the

release of accumulated lead into the bloodstream (Nash et al.,

2004; Rastogi et al., 2007).

Many systems in the body are affected by lead in the blood,

but the central nervous system is by far the most vulnerable. The

effects of lead on the brain can be divided into two categories:

morphological and pharmacological. Neuronal differentiation,

myelination, and synaptogenesis are examples of morphological

effects (Brubaker et al., 2009; Hu et al., 2014; Senut et al., 2014).

Biometal-dependent systems can be disrupted due to binding site

competition between lead and other biometals, particularly

calcium and zinc. Lead rapidly crosses the BBB and severely

damages the brain due to its capacity to substitute for calcium

ions (Sanders et al., 2009). The GABAergic, dopaminergic, and

cholinergic systems and NMDA receptors are inhibited by lead,

interfering with neurotransmitter release. Additionally, lead

binds to sulfhydryl groups in glutathione, a crucial

antioxidant present in cells, removing its antioxidant

properties (Bijoor et al., 2012; Flora et al., 2012).

Lead exposure during childhood has been shown to cause

cognitive and behavioral problems (Mazumdar et al., 2011;

Reuben et al., 2017). Neuronal alterations in hippocampal

CA1 pyramidal neurons associated with memory loss and

learning impairments are associated with juvenile lead

exposure. Animals exposed to lead while pregnant or after

birth suffer from memory loss and cognitive decline in old

age (Hu et al., 2008; Bihaqi et al., 2014). Low-level gestational

lead exposure has been shown to change the hippocampus

dendritic spines by decreasing neuroligin-1 protein levels,

resulting in memory and learning problems (Zhao et al.,

2018). A probable link between AD development and the

long-term effects of lead exposure in childhood has been
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suggested. According to a long-term study of former organolead

production workers, lead exposure causes cognitive impairment

over time and leaves permanent brain damage (Schwartz et al.,

2000; Stewart et al., 2006).

Lead has been associated with a number of AD hallmarks,

including Aβ buildup, tau pathology, and inflammation.

Moreover, early lead exposure caused an addiction-like disease

in young rats, resulting in increased APP and BACE1 expression,

and inducing Aβ buildup and plaque development in the

hippocampus and cortex, respectively (Zhou et al., 2018). APP

and BACE1 expression were found to be upregulated in aged rat

brains following prenatal exposure to lead (Basha et al., 2005).

Lead exposure in childhood boosted the expression of APP,

BACE1, and transcription factor-specific protein 1 (Sp1) to a

similar extent and facilitated Aβ deposition in elderly monkeys

(Wu et al., 2008). Lead, cadmium, and arsenic exposure

synergistically increased APP and BACE1 expression, strongly

inducing Aβ production (Ashok et al., 2015). Exposure to lead

during development activates the sterol regulatory element-

binding protein 2 (SREBP2)-BACE1 pathway, affecting

normal cholesterin metabolism in the early brain (Wu et al.,

2008).

It has been well established that dysregulation of cholesterol

homeostasis in the brain plays a significant role in the genesis of

AD and Aβ production (Maria Giudetti et al., 2015). Acute lead

exposure has been shown to enhance Aβ accumulation in the

brain tissue and CSF by disrupting low-density lipoprotein

receptor-related protein 1 (LRP-1)-mediated clearance of the

peptide (Gu et al., 2011). Notably, lead exposure also increases

levels of total and hyperphosphorylated tau. It has been shown

that lead exposure increases the protein levels of tau and

phosphorylated tau in SH-SY5Y neuroblastoma cells (Bihaqi

et al., 2017). Tau expression and serine/threonine phosphatase

and CDK5 activities in the brain are all up-regulated following

lead exposure early in life (Bihaqi and Zawia, 2013). GSK3 and

caspase-3-mediated tauopathy have recently been associated

with lead exposure (Bihaqi et al., 2018).

Neuronal death occurs as a result of an inflammatory

response to lead exposure. Tumor necrosis factor-alpha (TNF-

α) and granulocyte-colony stimulating factor levels are higher in

individuals exposed to lead than in those who were not (Di

Lorenzo et al., 2007). The persistent stimulation of glial cells in a

rat model was accompanied by inflammation and

neurodegeneration. Microglia are activated and pro-

inflammatory proteins such as inducible nitric oxide synthase

(iNOS), interleukin one β (IL-1β), and TNF-α. AD-related brain

neurotoxicity is thought to be caused in part by the substances

listed above. Lead exposure leads to increased microglial

activation and poorer LTP (Liu et al., 2012). The activation of

the transcription factor nuclear factor kappa B (NF-κB) and the

overexpression of cyclooxygenase-2 is the cause of lead-induced

activation of microglia. Other microglial pathways associated

with lead exposure include extracellular signal-regulated kinase

(ERK) and PKB activation (Kumawat et al., 2014). Additionally,

lead exposure was found to stimulate TLR4-MyD88-NF-κB
signaling, affecting hippocampal neurogenesis and plasticity

(Liu et al., 2015). Lead activation results in increased synthesis

of proinflammatory cytokines and generation of reactive

nitrogen species (RNS) and ROS (Altmann et al., 1999). These

findings conclusively show that long-term lead exposure raises

AD risk. However, in the absence of medications to counter lead

poisoning, exposure should be avoided.

Mercury (Hg)

AD has been associated with mercury exposure.

Numerous studies have found elevated mercury levels in

the blood and brain tissue of AD patients (Ehmann et al.,

1986; Thompson et al., 1988; Hock et al., 1998). Consequently,

mercury levels have been found to be higher in hair samples.

In a comparison of patients with and without degenerative

brain diseases, mercury levels in patients with degenerative

brain diseases were higher than in patients without (Mano

et al., 1989). Indeed, mercury in the neurological system has

been found to cause memory loss, attention problems, and

even dementia, a common indicator of AD (Zahir et al., 2005;

Mutter et al., 2010).

Cadmium (Cd)

Cadmium is an abundant heavy metal in the environment

and a naturally occurring carcinogen that causes cancer in

humans. Unlike other heavy metals, cadmium is water-

soluble, allowing it to be transmitted from the soil to plants

and accumulate in the food chain (Qadir et al., 2014; Laslo

et al., 2022, 2022). For example, tobacco can tolerate high

levels of cadmium despite its potentially harmful effects on

other plants (Huang and Goldsbrough, 1988; Zhang M. et al.,

2016). Consequently, the general public’s risk for cadmium-

related morbidities is increased by their use of tobacco

products or inhalation of tobacco smoke (Richter et al., 2017).

Cadmium has a half-life of 20–40 years in the kidneys and

liver after entering the body (Suwazono et al., 2009; Fransson

et al., 2014). Cadmium has been shown to pass through the BBB

and accumulate in the brain, causing neurotoxicity (Wang and

Du, 2013). Older individuals with high blood cadmium levels

were foundmore likely to die fromAD-related causes (Wang and

Du, 2013; Min and Min, 2016). A growing body of evidence

suggests that cadmium may contribute to the aggregation of Aβ
plaques in AD patients (Li et al., 2012). Cadmium administration

to APP/PS1 mice caused an increase in plaque size and quantity

in vivo (Li et al., 2012). Cadmium ions can promote plaque

development through their interaction with Aβ (Notarachille

et al., 2014). Cadmium therapy has also been proposed to
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suppress the expression of β-secretase and neutral

endopeptidase, which are both important for decreasing Aβ
levels in the brain (Li et al., 2012). The synergistic effect of

cadmium, lead, and arsenic greatly improves amyloidogenesis by

increasing APP, BACE1, and PSEN1 expression, suggesting that

cadmium interacts with other metals in AD (Ashok et al., 2015).

In addition to its effects on Aβ, cadmium has been implicated

in tau conformation and self-aggregation in the AD brain (del

Pino et al., 2016). The third repeat (R3) of the microtubule-

binding domain of tau has been shown to bind to cadmium. Tau

self-aggregation is facilitated by the loss of the random coil

conformation and gain of a helix shape of the R3 domain.

Cadmium therapy suppresses muscarinic M1 receptors,

known to adversely regulate GSK3 and increase levels of total

and phosphorylated tau (Medeiros et al., 2011; del Pino et al.,

2016). These findings are consistent with the view that cadmium

may play a role in AD development.

Nontoxic cadmium exposure has been shown to activate the

MAPK and NF-κB signaling pathways, leading to

neuroinflammation and neuronal death in humans

(Phuagkhaopong et al., 2017). Increased expression of

interleukins 6 (IL-6) and 8 (IL-8) has been associated with

AD development. The MAPK and PI3K/AKT signaling

pathways have also been found to contribute to cadmium

cytotoxicity in astrocytes (Jiang et al., 2015). Therefore, central

nervous system (CNS) illnesses such as AD and Parkinson’s

disease may be prevented by controlling cadmium-induced Ca2+

homeostasis. However, adverse neuroinflammation has yet to be

associated with cadmium exposure in animal AD models.

Neurotoxicity induced by metal
mixtures

Most studies of metal neurotoxicity have focused on one

specific metal. However, the reality is that we live in a world

where metals coexist, making research more complex. Since

numerous metals such as iron, manganese, copper, cadmium,

and zinc are transported or controlled by overlapping signaling

pathways, fluctuations in the levels of one metal can significantly

impact the homeostasis of another. The combined effects of

exposure to multiple metals have been rarely studied. However,

cadmium, mercury, and manganese have been studied in the

context of lead neurotoxicity (Sanders et al., 2015).

Prenatal exposure to lead is more harmful to brain

development than prenatal exposure to just one metal.

Children exposed to high levels of cadmium during pregnancy

may experience problems with their mental and motor

development if their lead levels are also high (McDermott

et al., 2011; Kim et al., 2013; Sanders et al., 2015). In addition,

prenatal exposure to high levels of both lead and manganese led

to a greater number of cognitive and language impairments in

infants by the age of two compared to exposure to each alone (Lin

et al., 2013). Furthermore, lead exposure was associated with

poorer IQ scores in children with high blood manganese levels,

but only if they also had high blood manganese levels. Rather

than functioning cooperatively, lead and arsenic exposure

appears to function noncooperatively since their combined

effects on cognitive deficiency were not additive, contrary to

the findings with lead and cadmium, manganese, or mercury

exposure (Kim et al., 2009; Yorifuji et al., 2011).

The retention and redistribution of individual metals in

rodents can be improved by the co-administration of two

metals (Kalia et al., 1984). Chandra et al. gave rats lead

intraperitoneally along with manganese orally and found

they experienced more severe changes in motor activity,

learning ability, biogenic amine, and brain lead levels than

rats given manganese or lead alone (Chandra et al., 1983). The

central monoaminergic systems of mice have been found to be

affected by an interaction of arsenic/lead. While single metal

treatments lowered norepinephrine in the hippocampus,

combined treatments of arsenic and lead increased

serotonin levels in the midbrain and frontal cortex and lead

accumulation in the brain (Mejía et al., 1997). When rats were

fed mining waste containing arsenic, cadmium, manganese,

and lead orally, arsenic and manganese were shown to

accumulate in the brain, and dopamine release was reduced

over time with LTP.

Manganese has been shown to exacerbate the well-

documented neurotoxic effects of lead in children at

younger ages (Rodríguez et al., 1998; Sanders et al., 2015).

Rat motor parameters were significantly reduced after

exposure to a mixture of arsenic, manganese, and lead

rather than a single metal alone. Because humans are

frequently simultaneously exposed to multiple metals in the

real world and metal overexposure is frequently associated

with neurotoxicity, additional research into the health effects

of mixed metal exposure is urgently needed in the near future.

Treatment for metal-induced
neurotoxicity

The initial steps in treating individuals poisoned by metals

are to remove them from the hazardous area and then perform

gastrointestinal decontamination. For example, a fast fall in

blood plasma manganese levels was observed after manganese

supplementation was discontinued in children with cholestasis

receiving total parenteral nourishment (Hambidge et al., 1989).

Plasma-based therapy may be ineffective in individuals with

chronic metal exposure because the metals will already have

accumulated in the bones, brain, and other tissues. Chelation

therapy, in whichmultiple metals are removed from the body, is a

common treatment for chronic and acute metal poisoning.

Chelators include D-penicillamine, calcium disodium edetate

(CaNa2 EDTA), British antilewisite (BAL), and Cuprimine
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(Jang and Hoffman, 2011; Cavalu et al., 2020). However,

chelators can cause side effects such as headaches, weariness,

renal failure, nasal congestion, and life-threatening hypocalcemia

(Jang and Hoffman, 2011). The most important considerations

when performing chelation therapy are the specificity and dosage

of the chelators.

The identification of individual metal exporters has led to the

development of innovative therapies for metal-induced

neurotoxicity. Mutations in the newly discovered manganese

transporter SLC30A10 cause dystonia, hypermanganesemia,

parkinsonism, and manganism, a condition characterized by

the release of too much intracellular manganese (Choi et al.,

2007; Quadri et al., 2012; Leyva-Illades et al., 2014; Chen et al.,

2015b). While a comprehensive investigation of its substrates has

not yet been completed, it appears to only transport manganese

(Leyva-Illades et al., 2014; Chen et al., 2015a). Pharmaceuticals

containing compounds that enhance SLC30A10 export

stimulated manganese efflux but have little effect on other

metals. The risks of chelation can be greatly reduced using

this technique. However, the specific transporters for different

metals, such as SLC30A10 for manganese, remain largely

unknown and must be exhaustively studied in the future to

enable the development of new therapies for metal-induced

toxicity.

Metal exposure on public health: Low
and middle-income countries

The most significant natural resource is water. Surface water

samples from the Rupsariver in Bangladesh were taken in the

summer and winter seasons, and pH, electrical conductivity

(EC), chromium, nickel, copper, arsenic, cadmium, and lead

levels were determined to assess the risk of metal toxicity, identify

its potential sources, and predict health risk frommetals in water.

Their average concentrations and standard deviations in the

summer season were determined to be: chromium (7.20 ±

0.613 g/L), lead (7.09 ± 0.904 g/L), arsenic (5.45 ± 0.441 g/L),

copper (5.36 ± 0.471 g/L), nickel (3.85 ± 0.694 g/L), and

cadmium (0.975 ± 0.106 g/L). Similarly, in the winter season,

they were determined to be: chromium (8.87 ± 0.756 g/L), lead

(7.32 ± 0.93 g/L), arsenic (6.05 ± 0.490 g/L), copper (6.02 ±

0.529 g/L), nickel (5.48 ± 0.986 g/L), and cadmium (1.38 ±

0.151 g/L). Methods such as correlation analysis, principal

component analysis (PCA), and cluster analysis (CA) were

used to identify the source of harmful metals in the water [1].

Except for copper, total heavy metal toxicity load and heavy

metal evaluation index values exceeded permitted levels. During

both seasons, 85% of the total samples were determined to pose

moderate ecological risks, while the remaining 15% posed low

ecological risks, based on the ecological risk index classification.

Oral exposure revealed a high non-carcinogenic risk for a single

element (Proshad et al., 2021). The oral exposure hazard index

values were 4.17 for adult males, 3.67 for adult females, and

8.64 for children, indicating that non-carcinogenic effects are

likely. The carcinogenic risks of nickel and arsenic from regular

oral and dermal contact were higher than the standard value

(>1.0 × 10–4), indicating potential cancer risks to adult males and

females and children in the studied area (Proshad et al., 2021).

Around 25% of global fatalities and disorders are caused by

harmful environmental exposures (Heng et al., 2022). Metals are

a common source of dangerous environmental exposure, with

levels regularly exceeding the recommended limits. Currently,

632 million children in lower-middle-income countries (LMICs)

have blood lead levels above both the US Centers for Disease

Control’s former public health action standard of 5 μg/dl

(Ericson et al., 2021) and the updated 2021 standard of

3.5 μg/dl (Sink, 2022). Manganese levels in drinking water

surpass 400 μg/L in over 50 nations, including Bangladesh,

Cambodia, Egypt, and Ghana. While the World Health

Organization (WHO) no longer provides manganese

guidelines (Frisbie et al., 2012), studies have indicated that

excessive levels are associated with a variety of adverse effects,

including impaired intellectual performance in children (Ericson

et al., 2007). More than 4.5 million people in Latin America are

chronically exposed to arsenic in their drinking water, in some

cases more than 200 times higher than the limit of 10 μg/L set by

WHO (McClintock et al., 2012).

Many heavy metals pollute the air, water, and soil

environment due to their unregulated use in agriculture,

mining, smelting, illegal refining, and industrial production.

Because they are non-biodegradable, their environmental

concentrations may gradually increase over time.

Consequently, cumulative human population exposures can

have long-term consequences (Tchounwou et al., 2012).

Children are more vulnerable to the negative health impacts

of environmental exposures because of their rapid

neurodevelopment. The brain is most plastic during the first

1,000 days of life, during which it undergoes a series of complex

processes such as neurogenesis, myelination, and synaptic

pruning (Grantham-McGregor et al., 2007). These processes

build over time, leading to important cognitive functions such

as language and speech, attention, conduct, and reasoning (Villar

et al., 2019). Therefore, perturbations in their biological

environment, such as toxicant exposure, can disrupt the

precise orchestration of events, resulting in irreversible

downstream effects such as neurodevelopmental delays,

behavioral issues, and learning difficulties (Davis et al., 2019).

In addition to this stage of fast brain plasticity, children are more

vulnerable to adverse environmental exposures than adults due

to additional biological and social reasons. Children consume

more food and water in proportion to their body weight, spend

more time on the ground and the floor, and eat more non-food

things (Mamtani et al., 2011).

The negative impacts of heavy metals on child

neurodevelopment have been extensively studied in high-
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income countries (HICs). Lead is the heavy metal with the

greatest evidence of neurodevelopmental harm, with a dose-

dependent drop in IQ scores (Searle et al., 2014). Even with

blood lead levels below five ug/dL, the National Toxicology

Program found the data sufficient to detect the detrimental

effects of lead on cognition and heightened attention-related

and other problematic behaviors (Budtz-Jørgensen et al., 2013).

Other metals, such as arsenic, cadmium, manganese, and

mercury, have also been found to negatively impact several

aspects of neurodevelopment, including cognition and behavior

(Ericson et al., 2007; Jett et al., 2020). There is inconclusive

evidence about the impact of prenatal arsenic exposure on

neurodevelopment (Freire et al., 2018; Jiang et al., 2018).

However, the majority of studies evaluating the association

between heavy metals and infant neurodevelopment take place in

HICs rather than LMICS, which account for 90% of children

worldwide (Husain et al., 2021). An estimated 43% of children in

LMICs do not reach their full neurodevelopmental potential due to

various factors, including environmental exposures (Lu et al., 2016).

This inability to realize their full potential influences their quality of

life and economic potential, highlighting the importance of

understanding the effects of metals on neurodevelopment in

LMICs environments (Grantham-McGregor et al., 2007).

Conclusion and future prospects

An imbalance of metal ions is initiated or mediated by a

cascade of processes that inevitably leads to neural network

dysfunction in many NDDs, including oxidative stress, protein

misfolding and aggregation, mitochondrial dysfunction, and

energy depletion. The fundamental mechanisms underlying

some of these activities remain unknown, and how ion

homeostasis is maintained and disrupted in the brain is

becoming a contentious issue. The importance of inadequately

liganded metals has been overlooked in the past. A better

understanding of the multiple factors implicated in these

processes is crucial for determining the pathophysiological

mechanisms underlying the abundance of metal ions and

developing therapeutic approaches that can disrupt the chain of

pathological events that occur in many NDDs, including AD, the

etiology of which remains unknown for many. It remains unclear

whether differentmetals, such as iron, zinc, copper, and aluminum,

have similar or dissimilar modes of action. Understanding these

mechanisms requires a multisystem integrative approach, leading

to future advancements in neurodegenerative research.

The intricate association between biometal metabolism,

genetic and environmental exposures, and the

pathophysiology of NDDs merits additional exploration,

particularly in light of recent developments in metal

neurobiology. While the corroboration from experimental and

transgenic animal studies is compelling, when combined with

findings for the human brain, they suggest that metal ions play a

significant role in neurodegeneration but do not provide

conclusive answers on the causality of metal-related processes

or efficacious preventive and therapeutic approaches in humans.

Metalloproteomics developments have contributed to improved

knowledge of the mechanics and exact involvement of

metalloenzymes and proteins in the brain (Lothian et al., 2013).

There is little that can be done to slow the progression of

neurodegeneration at present. Its multifaceted presentation

requires a fundamental change toward developing multidrug

treatments. Metal ions are implicated in the majority of these

degenerative disorders, making them a promising target for

future therapeutic approaches. One strategy is to chelate and

sequester the ions, limiting their ability to interfere with protein

folding or prevent them from undergoing oxidative processes

(Fasae et al., 2021). Redistributing metal ions with newer

approaches has therapeutic effects. Recent research suggests

that treating cellular copper shortage may help to prevent

neurodegeneration (Gromadzka et al., 2020). Similarly, iron-

chelating drugs such as hydroxypyridones may facilitate the

redistribution of iron through mobilization with transferrin to

treat several NDDs, including AD (Singh et al., 2019). Many

drugs have recently been developed to reduce metal ions

associated with both metal-induced Aβ aggregation and ROS

generated by this and other aggregates through chelation.

Developing drugs with a multitargeted action may be the next

step in treating NDDs such as AD (Sales et al., 2019), but they will

need to be validated and evaluated further.
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