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Abstract

Avian influenza virus reveals persistent and recurrent outbreaks in North American wild waterfowl, and exhibits major
outbreaks at 2–8 years intervals in duck populations. The standard susceptible-infected- recovered (SIR) framework, which
includes seasonal migration and reproduction, but lacks environmental transmission, is unable to reproduce the multi-
periodic patterns of avian influenza epidemics. In this paper, we argue that a fully stochastic theory based on environmental
transmission provides a simple, plausible explanation for the phenomenon of multi-year periodic outbreaks of avian flu. Our
theory predicts complex fluctuations with a dominant period of 2 to 8 years which essentially depends on the intensity of
environmental transmission. A wavelet analysis of the observed data supports this prediction. Furthermore, using master
equations and van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of
stochastic fluctuations, revealing how the outbreak period varies with the environmental transmission.
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Introduction

Understanding the dynamics of infectious diseases in humans

has become a increasing focus in public health science [1–3].

Despite a massive body of research on the epidemiology of

seasonal influenza, overall patterns of outbreak and infection have

not been fully understood, in particularly with regard to its multi-

year periodicity. Disease outbreak, persistence, fadeout and

transmission among species remain difficult to assess, because

they not only depend on a huge variety of biological factors, e.g.

virulence, immunity [4], but also on some abiotic processes, such

as the characteristics of natural environments [5,6], transport and

immigration [7,8]. In spite of all these inherent complexities,

simple mathematical models can provide some very useful

information for many infectious diseases including measles,

mumps and rubella. From early deterministic compartmental

models to more recent spatially structured stochastic simulation

models [9,10], dynamic models have impacted both our

understanding of epidemic spread and public health planning.

Multi-year periodicity in epidemics is widely observed in time

series from many cities with greatly varying climatic and

demographic conditions [5,11–13]. As reported previously

[14,15], multi-year periodicity and irregular fluctuations were

related to both seasonal forcing and entrainment in nonlinear

oscillatory and chaotic models. Deterministic models are typically

assumed to be reasonable approximations for infinitely large,

homogeneous populations, and arise from the analysis of mean

field stochastic models. However, when one considers finite

populations, stochastic interactions even within a well-mixed

system introduce new phenomena. For example, disease persis-

tence is determined by chance events when the number of

individuals carrying the disease is small, during the early phases of

disease invasion, or when total susceptible population size is

reduced due to vaccination and/or immunity. In this case, even if

invasion is predicted to be successful in deterministic models, i.e.,

the basic reproductive number (R0) is larger than one, it may

totally fail in the corresponding stochastic system, which means

that observing a failed invasion in nature does not necessarily

imply a population below the deterministic invasion threshold. In

general, stochastic effects are quite prominent in finite populations,

and remain important both in ecological [16–18] and epidemic

dynamics [19–21]. Usually, individual-based and/or integer-based

event-driven simulations [22] are conducted. However, simula-

tions are inferior in several respects to careful mathematical

analysis. For instance, a single simulation may not be represen-

tative of system average behavior but merely produce an outlier

due to a rare combination of events [23]. Usually a huge ensemble

of replicates are needed to obtain a good representation of the

average behavior of the system. In fact, it is generally accepted that

deeper insights are obtained from the mathematical analysis of

stochastic systems.

Recently, a method, the so-called van Kampen’s system-size

expansion, which is based on a simple individual-based mathe-

matical formulation of stochastic dynamics, has been applied to
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investigate stochastic population dynamics [21,24–28]. This

general mathematical framework provides an exact description

of individual-based (integer-based) event-driven stochastic dynam-

ics [22]. More recently, these methods have been applied to

epidemiology, which has helped to understand the effects of

stochastic amplification [21,29] and seasonal forcing [30–32] on

disease outbreaks. However, most of these studies are based on

single species models, and mainly considered demographic

stochasticity and seasonality. Roche et al [33], however, have

shown that epidemic outbreaks and migrations are not synchro-

nous, which points to the fact, that, in wild birds, virus persistence

in the water should play a major role in the epidemiological cycles.

This approach to characterize disease fluctuations provides a

unique opportunity to investigate the effects of stochasticity

imposed by finite population numbers on disease persistence and

outbreaks both in single- and multi-species systems.

Here, we estimate the outbreaks period of avian influenza in

North Americas with a wavelet method, which reveals 4–8 year

periodicity from empirical data. To explain this, we first develop a

fully stochastic two species’ avian influenza model (host and virus)

with two routes of transmission: environmental indirect transmis-

sion and direct transmission through contact between individuals

within the wild bird population. Then, we provide a prediction for

the dominant period of disease oscillations by analytically

calculating the power spectral density from a stochastic Fokker-

Planck equation. From a geographically (environmentally) and

temporally restricted data, the model gives general insights into

long-term patterns of disease dynamics in wild bird populations.

Some conclusions may also apply to other infectious diseases

characterized by two transmission routes. Our analysis sheds new

light on the importance of environmental transmission for avian

influenza outbreaks and persistence. Our results show that, in

principle, it is possible to reduce the frequency and intensity of the

outbreaks of avian influenza by controlling the environmental

route of transmission.

Methods

The stochastic SIR model with environmental
transmission

In avian influenza, susceptible hosts are not only infected by

direct contact with infected individuals with avian influenza viruses

(AIV), but also by virus particles that persist in the aquatic

environment. AIV are transmitted via the fecaloid route of the

host and subsequent drinking or filtering of water while feeding

[3–36]. As a consequence, epidemic outbreaks are not necessarily

induced by the arrival of infected hosts in the population, but can

also result from virus particles that persist in the environment. The

persistence and subsequent outbreak of viral particles in the

aquatic environment is determined by several deterministic causes

[34]. However, stochasticity should also play an important role

[21,34] because the processes controling the densities of viral

particles, such as ingestion and shedding by hosts, and virus decay

in the environment, are essentially probability processes. Accord-

ingly, we consider the density of virus particles in the environment

as a separate stochastic variable, which we couple to the dynamics

of host infection through the environmental transmission rate. We

provide a detailed description about the way in which, as well as

the assumptions under which this is done in section A3 of Methods

S1.

To better understand the effects of demographic stochasticity

and virus persistence in the environment on epidemic outbreaks

and extinction, we describe virus population dynamics and

environmental transmission using an explicit stochastic host-

pathogen model that assumes global mixing, i.e, random contact

between individuals. Hence the epidemiological dynamics of the

host falls within the susceptible-infected-recovered (SIR) frame-

work [37], in which each individual is either susceptible (S),

infectious (I ) or recovered (R), but infection occurs through two

different routes: direct contact between susceptible (S) and infected

(I ) individuals, and external infection from the environment (as

found the case in AIV in ducks or other waterfowl). For the

former, the rate of infection can be expressed by bSI=N, where N

is the size of the host population and b is the transmission rate. For

the latter, according to the Poison distribution, the transmission

rate per susceptible individual should be given by ra 1{e{aVtð Þ
(see section A3 of Methods S1, and also the discussion in Ref. [34]

for details), which is an increasing function of the virus number V

per unit volume. In fact, it can be simplified into its leading-order

term using a Taylor expansion, which leads to rV=NV (here

r~ra loge 2ð Þ, see Eq. (A29) in section A3 of Methods S1), where

NV is a typical reference virion concentration in the water (see

section A3, Methods S1), and r is the environmental transmission

rate (see Methods S1, for details). For most host-parasite systems,

environmental transmission is often represented as a frequency-

dependent process, which means that the transmission rate

depends on the frequency of infected vectors in the environment

rather than on its absolute number or concentration as is the case

for density-dependent transmission [38]. Similar transmission rates

have been considered in malaria [39], dengue fever [35], West

Nile Virus [36], and avian influenza [34].

Although births and deaths are intrinsically distinct events, we

assume, for simplicity, that host birth and death rates have the

same value m, which means that the total population size N is kept

constant. In sum, the dynamics of the disease in the host

population can be expressed by the following elemental events:

Infection : SI ?
b

II and S ?
r V

NV
I ,

Death=Birth : I ?
m

S and R?
m

S,

Recovery : I ?
c

R:

where c is the recovery rate. Since host population (N~SzIzR)

is kept constant, after any individuals dies, at the same time, a new

susceptible host will be born in order to keep the total population

N constant. Therefore, since N can be just seen as a model

parameter, we eliminate the variable recovered individual R by

using R~N{S{I from our equations.

Our individual-based stochastic model fully integrates the

abundance of virus particles in the environment into the SIR

framework. Virus particles V are shed by infected ducks (shedding

rate is t), then virion concentration decays in the environment at

rate g. To keep the model general and applicable to other types of

pathogens, and to consider, effectively, the possibility of replication

of the virus in alternative hosts whose concentrations are not

explicitly modeled, we introduce a production rate, d. In this

context, this parameter takes into account the ability of the virus to

replicate outside of the specific host that is consider in the model. It

is important to remark that in the limit of d vanishing small, all our

conclusions still hold (see section A3 of Methods S1). Therefore, its

dynamics can be captured by:

Multi-year Periodicity in Avian Flu
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Birth : V ?
tIzdV

Vz1,

Death : V ?
gV

V{1:

All the transitions of the host and the virus associated with their

corresponding rates are illustrated graphically in Fig. 1(a).

The basic ingredients of our new framework are the susceptible

S, infected I and the virus V whose actual numbers are

respectively denoted as s,i and v, which are all of them integer.

The general state of the system is then denoted as s~ s,i,vð Þ. All of

the processes taking place in this model and their corresponding

rates are summarized in Table 1.

The transition probability per unit time from state s to the state

s0 will be denoted as T s0jsð Þ, in which s0 is obtained by shifting

each state variable in s by +1 or 21. According to the information

of Table 1, the events occurring in the system can be divided into

three groups:

1. Infection

T s{1,iz1,vjs,i,vð Þ~b
s

N
izrs

v

NV

: ð1Þ

2. Death/Birth

T sz1,i,vjs,i,vð Þ~m N{s{ið Þ,

T sz1,i{1,vjs,i,vð Þ~mi,

T s,i,vz1js,i,vð Þ~tizdv,

T s,i,v{1js,i,vð Þ~gv: ð2Þ

3. Recovery

T s,i{1,vjs,i,vð Þ~ci: ð3Þ

Figure 1. Stochastic SIR-V model. (a) Schematic diagram of the baseline SIR host-parasite model with direct and environmental transmission. The
symbol S represents the susceptibles, I and R represent the infected and recovered individuals, respectively, and V is the virus concentration in the
environment. For host, there is equal birth rate and death rate m. (b) A realization of a stochastic SIR-V model and its deterministic counterpart. The
parameters used in the simulations are N~103 , NV ~105 , b~0:05, r~0:4, c~5:5, m~0:3, d~0:1, t~104 and g~3. Disease parameters correspond
to avian influenza epidemics derived for typical water-borne transmission from [33] and [2]. Detailed descriptions of model parameters and sources
for their numerical values are presented in tab:2. The deterministic curve was generated by integrating the mean field equations (5), and stochastic
simulation was implemented with Gillespie algorithm [22] with rates listed in Table 1.
doi:10.1371/journal.pone.0028873.g001

Table 1. List of events associated with transition rates.

Event Transition Rate
Probability in
t,tzdt½ �

Direct infection s?s{1,i?iz1 b
s

N
i b

s

N
i dt

Environment infectiona s?s{1,i?iz1 rs
v

NV

rs
v

NV

dt

Death of recovered s?sz1 m N{s{ið Þ m N{s{ið Þ dt

Death of infectedb s?sz1,i?i{1 mi mi dt

Recovery i?i{1 ci ci dt

Birth of virus v?vz1 dvzti dvztið Þ dt

Death of virus v?v{1 gi gi dt

aNote that here we consider it as a frequency dependent.
bThere is no empty site, and the population size N is constant, thus a new

susceptible individual will be born once an infective individual dies.
doi:10.1371/journal.pone.0028873.t001
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Having defined the transition rates between different states by Eq.

(1)–(3), now we can construct a master equation describing the

temporal evolution of the system. It takes the general form

[16,17,21,25–28]

dP s; tð Þ
dt

~
X
s0=s

T sjs0ð ÞP s0; tð Þ{
X
s0=s

T s0jsð ÞP s; tð Þ, ð4Þ

where s~ s,i,vð Þ represents the state of the system, P s,tð Þ is the

probability of the system in the state s at time t, and the change of

this quantity with time is given by a balance between the sum of

transitions into the state s from all the other states s0, and minus

the sum of transitions out of the state s into all the other states s0.
So far we have formulated a fully stochastic host-parasite model

with both direct and indirect environmental transmission,

assuming well-mixed conditions. Given the specified analytical

formulations for transition probabilities T s0jsð Þ, the master

equation (4) accurately describes the temporal evolution of the

probability P s,tð Þ. This model can now be investigated by a

combination of simulation, by using Gillespie algorithm [22], and,

analytically, by performing the van Kampen’s system-size

expansion [21,25] of the master equation. Both methods allow

quantitative prediction of the power spectrum of the time

fluctuations of each of the system variables, and, therefore, of

the dominant period of recurrent epidemic outbreaks.

Using van Kampen’s system-size expansion of the stochastic

dynamics, as discussed in section A1 of Methods S1, we can derive

the deterministic equations. The stability of the steady states of this

system is tractable, and can be obtained by deriving the

deterministic limit (see subsection A1.1 of Methods S1). The next-

to-leading order gives the linear stochastic differential equations–

Fokker-Planck equation, which can be analyzed using the Fourier

method. Now we start by introducing the new variables:

s~Nw1z
ffiffiffiffiffi
N
p

x1,

i~Nw2z
ffiffiffiffiffi
N
p

x2,

v~NV yz
ffiffiffiffiffiffiffi
NV

p
x3,

where w1, w2, y are the fractions of the susceptible hosts, the

infected hosts and viruses in the environment, respectively, with xl

l~1,2,3ð Þ describing the stochastic corrections to the variables s, i
and v. Full technical details of model analysis are given in the

section A1 of Methods S1. To leading order, the deterministic

equations for the fractions are

dw1

dt
~{bw1w2{rw1yzm 1{w1ð Þ,

dw2

dt
~bw1w2zrw1y{ mzcð Þw2, ð5Þ

dy

dt
~dyzktw2{gy,

where k~ lim
N,NV??

N
NV

.

It is simple to verify that these equations have a trivial fixed point

E0:

w0
1~1, w0

2~0, y0~0;

and a unique non-trivial fixed point E�:

w�1~
1

R0

,w�2~
m

mzc
1{

1

R0

� �
,y�~

kmt

g{dð Þ mzcð Þ 1{
1

R0

� �
,

where R0~
b

mzc
z

krt

g{dð Þ mzcð Þ is the basic reproductive

number. From the stability’s analysis in section A2 of Methods

S1, we know whenR0v1, the trivial fixed point E0 is stable; when

R0w1, the non-trivial fixed point E� exists and is stable.

The periodicity of the stochastic model
It is important to investigate whether the existence of a stable

fixed point in the deterministic system generates oscillations and

multi-year periodicity in the corresponding stochastic system. In

order to investigate this and describe the stochastic fluctuations of

the system by an analytical method, the higher-order terms should

be included in the van Kampen system-size expansion [25]. As

shown in the section A1 of Methods S1, the fluctuations obey a

linear Fokker-Planck equation, which is equivalent to a set of

Langevin equations having the form

dxk

dt
~
X3

l~1

Aklxlzjk tð Þ, k,l~1,2,3ð Þ, ð6Þ

where jk(t) k~1,2,3ð Þ are Gaussian white noises with zero mean.

In the same way, the cross-correlation structure is determined by

the expansion, which satisfies Sjk tð Þjl t0ð ÞT~Bkld t{t0ð Þ. As

mentioned above, we are interested in evaluating these fluctua-

tions at the non-trivial fixed point of the deterministic system. For

that reason, we evaluated the entries of the Jacobian matrix Akl

and Bkl of the noise covariance matrix at this stable fixed point.

Explicit expressions for these two matrices are given in the

supporting information in subsection A1.2 of Methods S1.

The Langevin equations (6) describe the temporal evolution of

the normalized fluctuations of variables around the equilibrium

state. By Fourier transformation of these equations, we are able to

analytically calculate the power spectral densities (PSD) that

correspond to the normalized fluctuations, independent of

community size N. By taking the Fourier transform of Eqs. (6),

we transform them into a linear system of algebraic equations,

which can be solved, after taking averages, into the three expected

power spectra of the fluctuations of the susceptible, infectious and

viral densities around the deterministic stationary values:

PS vð Þ~Sj~xx1(v)j2T~
aSzB11v4zC1v2

jD vð Þj2
,

PI vð Þ~S ~xx2 vð Þj j2T~
aIzB22v4zC2v2

D vð Þj j2
, ð7Þ

Multi-year Periodicity in Avian Flu
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PV (v)~Sj~xx3(v)j2T~
aV zB33v4zC3v2

jD(v)j2
:

The complete derivation of these PSDs and detailed descriptions

about the way the functions aI , B22, C2, and D vð Þ depend on

model parameters are discussed in section A1.3 of Methods S1.

Wavelet power spectrum
Unlike Fourier analysis, wavelet analysis is well suited for the

study of signals whose spectra change with time. This time–

frequency analysis provides information on the different frequen-

cies (i.e. the periodic components) as time progresses [40,41]. The

wavelet power spectrum estimates the distribution of variance

between frequency, v, and different times, t.

If we denote the time-series as x tð Þ, then the wavelet transform

of a signal x tð Þ is defined as:

Wx v,tð Þ~ 1ffiffiffiffi
v
p

ð?
{?

x tð ÞY�v,t

t{t

v

� �
dt:

In the definition, parameters v and t denote the dilation

(periodicity) and translation (time shift position). Y� tð Þ denotes the

wavelet functions. There are three wavelet basis functions (Morlet,

Paul and DOG) commonly used in the wavelet analysis. The Morlet

wavelet is the one used in our analysis. Cazelles et al [40] presents a

detailed description of the wavelet power spectrum method and a

summary of its applications to disease and ecological data.

Results

Prevalence of influenza A viruses in wild ducks over time
Previous studies over 15 years from 1976 to 1990 established a

cyclic pattern of occurrence of influenza A viruses in wild ducks

[42], with high prevalence in some years followed by reduced

prevalence in subsequent years. Avian influenza data of a yearly

time series is described in Ref. [13], for wild aquatic birds from 1976

to 2001 in North America. Those records contain samples collected

on wild ducks and shorebirds. To determine whether these patterns

show multi-year periodicity, we examined avian influenza preva-

lence over the period from 1976 to 2001, as is shown in Fig. 2.

The data on aquatic wild birds revealed a clear periodicity in

the outbreaks of avian influenza in agreement with literature [13].

These periodic patterns are confirmed from the case records

through wavelet analysis (see Fig. 2(b)), as well as through its

wavelet power spectrum analysis versus the frequency with the

largest long-term detectable power (Fig. 2(c) and (d)). Wavelet

analysis performs a time-scale decomposition of a time signal,

which involves the estimation of the spectral characteristics of the

signal as a function of time. It reveals how the different periodic

components of the time series change over time. The oscillations of

avian influenza A virus in ducks species have a considerable

variation as periodicity during these years. However, the wavelet

analysis based on these data reveals significant multi-annual cycles

from 2 to 8 years. By using our model predictions with reasonable

parameter values (presented in Table 2), we can estimate the

environmental transmission rate, r, that yields fluctuating periods

ranging from 2 to 8 years (see curves in Fig. 3(c and d) for different

values of r). For instance, it should be lower than 0.42 year{1 for a

reproductive number equal to 2.4, c~5:5, and the rest of

parameters chosen according to Table 2.

Effect of stochasticity and environmental transmission on
disease outbreaks

Direct comparison of the deterministic and stochastic simula-

tions reveals that demographic noise and environmental trans-

mission can induce rich multi-period patterns, corresponding to

deterministically damped oscillations (see Fig. 1(b)). Our analysis

can help us to understand the effect of indirect transmission on the

type of expected fluctuations of disease incidence. We compared

the analytical predictions for the PSDs to simulated results in

Fig. 3(a), using biologically reasonable parameter values (see

Table 2). Our results reveal very good agreement between

predictions and stochastic simulations.

The original PSD formula (7) further allows us to examine how the

period of the epidemic outbreak varies with changes of the

environmental transmission rate r. We show in Fig. 3(b) that, for

typical parameters of avian influenza, as listed in Table 2, increased

environmental transmission rate r can enhance the frequency of

disease outbreaks. We can see from Fig. 3(c,d) that, within the

deterministic model, the effects of the basic reproductive number on

outbreak periodicity of the disease are most pronounced when the

pathogen invasion is close to the critical value (R0&1). Furthermore,

the PSD surface becomes flatter as the basic reproductive numberR0

increases, indicating that more frequencies are involved in the

stochastic fluctuations, and that the overall variance of infected time

series is more evenly distributed among these frequencies. Simulta-

neously, as the basic reproductive number increases, the dominant

period decreases (the dominant frequency increases), as is elucidated

in Fig. 3(c an d). Finally, coherence disappears and the PSD becomes

totally flat at larger values of the basic reproductive number, R0. In

that regime, time fluctuations around average stationary values do

not show a dominant frequency and become white noise.

We characterize the region of the parameter space that allows

for disease persistence both in the deterministic model (R0w1)

and, through simulations, in the corresponding stochastic system.

We also map the dominant period, which is calculated with the

inverse of the frequency at which the PSD peaks (the dominant

frequency) in year units (see Fig. 3(d)). From Fig. 3(d), one can see

that the larger the basic reproductive number of the deterministic

model is, the higher outbreak frequencies in the stochastic model

tend to be. This can also be seen by looking at the analytical

prediction of the PSD from Eq. (7) (see Fig. 3(c)). Furthermore, we

notice that disease stochastic extinction occurs even if the basic

reproductive number is slightly above its critical deterministic

threshold. This is a common difference between deterministic

models and its finite-size stochastic counterparts which is usually

difficult to quantify. Through simulation, we have have approx-

imated the boundary separating disease persistence from stochastic

extinction by the curve of R0&1:3 (see Fig. 3(d)).

These reported results are robust to changes in model

parameters within the ranges given in Table 1. For instance,

when we take d to zero, the parameter representing pathogen self-

maintenance in the environment, very minor changes are seen in

the predicted power spectra. For details on model sensitivity to

parameter changes, see section A4 of Methods S1.

Discussion

In this paper, we have developed a general, fully stochastic host-

pathogen model with two routes of transmission: individual-to-

individual and environmental transmission. Our theory provides a

simple, plausible explanation for the phenomenon of multi-year

periodic outbreaks of avian flu. Even in the absence of external

seasonal forcing, our theory predicts complex fluctuations with a

dominant period of 2 to 8 years for reasonable parameters values,

Multi-year Periodicity in Avian Flu
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which essentially depends on the intensity of environmental

transmission. Since our model does not consider the specificities of

bird migration or seasonal reproduction in any way, in fact, it

applies to any infectious disease with two routes of transmission,

such as cholera. This further justifies the analysis we have done

which assures that infectious agents in the environment can not

only persist in the environment but also reproduce.

Practically all infectious diseases exhibit fluctuations. Childhood

diseases [9,20], dengue fever [43], cholera [44,45], malaria [39,46],

and avian influenza [34] are but a few examples where disease

incidence strongly fluctuates. Emerging largely from a deterministic

framework, the standard paradigm is that seasonal and/or climatic

extrinsic forcing and intrinsic host-pathogen dynamics are both

required to understand the character of different types of disease

oscillations from regular to rather erratic patterns [15]. However,

more recently, it has become clear that the interaction between the

deterministic dynamics and demographic stochasticity is funda-

mental to understand realistic patterns of disease [20] including

vaccine-induced regime shifts [21].

Breban et al [34] developed a host-pathogen model for avian

influenza combining within-season transmission dynamics with a

between-season component that describes seasonal bird migration,

and pulse reproduction. In their model, virus dynamics in the

environment is modeled as a deterministic process. Their model is

designed to apply specifically to avian flu. By contrast, our model

applies more generally, and considers a much simpler dynamics

(without either seasonal pulse reproduction or seasonal bird

migration). In spite of these simplifications, we are still able to

Figure 2. Temporal periodicity analysis of avian influenza in North America using the wavelet method. (a) Yearly prevalence of
influenza A virus for wild ducks from 1976 to 2001 and for shorebirds from 1985 to 2000, where the data with green square and red circle symbols
represent wild duck and shorebird, respectively. Annual prevalence was calculated as a percentage of the total number of samples tested for a given
year that contained influenza A virus. We have redrawn this figure here with data kindly provided by Dr. Webster [13]. Panel (b) shows the time series
with yearly prevalence of influenza A virus in wild ducks from 1976 to 2001. (c) The wavelet spectrum analysis corresponds to time series of panel (b),
where time runs along the x-axis and the contours limit areas of power at the periods indicated in the y-axis. High power values are colored in dark
red; yellow and green denote intermediate power; cyan and blue, low. Note the bold continuous black line is known as the cone of influence and
delimits the region not influenced by edge effects. Only patterns within these lines are therefore considered reliable. Finally, the right panel (d)
corresponds to the average wavelet spectrum (black line; see section: wavelet power spectrum) with its significant threshold value of 5% (dotted
line). Wavelet software provided by C. Torrence and G. Compo, is available at http://www.paos.colorado.edu/research/wavelets/.
doi:10.1371/journal.pone.0028873.g002

Table 2. The definitions of the parameters in this model and their values for the special case (AIV).

Symbol Definition Value/range Unit Source a

N host population size 103 duck

NV viral reference concentration 105 virion ml{1

b direct transmissibility 0{0:05 duck{1year{1 [33]

[2]

r b environmental transmissibility 0* 0.425 year{1 0,3½ � (years{1)

m host birth and death rate 0.3 year{1 [55]

d virus replication rate 0.1 year{1 0,1½ � (years{1)

t virus shedding rate 104 virion/duck/day [56,57]

g virus clearance rate 3 year{1 [58]

c recovery rate 0{52 year{1 [34]

aParameter values are based on empirical studies in literature. Since no data are available for r and d, we let them vary within a reasonable range. We have studied how
their values influence the patterns of interest (see Fig. 3).

bSee Methods S1, section A3 for its biological significance.
doi:10.1371/journal.pone.0028873.t002
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reproduce with similar accuracy realistic patterns of disease

fluctuations for avian flu. Although our explanation is simpler,

both models show that the interplay between the stochastic

component of disease dynamics and environmental transmission is

essential to understand the erratic outbreak patterns of avian

influenza, characterized by dominant periods from 2 to 8 years

(see Fig.2c). Here we confirm this previous conclusion [34], and

show that it does not critically depend on bird migration and pulse

reproduction. In addition, in this paper, we are able to predict

analytically how the whole spectrum of such fluctuations depends

on model parameters.

In particular, in order to derive the power spectrum, we have

applied van Kampen expansion [25] to the full stochastic model.

This method allows to study the correct interaction between the

deterministic and the stochastic components of the system in a

formal way in the case of finite populations. We have shown that

the predicted power spectrum is in excellent agreement with

model simulations for realistic parameter values. In particular, our

study reveals that higher values of environmental transmission

increase the frequency of epidemic outbreaks.

Our general framework can be seen essentially as a stochastic

SIR model with two types of disease transmission: individual-to-

individual and environmental transmission, which takes into

account the fact that disease agents are released to the

environment by infected individuals and, once there, they follow

a simple dynamics of decay and self-maintenance. Of course, virus

particles cannot self-reproduce independently from the host. In

our application to avian influenza, this term would take into

account virus reproduction in other host species different from the

focal host. In our model, the influence of the ‘‘reproduction’’

parameter on our predicted power spectrum is very small (see

Methods S1). In addition, our framework readily apply to the large

number of infectious diseases where reproduction of the infectious

agents in the environment is not negligible, and the interplay

between these two routes of transmission is known to be important

[47–53].

Our work points to the fact that seasonal forcing, taking into

account pulse reproduction and seasonal bird migration, is not

essential to understand avian flu fluctuating patterns of disease

incidence. We argue that this is basically a consequence of the

Figure 3. Power Spectral Density (PSD). (a) Comparisons between the theoretical prediction of the PSD (Eq. (7)) and the average PSD calculated
from full stochastic simulation as the one shown in Fig. 1(b), for the fluctuations of the total number of the susceptible, the infected and the virus. The
black lines represent the power spectra of time series obtained from stochastic simulations, and red lines represent the analytical prediction. The
parameters are listed in Table 2 and c~5:5, where R0 is equal to 2.387, and a main oscillatory period about 7 years. (b) Changes in the PSD as a
function of an increasing environmental transmission rate with c~10:0. (c) Three-dimensional representation of the PSD for the variable I , (Eq. (7)),
for a continuum of values of R on the y axis, with the restriction R0w1. (d) Dominant period and persistence of the disease as a function of
parameters r and t. Here we divide the domain of the parameter space where sthochastic fluctuations occur in three different regions characterized
by periods less than 1, from 1 to 5, from 5 to 10 years, respectively. We also represent the hyperbolic-shaped instability boundary, separating the
domain of disease persistence (R0w1) from the region of disease extinction (R0v1), which is determined by the basic reproductive number R0~1
in the deterministic system (5). The same boundary can be calculated through simulation for the full stochastic model. It corresponds approximately
to R0~1:3. Symbols (0) represent 100-year-long simulations, where the transient dynamics have been discarded (the first 50 years).
doi:10.1371/journal.pone.0028873.g003
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inherent stochasticity of the system. This type of ‘endogenous’

stochastic resonance [28] has been also described in childhood

diseases [21]. This result does not mean that seasonal dynamics is

not important in realistic situations. Migration and seasonal

reproduction are the most reasonable minimal ingredients of any

disease model with applications to migratory birds, and they surely

control other important processes in these systems.

The extend to which the seasonal cycle controls disease

fluctuating patterns has been recently studied in a fully stochastic

framework (both SIR [31] and SEIR [32]) with applications to

childhood diseases. These powerful analytic methods apply also to

infectious diseases with two transmission routes, such as avian

influnza, and further work on this area should be done. However,

these preliminary studies have already revealed that a complex

interaction of seasonal forcing and the inherently stochastic, non-

linear dynamics of the disease occurs only in very restricted areas

of the parameter space, in particular, close to bifurcation points

[31]. For the most part of the parameter space, apart from a rather

thin seasonal peak, the predicted, non-forced power spectral

density (PSD) agrees reasonably well with the PSD averaged over

seasonally forced, stochastic model simulations [21,31,32].

Simple non-linear systems have the potential to predict the

complex spatio-temporal patterns observed in nature. The role of

stochasticity and the way it interacts with nonlinearity are central

issues in our attempt to understand such complex population

patterns. As new tools and approaches become available

[21,23,31,32,54], here we have argued that the interaction of

external forcing with nonlinearity should be addressed within a

fully stochastic framework. Going back to avian influenza, we may

well be in a situation where seasonal migration and reproduction

are rather punctual events that would probably lock the phase of

disease fluctuations without strongly influencing the way the

overall spectral power is distributed among the different

frequencies at play, which is basically determined by the intrinsic

non-linear stochastic dynamics of the system. This hypothesis

applies to other infectious diseases as well as to, quite generally,

fluctuating populations in ecological systems. It deserves, on itself,

further investigation.

Supporting Information

Methods S1 In the supporting information file, we
provide, essentially, detailed mathematical derivations
of the different theoretical results presented in the main
text. Supporting information is divided in four sections. The first

one is devoted to the link between the deterministic and stochastic

description of the system and the system-size expansion used to

calculate power spectral densities. The second one analyzes the

dynamical stability of fixed points of the deterministic system. The

third one justifies the functional form used to represent

environmental transmission, and finally, the last one includes a

sensitivity analysis of the main fluctuation periodicity with respect

to two model parameters.

(PDF)
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