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Abstract

This study examined Leonardo da Vinci’s rule (i.e., the sum of the cross-sectional area of all tree branches above a branching
point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point)
using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations
of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional
area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci’s rule
when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the
models deviated from da Vinci’s rule as the weights and/or the branching angles of lateral daughter branches increased. The
calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata
and Abies homolepis also fit this trend, wherein models deviated from da Vinci’s rule with increasing relative weights of
lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical
measurements were taken under realistic measurement conditions; thus, da Vinci’s rule did not critically contradict the
biomechanical models in the case of real branching patterns, though the model calculations described the contradiction
between da Vinci’s rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best,
indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or
da Vinci’s rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies
homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with
da Vinci’s rule.
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Introduction

Many studies have examined tree design, which has led to

several empirical rules. Leonardo da Vinci proposed that the sum

of the cross-sectional area of all tree branches above a branching

point at any height is equal to the cross-sectional area of the trunk

or the branch immediately below the branching point [1]. This

relationship can also be expressed by stating that the branch cross-

sectional area below a given branching node is equal to the sum of

the cross-sectional areas of daughter branches above the node [2–

6]. This is known as Leonardo da Vinci’s rule, or the area-

preserving rule [2]. However, not all branches correspond to da

Vinci’s rule. Sone et al. [4] found that the average yearly growth of

the cross-sectional area of a branch was less than the sum of

growth of its daughter branches. This is because the proportion of

the current-year growth area to the cross-sectional area of the

branch is almost always greater in small, young branches than in

large, old branches. The authors noted that da Vinci’s rule would

not hold if the decrease in basipetal growth was repeated every

year. Sone et al. [6] demonstrated that in Acer rufinerve, only

branches that have experienced shedding follow da Vinci’s rule.

One reason for the lack of agreement with da Vinci’s rule in

some branches may be expressed in terms of their biomechanical

structure. For trees, safeguarding against mechanical stress such as

gravity, during morphogenesis, is essential for survival [7–9]. The

magnitude of the impact of mechanical stress varies greatly with

tree form. Therefore, the prevailing view has been that a branch

adjusts itself to its mechanical constraints, and this has led to

attempts to analyze the biomechanical designs of trees. Indeed,

variation in the mechanical environment does have an effect on

tree morphology. Trees that have been tethered in place with

ropes to reduce mechanical stimulation by wind forces grew taller

than control specimens [10]. Furthermore, the safety factor, i.e.,

the ratio between critical buckling height (which is estimated from

the trunk diameter) and actual tree height, is small when the

mechanical safety of the tree is low; safety factors of trees growing

in protected conditions within dense forests are lower than those of

trees growing in open environments where they are exposed to

stronger wind forces [11]. These relationships suggest that (i) there

is a biomechanical limitation that changes the relationship

between the diameter and length of a trunk or branch (a reflection

of mechanical safety), and (ii) the magnitude of branch biome-

chanical safety should be given a proper value. Hydraulic

resistance in a tree also affects its height growth [12]. Taneda

and Tateno [13] compared mechanical and hydraulic limitations

and concluded that the partitioning of biomass in current shoots of
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both angiosperms and gymnosperms is governed mainly by the

mechanical support criterion (although under some circumstances,

gymnosperms may be more affected by the water transport

criterion).

The present study focuses on the validity of da Vinci’s rule in

the context of mechanical limitation and two relevant biome-

chanical hypotheses: the uniform stress hypothesis and the elastic

similarity hypothesis [8], [14–16]. In the uniform stress hypothesis,

the mechanical safety of a branch, or the mechanical stress that

acts on a branch, is assumed to be uniform at any point along the

branch. In previous studies, it has been suggested that the

mechanical stress that acts on trees resulting from wind force tends

to be maintained along the stems [17]. For branches that are not

vertical, it has been shown that the mechanical stress from a

branch’s own weight remains relatively constant along the branch

[18]. In the elastic similarity hypothesis, the deflection along a

branch, occurring due to the load that acts on the branch, is

assumed to be constant regardless of the length of the branch; i.e.,

the deflection of the tip, D, divided by the length of the branch in

question, l, is a constant, regardless of how much l may vary [8].

McMahon and Kronauer [8] derived the allometric relationship

between the length (x) and diameter (d) of a branch from (i) the

elastic similarity hypothesis (i.e., x/da, where a = O) and (ii) the

uniform stress hypothesis (i.e., x/da, where a = K). They found

that the actual allometric relationship was identical to the elastic

similarity predictions (assuming a virtual tip in which the branch

taper becomes zero distal to the real tip). Bertram [16] also looked

at the allometric relationship between the length and the diameter

of tree stems using the same models, but arrived at a different

conclusion. He found that the distal stem elements of a tree can be

disproportionately slender, such that the stem length, x, scales with

respect to the stem diameter, d, in a manner that exceeds that

predicted by the allometry of geometric self-similarity (i.e., x/da,

where a = 1), whereas the older elements of a tree trunk tend to

scale in a manner that approximates elastic self-similarity

predictions. Other studies suggest that the allometry of tree height

and trunk taper progressively changes over the course of growth

and development [19–21]. Niklas [19] suggested that trees comply

with geometric self-similarity in their young portions and

subsequently give the appearance of elastic or stress self-similarity

as these portions age and become larger. However, which

biomechanical model best reflects branches in nature is debatable.

The allometric relationships for these biomechanical hypotheses

may be regarded as a rule for branch tapering. In the

biomechanical models, the taper of a branch is expressed by one

equation and is assumed to be smooth. However, real branches

ramify, and it is reasonable to suppose that the diameter near the

ramifying point deviates from the taper equation if biomechanical

stress limits branch shape (because the weight that the branch must

bear changes dynamically below and above the branching point).

Assuming that one of the biomechanical hypotheses applies to tree

branch architecture, the diameter needed to maintain the

mechanical strength of a branch varies with branching angles

and relative weights of distal branches. The relevant question is

whether da Vinci’s rule is strictly maintained for any realistic

branching pattern when either of the biomechanical hypotheses is

true. In other words, can da Vinci’s rule be applied to

biomechanically limited branches? Branches may not conform to

da Vinci’s rule when the diameter measurement points are

restricted to positions that are near the branching point, which

may be true for both biomechanical models.

In this study, we calculated the ratio of the cross-sectional areas

of the upper and lower sides of a branching point of a branch using

the two biomechanical models, and checked whether computed

values matched da Vinci’s rule. We also took field measurements

of this ratio in real branches of Fagus crenata and Abies homolepis to

examine whether da Vinci’s rule is strictly maintained, and to

check the predictions of the biomechanical models. On the basis of

these data, we (i) discuss the question posed above, (ii) determine

whether da Vinci’s rule is biomechanically adequate, and (iii)

determine whether da Vinci’s rule is consistent with either of the

two biomechanical models when applied to natural branching

patterns.

Methods and Materials

We used the daughter/mother ratio, i.e., the ratio of the total

cross-sectional area of the daughter branches to the cross-sectional

area of the mother branch at the branching point, as an index for

da Vinci’s rule. Here, the daughter branches represent parts of a

branch after ramification and the mother branch represents the

part before ramification. If a tree obeys da Vinci’s rule, the

daughter/mother ratio must be 1.0 at any branching point of the

tree.

Calculation of the daughter/mother ratio using
biomechanical models: Is da Vinci’s rule consistent with
biomechanical models?

A model for the uniform stress hypothesis. In our

simulations, we considered a horizontal branch ramifying into n

daughter branches within a horizontal plane, and calculations

were performed for a virtual branch with an n of 2 or 3. Branches

were assumed to be mostly influenced by their own weight. Each

daughter was identified by i (i = A, B, etc.; Fig. 1). A branch’s

applied load was assumed to consist only of its own weight, which

acts in the direction vertical to the plane in which the branch was

arranged. We calculated the diameters of daughter and mother

branches at the branching point based on the assumption that

branches had a constant safety factor (uniform stress). We then

calculated the daughter/mother ratio.

In the model, a branch was regarded as a horizontal beam

loaded in the vertical direction. According to material mechanics,

the relationship between the diameter and the load that acts on a

beam at an arbitrary point can be represented as

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32M

psx max

3

s
ð1Þ

[22], where M is the moment determined by the magnitude of the

load and the distance from the loading point, and sxmax is the

maximum bending stress. Under the conditions of the uniform

stress model, sxmax is constant, and the diameter depends only on

the moment.

The moment that occurs at the branching point of the mother

and daughter branches (MM and Mi, respectively) is

MM~
X

Wi
:gi
:cos hið Þ ð2Þ

Mi~Wi
:gi, ð3Þ

where Wi is the weight of daughter i, gi is the distance between the

center of gravity of daughter i and the branching point, and hi is

the branching angle of daughter i. When calculating the daughter/

mother ratio, it is possible to set the measurement points of

diameters as the branching point. However, when measuring in
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the field, there may be some distance between the branching point

and the measurement point. Considering this, the moments can be

rewritten as

MM~
X

Wi(gi cos hizmM ) ð29Þ

Mi~Wi(gi{mi), ð39Þ

where mM and mi are distances between the branching point and

the measurement point of the mother or daughter i, respectively.

In equation (29), the section between the branching point and the

measurement point on the mother branch is assumed to have little

effect on MM. We ran the calculation applying zero and some

probable values (1, 2, 3, and 5 cm) to mM and mi. Substituting

equation (29) or (39) into (1) gives the diameter of the mother and

daughters. Applying these diameters, the cross-sectional area of

the mother at the branching point can be obtained from

AM~
pd2

M

4
~

p

4

32
P

Wi gi cos hizmMð Þ
psx max

� �2
=3

, ð4Þ

where dM is the diameter of the mother branch. The total cross-

sectional area of the daughters can be obtained from

X
Ai~

P
pd2

i

4
~
X p

4

32Wi gi{mið Þ
psx max

� �2
=3

0
@

1
A, ð5Þ

where di is the diameter of the daughter i. From equations (4) and

(5), the daughter/mother ratio is

P
Ai

AM

~

P
Wi gi{mið Þf g

2
=3P

Wi gi cos hizmMð Þf g
2
=3

: ð6Þ

According to equation (6), the daughter/mother ratio is indepen-

dent of the maximum bending stress.

We calculated the daughter/mother ratio for various situations

with different branching angles and daughter weights. The angles

ranged from 0.1 to 90u and the daughter weights ranged from 1 to

10 kg. In simulations for branches where n equaled 3 (see the

following results), the weight of the main daughter branch (as with

branch B shown in Fig. 1) was set to 10 kg.

A model for the elastic similarity hypothesis. In the

elastic similarity hypothesis, the deflection at the tip of a branch is

assumed to be proportional to the overall length of the branch [8].

In other words, the deflection angle of an arbitrary microsection of

a branch (with the constant relative length) is determined by its

relative position on the branch, independent of branch length.

McMahon and Kronauer [8] assumed that the diameter in the

vertical plane at a certain point is proportional to s3/2 for a tapered

beam, where s is the length of the section of the branch from the

(selected) point to the tip. King and Loucks [14] also referred to

the elastic similarity model and explained the relationship between

diameter and length of a branch bending under its own weight as

follows: for branches that maintain self-similarity, branch weight

W is proportional to d2l, where l is the length of the branch, since

d2l is proportional to branch volume. The moment arm is

proportional to branch length. Therefore,

M!d2l2: ð7Þ

If a branch is maintained in an elastically similar form, the

relationship between curvature and length can be written as

r!l, ð8Þ

where r is the radius of curvature of the branch at its base.

According to the cantilever beam theory [22],

r!d4
�

M; ð9Þ

substituting (9) and (7) into (8), the relationship between diameter

and length is

d!l
3
=2: ð10Þ

In this study, we used the allometric relationships

d~k1s
3
=2 ðaÞ

W~k2s4 ðbÞ

g~k3s, ðcÞ

which can be obtained from the above expressions, where k1, k2,

and k3 are constants and g is the distance between the center of

gravity and the branch base.

Figure 1. Overhead view of the proposed branching system
scheme. A mother branch has several daughter branches, here labelled
as A, B, and C. The branch’s spatial arrangement is within a horizontal
plane. The weight of daughter branches is defined as WA, WB, and WC

and the distances between the center of gravity and the base of each
daughter are gA, gB, and gC. The branching angles of each daughter are
hA, hB, and hC and the distances between the branching point and the
measurement points are mA, mB, mC, and mM.
doi:10.1371/journal.pone.0093535.g001
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We now consider a straight horizontal branch without

furcation, whose shape is similar to the form described by

McMahon and Kronauer [8]. If determination of branch taper

follows elastic similarity, the deflection angle of any section of the

branch should be strictly maintained. According to cantilever

beam theory, the deflection angle of an arbitrary microsection,

dh/ds, is expressed by the following equation:

dh

ds
~{

M

EI
, ð11Þ

where M is the moment due to the weight of the distal part of the

branch, E is the modulus of elasticity or Young’s modulus, and I is

the second moment of area. For a circular cross-section, I is

determined as

I~
pd4

64
: ð12Þ

For g(: = s/l), where l is whole length of the branch, the deflection

angle of a microsection with a constant relative length is

determined by

dh

dg
~{

Ml

EI
, ð13Þ

and the moment that acts on the microsection due to the portion

of the branch distal to the section is calculated as

M~mg~k2k3s5: ð14Þ

Substituting (12), (14), and (a) into (13) gives

dh

dg
~{

64k2k3

Epk4
1g
: ð15Þ

Equation (15) supplies information about the dh/dg value that

should be maintained in branches that keep elastic similarity. We

propose that dh/dg is maintained above and below the furcation,

whether or not the taper equation is maintained locally around the

branching point. If branching is taken into consideration, the

moment that acts on the cross-section of the branch varies

dramatically before and after furcation but varies smoothly in

other positions that have no ramification. Therefore, the diameter

should markedly change before and after branching if elastic

similarity is maintained and must locally deviate from the taper

equation.

Assuming that the distances between the point of diameter

measurement and the branching point are represented by mM and

mi, we used equation (15) to determine dh/dg for the microsection

of the diameter measurement point on the mother branch.

Subsequently, we considered a branch bearing several daughter

branches (Fig. 1) and assumed that the longest daughter branch is

a part of the main axis of the whole branch that includes the

sections above and below the branching point; thus, the length of

the longest daughter branch is a part of l. The moment that

occurs at the diameter measurement point on the mother branch

(MM) can be obtained from equation (29).

Substituting equations (12) and (15) into (13), setting (sl+mM) as s

(: = gl), we obtain d4 of the mother branch at the branching point

required to maintain a constant dh/dg:

d4
M~

MMk4
1 slzmMð Þ
k2k3

, ð16Þ

where sl is the length of the longest daughter branch. The square

root of equation (16) is dM
2, which can be used for calculating AM

( = pdM
2/4).

The sum of the cross-section areas of daughter branches is

X
Ai~

X pdi
2

4
: ð17Þ

From equations (17), (16), and (a), setting (si2mi) as s, the

daughter/mother ratio is expressed as

P
Ai

AM

~

Xp

4
k2

1 si{mið Þ3

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

1MM slzmMð Þ
k2k3

s , ð18Þ

where si is the length of each daughter branch. Substituting

equations (29), (b), and (c), equation (18) can be arranged as

P
Ai

AM

~

X p

4
k2

1 si{mið Þ3

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

1 slzmMð Þ
X

k2si
4 k3si cos hizmMð Þ

k2k3

s

~

ffiffiffiffiffi
k3

p X
(si{mi)

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
slzmMð Þ

X
s4

i k3si cos hizmMð Þ
� �q :

ð19Þ

Using equation (19), we calculated a daughter/mother ratio for a

virtual horizontal branch with various branching forms. For k3, we

used the value obtained from the allometric regression equation

expressing the relationship between the data for branch length and

the distance between the center of gravity of the branch and the

branching point for Fagus crenata and Abies homolepis. These

empirical data were obtained by methods described in the

following section. If k3 is constant for any branch form, the

daughter/mother ratio varies according to the length and

branching angles of lateral daughters.

Field measurements and evaluation of da Vinci’s rule and
each of the biomechanical models

Data on the diameters of several sections of branches, the

lengths of the parts distal to these sections, the distances between

the centers of gravity of the distal parts and the measurement

section, and the moment due to each of the branch weights at each

section were collected from lower branches of Fagus crenata (ca. 30

years old) and Abies homolepis (age unknown) specimens growing in

the Nikko Botanical Garden (Nikko, Tochigi, Japan, E139u379,

N36u459, mean annual temperature = 12.1uC, mean annual

precipitation = 2400 mm); twigs were arranged in a horizontal

plane. We subsequently explored the relationships between the

length and the distance of the center of gravity of the distal part

from the measurement section for each species, using exponential

regressions. We used the least-squares method to fit the curves.

The equations for the regression curves were used in the above

model calculations.

We also collected data on the diameters of mother and daughter

branches, the daughters’ branching angles, and the number of

Tree Branching
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daughters ramified from a mother branch, using other lower

branches on the same trees. Thirteen branches from six Fagus

crenata trees and 13 branches from seven Abies homolepis trees were

measured. The heights of the sampled Fagus crenata trees and Abies

homolepis trees ranged from 14.1 to 16.9 m (14.761.3 m, mean 6

SD) and 9.4 to 22.6 m (13.865.5 m), respectively. The mean

diameters at breast height were 26.461.5 cm and 31.6613.1 cm,

respectively. The average height at which the branches attached to

the trunks was 1.560.4 m for Fagus crenata and 1.660.4 m for Abies

homolepis. The length of the branches ranged from 1.8 to 6.3 m

(3.261.4 m) for Fagus crenata and from 1.1 to 4.5 m (2.160.1 m)

for Abies homolepis. The slope at the basal section of the Fagus crenata

branches was 30.5615.0u, which tended to become immediately

gentle toward the tip along the branch, so that the slope of the

measured section was 20.6615.3u. For Abies homolepis, the slope at

the basal section of the branches was 14.767.8u, with little

variation along each branch. Several branching points (1–14 per

branch) were measured on each branch. Diameters were

measured both in the horizontal and vertical planes for each

point. The maximum and minimum values of the diameter of

mother branches were 56.0 and 8.3 mm for Fagus crenata, and 49.1

and 6.0 mm for Abies homolepis, respectively. The cross-sectional

area for each point was then calculated as an ellipse and as a circle

with a diameter obtained in the vertical plane. The ratio between

the diameter in the vertical plane and the diameter in the

horizontal plane was 1.06560.007 for Fagus crenata and

1.03460.003 for Abies homolepis. The average, maximum, and

minimum values of the ratio between the cross-sectional area

calculated as an ellipse and the area calculated as a circle with its

diameter in the vertical plane were 0.94360.006 (mean 6 SE),

1.140, and 0.785 for Fagus crenata, and 0.97060.003, 1.105, and

0.803 for Abies homolepis, respectively. We selected lower horizontal

branches because this type of branch ramifies within a horizontal

plane, as with the mechanical models above, simplifying the

calculation for the biomechanical validity of branches. The

daughter/mother ratio for each branching point was then

calculated. The branches were located within a forest, and thus

the effects of wind force were expected to be relatively small. The

number of daughter branches ramified from a mother was always

2 in Fagus crenata and 2–5 in Abies homolepis. We measured 34

branching points for Fagus crenata and 39, 37, and 3 branching

points in Abies homolepis with 2, 3, and more than 4 daughters,

respectively. Branching points were weaker than other sections,

and therefore thicker. We chose a measurement point located

where the thicker section ended. As a result, the measurement

points were 1–8 cm away from the branching point, despite our

efforts to minimize the distance between branching and measure-

ment points. The larger the mother branch, the larger the required

distance was between the measurement point and the branching

point. The effect of this distance was assumed to be negligible

because the distance was small compared with the overall size of

the branches.

The above biomechanical model calculations refer to the

difference between the weight of the main branch and the lateral

daughters. Therefore, an index that defines the weight difference

between the daughters is required for analysis of the measured

data. We defined this difference as the daughters’ degree of

deviation and described it as

Figure 2. Daughter/mother ratios based on assumptions of the uniform stress model for two daughters. Daughter/mother ratios based
on assumptions of the uniform stress model plotted in palette maps. The range of values for daughter/mother ratios is represented by a range of
colors. Values greater than 3 are shown in yellow. This plot shows two daughters (A and B) with weights denoted by WA and WB. The weight of
daughter B is fixed at 10 kg, and the weight of daughter A is set to vary from 0 to 10 kg. mM and mi are 1 cm. (A) hB was fixed at zero, hA was set to
vary from 0.1 to 90u. (B) The angles of daughter A and B are set as hA = hB and to vary from 0.1 to 90u.
doi:10.1371/journal.pone.0093535.g002
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WlP
Wi

� �
{

1

n

n{1

n

� � , ð20Þ

where Wl is the weight of the largest daughter branch and n is the

number of daughters ramified from one mother branch. The

numerator indicates the difference between the ratio of the weight

of the largest daughter branch to the total weight of the daughter

branches (the value of which is restricted into 1/n; 1 because it is

the value related to the largest daughter branch) and the ratio for

the situation in which all daughter branches have the same weight,

which, in effect, represents the extent of deviation from the

uniformity of the weight of daughter branches. This value can vary

from zero to (n21)/n. It was standardized by dividing by (n21)/n

so that the upper limit of the value of the daughters’ degree of

deviation becomes 1.0. Therefore, the daughters’ degree of

deviation has the following characteristics. When one of the

daughter branches is much larger than the others, the degree

approaches 1. When a branch does not ramify, i.e., the weights of

the other branches are zero, the value is 1. In contrast, when there

is no difference between the weights of daughter branches, the

degree is zero. The weight of each daughter branch was

determined from the regression equation already calculated from

field data.

The validity of the uniform stress model was also examined. If a

branch obeys the uniform stress model, the relationship between

daughter and mother branches can be determined as follows.

According to the uniform stress model, the relationship between

the moment and diameter at any point on a branch is described by

equation (1). Combining equations (2), (3), and (1), the relationship

between the diameter of the mother branch and the diameters of

daughter branches is

d3
M~

32MM

psx max
~

32
X

Mi cos hi

� 	
psx max

~
32

X
d3

i psx max

�
32


 �
cos hi

� 	
psx max

~
X

d3
i cos hi


 �
:

ð21Þ

From this, g (di
3coshi)/dM

3 = 1 is expected if the maximum

bending stress is constant along the branch. We used the left side

of this equation as an index for the uniform stress model and

examined the validity of the elastic similarity model using the

following equation, derived from equations (29), (11), and (12):

X
dl=dið Þ

2
=3d4

i cos hi

d4
M

~1: ð22Þ

The left side of equation (22) was used as the index for the elastic

similarity model. For simplicity, the distance between the

branching point and the measurement point was not considered

in these calculations.

We performed statistical analyses to assess the relationship

between the cross-sectional area of the mother branch and the sum

of the cross-sectional areas of the daughter branches, the

relationship between the daughters’ degree of deviation and the

daughter/mother ratio, and the relationship between the daugh-

ters’ degree of deviation and the index for each of the

biomechanical models. Correlation coefficients were calculated

for these relationships with MS Excel 2010. Linear regressions

were also performed using the least-squares method for each

relationship.

Using the data on diameter and branching angle of each

daughter branch, we also estimated daughter/mother ratios,

assuming that the branches follow one of the two mechanical

models. If a branch were to follow the uniform stress model, the

daughter/mother ratio would be calculated using equation (6).

Assuming that a branch obeys the elastic similarity model, the

daughter/mother ratio can also be calculated using the equation

derived from equations (19) and (a). For simplicity, we describe the

equation for which mi and mM are zero, resulting in

P
Ai

AM

~

P
di

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dl

2=3
P

d
10
=3

i cos hi

� �s : ð23Þ

Subsequently, we compared each of the estimated daughter/

mother ratios with the actual daughter/mother ratio using the

method proposed by Kozak and Smith [23]. A measure of mean

bias, B (~
P

Yi{ŶY i


 �
=n), and the standard error of estimation,

SEE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(Yi{ŶY i)

2
�

(n{k)
q

, were calculated for each model,

where Yi is the actual observation of the dependent variable, ŶYi is

Figure 3. Daughter/mother ratios based on assumptions of the
uniform stress model for three daughters. Daughter/mother
ratios based on assumptions of the uniform stress model for three
daughters: A, B, and C. Different values of the daughter/mother ratio are
represented by different colors. Values greater than 3 are shown in
yellow. The angles of daughters A and C are set as hA = hC and to vary
from 0.1 to 90u. The weight of daughter B is fixed at 10 kg, and the
weights of daughters A and C are set as WA = WC and to vary from 0 to
10 kg. mM and mi are 1 cm.
doi:10.1371/journal.pone.0093535.g003
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the predicted value of the actual observation, n is the number of

observations, k is the number of estimated parameters used in the

estimation, and �YY is the average of the actual observations. For

completeness and to determine the magnitude of the effects of mi

and mM, we also calculated the daughter/mother ratio for each

biomechanical model with equations (6) or (19), using the actual mi

and mM values, and applied the allometric relationships between

diameter and length, between diameter and the distance from the

base to the center of gravity, and between diameters and weights

of branches and k3 (all obtained from the branch group that

excluded those branches used for determining daughter/mother

ratios). We also determined the daughter/mother ratio excluding

the bark in an indirect manner, using the relationship between

diameter and bark thickness obtained from the branch group that

excluded branches used for determining daughter/mother ratios.

The daughter/mother ratio obtained in this indirect manner is less

reliable than other measures because it includes several indirect

elements. Nevertheless, the rough estimates proved useful in our

considerations of magnitudes of effects.

Strain gauge measurements for exploring the uniform
stress hypothesis

We measured the strains on branches caused by their own

weights. Strains were measured in three branches of Fagus crenata

and four branches of Abies homolepis at several points along the

longitudinal axis of each branch. The branches used for this

measurement were all first order branches and were selected from

the branches used for the above measurement. Branches 1, 2, and

3 of Fagus crenata had lengths of 6, 2.5, and 6.3 m, respectively, and

branches 1, 2, 3, and 4 of Abies homolepis had lengths of 4.8, 4.5,

1.8, and 5 m, respectively. The mean, maximum, and minimum

values of the diameters of the measurement points were 3.661.4

(mean 6 SD), 6.1, and 1.2 cm in Fagus crenata, and 3.461.5, 5.8,

and 1.2 cm in Abies homolepis, respectively.

Strain gauges (FLA-5-11, Tokyo Sokki Kenkyujo, Tokyo,

Japan) were used to detect changes in strain. We used

cyanoacrylate adhesive (CN, Tokyo Sokki Kenkyujo, Tokyo,

Japan) to attach the strain gauges to the decorticated surfaces of

the upper and lower sides of each point of the branches prior to

their removal from the trunks. The strain gauges were connected

to a multi-recorder (TMR-200, Tokyo Sokki Kenkyujo, Tokyo,

Japan) in such a way as to allow the upward deflection of a branch

to be converted to a negative strain value. Once the branches were

fixed to the trunks, the strain values were set to zero. The branches

were then cut down at the fixed end and were laid sideways to be

freed from their own weight. Infinitesimal changes in the strain

values were detected and recorded by the multi-recorder during

this treatment. For these measurements, we used the half-bridge

method, which uses a bridge circuit made up of two strain gauges

and outputs the difference between the values of the strain at the

upper and lower sides of each measurement point. One-half of the

original value was treated as an estimate of the strain value for the

upper surface. This method is suitable for measuring the bending

stress because the tensile component is eliminated. The strain at

the surface of the branch is proportional to the stress at that point

if Young’s modulus of the sapwood is constant. Therefore, the

uniform stress model can be assessed from the strain data. The

Figure 4. Daughter/mother ratios based on assumptions of the elastic similarity model for two daughters. Daughter/mother ratios
based on the assumptions of the elastic similarity model for two daughters, A and B, with weights WA and WB. Different values of the daughter/
mother ratio are represented by different colors. Values greater than 3 are shown in yellow. The weight of daughter B is fixed at 10 kg and the weight
of daughter A is set to vary from 0 to 10 kg. (A) hB was fixed at zero, hA was set to vary from 0.1 to 90u. (B) The angles of daughter A and B are set as
hA = hB and to vary from 0.1 to 90u.
doi:10.1371/journal.pone.0093535.g004
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variation in strain caused by a branch’s own weight along each

branch was investigated.

No permits were required for this study, which complied with all

relevant regulations.

Results

Differences in daughter/mother ratios between each of
the biomechanical models and da Vinci’s rule, estimated
by model calculations

After applying various values to the branching angles and

weights of daughter branches, using the uniform stress model, we

found that the daughter/mother ratio was always .1.0 if mM and

mi were assumed to be zero. However, the daughter/mother ratio

generally decreased when mM and mi were set to larger values. The

daughter/mother ratio increased when the weights of the lateral

daughter branches (which grow in different directions relative to

the mother branch) relative to the weight of the main daughter

branch (which has a branching angle of zero) increased (Figs. 2, 3

and Tables S1, S2, S3). This tendency was amplified when lateral

daughter branching angles were increased (Figs. 2, 3). This

occurred because the daughter/mother ratio also increased with

the branching angles of lateral daughter branches, as the moment

of the mother branch was influenced by the cosine of each

daughter’s branching angle.

For any ratio of the total lateral daughters’ weights and the main

daughter’s weight, the minimum value of the daughter/mother

ratio can be found when the branching angles of the daughters are

near zero (Figs. 2, 3). The larger the weight of the main daughter

relative to that of the lateral daughters is, the lower the minimum

value of the daughter/mother ratio is. For example, when the

number of daughter branches was 2 (and one of them was the

main daughter) and mM and mi were assumed to be 1.0, the

minimum value of the ratio was 1.24 for WA:WB = 1:1. When the

ratio between the main and the lateral daughters was 10:1, the

minimum daughter/mother ratio fell to 1.04, which can be treated

as roughly equal to 1 (Fig. 2A and Table S1). When assuming a

branch with two daughters and neither of them was a main

daughter, the ratio was larger than the above values (Fig. 2B and

Table S2). When the weights of the branches were fixed, the

daughter/mother ratio rose with increasing daughter branching

angles, gently in the range of 0–60u, and swiftly in the range of 80–

90u (Fig. 2B).

When the number of daughters was three or more, the value of

the daughter/mother ratio was generally larger than the above

values calculated for the branching points with one main daughter

and one lateral daughter (Fig. 3 and Table S3). In Fig. 3, the

daughters consisted of one main daughter and several lateral

daughters. However, it is also possible to have no main daughter.

In such a situation, the daughter/mother ratio should be larger

because the rate of the moment that the mother branch must bear,

originating from lateral daughter branches (reduced by the cosine

effect), is larger than when a branch has a main daughter.

It should be noted that values may be overestimated when there

is poor balance with respect to the mother axis between daughter

branches A and B or between daughter branches A and C (e.g.,

the upper left corner of Fig. 2B) because the actual branch must

bear the shear stress due to torsion. If the daughters are balanced

or the main daughter is sufficiently heavier than other daughters,

the shear stress is likely to be negligible. In reality, branches that

have extremely unbalanced daughter branches were rarely

observed and therefore, this would not be a serious problem for

branches in nature.

The constants needed for elastic similarity model calculations

obtained from field measurements were k2 = 4.91610211 and

k3 = 0.3932 for Fagus crenata and k2 = 3.93610210 and k3 = 0.4397

for Abies homolepis. The change in the value of the daughter/mother

ratio obtained from the elastic similarity model calculations using

Figure 5. Daughter/mother ratios based on assumptions of the
elastic similarity model for three daughters. Daughter/mother
ratios based on assumptions of the elastic similarity model for three
daughters, A, B, and C. Different values of the daughter/mother ratio are
represented by different colors. Values greater than 3 are shown in
yellow. The angles of daughters A and C are set as hA = hC and to vary
from 0.1 to 90u. The weight of daughter B is fixed at 10 kg, and the
weights of daughters A and C are set as WA = WC and to vary from 0 to
10 kg. mM and mi are 1 cm.
doi:10.1371/journal.pone.0093535.g005

Figure 6. Daughter/mother ratios vs. daughters’ degrees of
deviation. Daughter/mother ratios vs. daughters’ degree of deviation
in (A) Fagus crenata and (B) Abies homolepis. The number of daughters
branching from a mother branch is two in Fagus crenata, and two (open
circles), three (filled circles), and four to five (open squares) in Abies
homolepis.
doi:10.1371/journal.pone.0093535.g006
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these values was similar to that obtained from the uniform stress

model (Figs. 4, 5 and Tables S4, S5, S6). However, the absolute

value of the daughter/mother ratio obtained from the elastic

similarity model was larger under the same conditions for a branch

with three daughters. The daughter/mother ratio generally

decreased when mM and mi were set to large values, whereas the

trend mentioned above was maintained when mM and mi were set

to large values or changed by the same method as that used for the

measurement point choice we established in our field observations.

Estimated values for the elastic similarity model might also deviate

from the actual value due to shear stress when there is poor

balance with respect to the mother axis between the daughter

branches A and B or daughter branches A and C.

Comparison between actual and theoretical values of the
daughter/mother ratio; validation of the biomechanical
models in Fagus crenata and Abies homolepis

The sum of the cross-sectional areas of daughter branches was a

little larger than the cross-sectional area of the mother branch at

most branching points in Fagus crenata and at some branching

points in Abies homolepis, whereas the daughter/mother ratios were

not so much away from 1.0 (Fig. 6). The daughter/mother ratio

for these branching points became larger as the daughters’ degree

of deviation became smaller, but this trend was very weak for

branching points with two daughters in Abies homolepis, and the

value was very close to the value obtained when using da Vinci’s

rule for branching points with two daughters in Abies homolepis

(Fig. 6, Table 1). This tendency for negative correlation did not

change whether the cross-sectional area was calculated as an

ellipse or a circle, and appeared to roughly coincide with the two

biomechanical model predictions rather than with da Vinci’s rule.

Indeed, g (di
3coshi)/dM

3, the index used for the uniform stress

model, was almost 1.0 (0.9760.02 SE), regardless of the daughters’

degree of deviation in Fagus crenata (Fig. 7A, r = 0.06). Thus, the

stress uniformity seems to explain the branch form near branching

points in Fagus crenata. However, in Abies homolepis, the value of the

index deviated somewhat from the theoretical value (0.8860.02;

Fig. 7B). Here, contrary to our expectations, g (di
3coshi)/dM

3

increased with increasing daughters’ degree of deviation in Abies

homolepis (Fig. 7B, Table 1). Therefore, the uniform stress model

does not apply well to Abies homolepis branches. A difference in the

trend of the daughter/mother ratio among the groups of

branching points with different number of daughter branches (n)

was observed. In Abies homolepis, the slope of the relationship

between the daughter/mother ratio and the daughters’ degree of

deviation increased with n. On the other hand, the slope of g
(di

3coshi)/dM
3 decreased with n.

The index for the elastic similarity model became smaller than

1.0 as the daughters’ degree of deviation neared zero and generally

took on a value smaller than the index for the uniform stress model

in both species (Fig. 8, Table 1), therefore deviating more from the

theoretical value than the uniform stress model. In Fagus crenata,

there appeared to be little correlation between the index for the

elastic similarity model and the daughters’ degree of deviation

(average: 0.8860.03, mean 6 SE). However, in Abies homolepis,

there was a positive correlation between these variables, partic-

ularly in branches with two daughters; this was also the case for the

uniform stress model index (Table 1). These results indicate that

the uniform stress model represented real branches in Fagus crenata,

but neither the mechanical models nor da Vinci’s rule represented

Abies homolepis branches.

Statistical analyses of predicted and measured daughter/mother

ratios showed that the measured ratio was smaller than the

predicted ratio in both mechanical models and was larger than the

value obtained with da Vinci’s rule ( = 1; Table 2). Analyses also

showed that SEE was smallest for the uniform stress model in Fagus

crenata and for branching points with three or more daughters in

Abies homolepis (the measured daughter/mother ratio value was

nearest to the prediction of the uniform stress model in Fagus

crenata and for branching points with three or more daughters in

Abies homolepis). However, for branching points with two daughters

in Abies homolepis, SEE was smallest for the value obtained with da

Vinci’s rule. Thus, we suggest that branches in Fagus crenata and

branching points with three or more daughters in Abies homolepis

Table 1. Constants of the regression equations (y = Ax+B) and correlation coefficients (r) in Figs. 6, 7, and 8.

Daughter/mother ratio Index of uniform stress model Index of elastic similarity model

A B r A B r A B r

Fagus crenata

two daughters 20.19 1.27 20.59 0.03 0.96 0.06 0.19 0.79 0.39

Abies homolepis

two daughters 20.11 1.16 20.32 0.41 0.65 0.65 0.64 0.48 0.69

three daughters 20.43 1.44 20.81 0.30 0.70 0.58 0.48 0.53 0.67

four or more 20.23 1.33 20.42 0.21 0.67 0.64 0.41 0.45 0.78

x represents the daughters’ degree of deviation, and y represents the daughter/mother ratio or the index of each biomechanical model.
doi:10.1371/journal.pone.0093535.t001

Figure 7. Indices of the uniform stress model vs. daughters’
degrees of deviation. Indices of the uniform stress model vs.
daughters’ degrees of deviation in (A) Fagus crenata and (B) Abies
homolepis. The theoretical value of the index is 1.0, independent of
daughters’ degrees of deviation.
doi:10.1371/journal.pone.0093535.g007

Tree Branching

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e93535



comply with the uniform stress model, whereas branching points

with two daughters in Abies homolepis comply with da Vinci’s rule.

When excluding bark thickness, the daughter/mother ratio for

Fagus crenata became slightly larger, but our conclusions remained

almost unaffected. As an exception, the exclusion of bark thickness

in Abies homolepis from the daughter/mother ratio decreased the

value (it approached 1.0 in both branching points with two

daughters and branching points with three or more daughters) and

decreased SEE for da Vinci’s rule (Table 2). Therefore, it is

possible that branching points with three daughters in Abies

homolepis best comply with da Vinci’s rule. For branching points

with four or more daughters in Abies homolepis, SEE (excluding bark

thickness) was smallest in the elastic similarity model, indicating

the possibility that these branching points best comply with the

elastic similarity model. The daughter/mother ratios calculated by

the biomechanical models from the measured diameters of

daughter branches when including mi and mM were slightly

smaller than the ratios calculated without them (in both species),

but the difference was very small and did not change our

conclusions.

Additional validation of the uniform stress model using
measurements of strain caused by the weights of
branches

The changes in the strain value (me) tended to be smallest near

the fixed end, which indicates that the degree of deflection caused

by a branch’s own weight is largest at the fixed end (Fig. 9). For

Fagus crenata, the strain value increased with distance from the fixed

end and settled in a constant range (correlation coefficients

excluding the data for the position close to the fixed end were

r = 0.20, 0.06, and 0.02 for Fagus crenata branches 1, 2, and 3,

respectively). Likewise, for Abies homolepis, the value increased with

increasing distance from the fixed end and became constant after

the distance from the fixed end exceeded approximately 1 m. The

strain values ranged from approximately 21000 to approximately

22000 me in Fagus crenata and 21500 to 22500 me in Abies

homolepis, excluding the segments close to the fixed end. At the

segment closest to the fixed end, the values were 25,000 or 22500

me in Fagus crenata and 23000, 23500, and 24000 me in Abies

homolepis.

Discussion

From the biomechanical model calculations, we demonstrated

that the daughter/mother ratio is influenced by differences among

daughter weights and branching angles and may deviate from 1.0

when the weights or branching angles of lateral daughter branches

are relatively large (when mechanical limitations dominate tree

design). For a common branching occurrence in nature where the

main daughter is much larger than lateral daughters, the ratio may

be close to 1.0. In such a case, the maintenance of mechanical

stability or safety may keep the value near 1.0, resulting in

agreement with da Vinci’s rule. The daughter/mother ratio value

can also be close to 1.0 when the lateral daughters’ branching

angles are small. In practice, the angles are 50–80u for Abies

homolepis and 10–50u for Fagus crenata. These values are sufficient (i)

to produce a bending point such that the daughter/mother ratio is

far more than 1.0 and (ii) for determining whether branching

points best fit da Vinci’s rule or one of the biomechanical models.

In Fagus crenata field measurements, diameters measured at

points before and after branching were in agreement with the

uniform stress model. The elastic similarity model was less

congruent with empirical measurements, but the indices of both

Figure 8. Elastic similarity model indices relative to daughters’
degrees of deviation. Elastic similarity model indices plotted against
daughters’ degrees of deviation in (A) Fagus crenata and (B) Abies
homolepis. The theoretical value of the index is 1.0 independent of
daughters’ degrees of deviation.
doi:10.1371/journal.pone.0093535.g008

Table 2. Biases and standard errors of estimates (SEE) of daughter/mother ratios estimated in compliance with the assumptions of
each model.

da Vinci’s rule Uniform stress model Elastic similarity model

Bias SEE Bias SEE Bias SEE

F. crenata

two daughters 0.180 (0.143) 0.206 (0.178) 20.072 (20.062) 0.120 (0.123) 20.134 (20.090) 0.183 (0.165)

A. homolepis

two daughters 0.114 (0.040) 0.159 (0.113) 20.118 (20.156) 0.295 (0.252) 20.176 (20.109) 0.279 (0.237)

three daughters 0.168 (0.028) 0.216 (0.102) 20.108 (20.212) 0.160 (0.274) 20.160 (20.106) 0.232 (0.197)

four or more 0.216 (0.059) 0.324 (0.149) 20.130 (20.227) 0.168 (0.286) 20.170 (20.084) 0.224 (0.126)

Total 0.141 (0.037) 0.190 (0.110) 20.119 (20.182) 0.251 (0.259) 20.177 (20.113) 0.271 (0.229)

Values in parentheses are estimates obtained from calculations that take mi and mM into consideration for the uniform stress model and elastic similarity model, and
take bark thickness into consideration for da Vinci’s rule.
doi:10.1371/journal.pone.0093535.t002
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models were close to 1.0. This indicates that horizontal branches

of Fagus crenata fit the uniform stress model best, the elastic

similarity model second, and da Vinci’s rule least well. The strains

resulting from the branches’ own weights were almost constant in

Fagus crenata, excluding the segments close to the fixed end (Fig. 9).

This provides good support for the uniform stress model

(branching was rarely observed close to the fixed end). However,

for Abies homolepis, the daughter/mother ratio closely followed da

Vinci’s rule for branching points with two daughters. In this

species, indices of the two models changed with the daughters’

degree of deviation, contrary to our expectations. Furthermore,

the daughter/mother ratio estimated without bark followed da

Vinci’s rule better for branching points with two or three

daughters, although the increasing trend with decreasing daugh-

ters’ degree of deviation was minimal for branching points with

three daughters. Thus, it seems that the architecture of Abies

homolepis branches near branching points is forced to maintain a

positive da Vinci’s rule index rather than to conform to

biomechanical safety or stability. However, the strain variations

along branches caused by the branches’ own weights were

minimal in Abies homolepis, other than in segments close to the

proximal end, indicating that branches of this species maintain

uniformity of mechanical safety (Fig. 9).

A possible explanation for this contradiction in Abies homolepis

may be the heterogeneity of wood properties. The relationship

between maximum bending stress and diameter at a point on a

branch may vary with the mechanical properties of wood.

Reaction wood (tension wood and compression wood) is produced

in inclined trunks, and differs from normal wood in mechanical

properties [24]. The theoretical values we calculated assumed that

the wood was uniform in its properties. It is possible that the

reaction wood content in branches influenced their mechanical

properties and diameters; under these circumstances, there may be

simultaneous compliance with da Vinci’s rule and a uniformity of

stress. Additionally, branch shedding may also have affected

results. In young Abies homolepis branches, the number of daughters

ramifying from one mother branch was usually three and

sometimes four or more, and branching points with two daughters

may have experienced cladoptosis. Sone et al. [6] showed that only

branches that have experienced shedding coincide with da Vinci’s

rule in Acer rufinerve and suggested that shedding is necessary to

maintain da Vinci’s rule in branching architecture. Such a branch

may have established its architecture according to mechanical

constraints before shedding, at which time it did not coincide with

da Vinci’s rule, and then shed several daughter branches of a

certain cross-sectional area so that the branch diameters tempo-

rarily would coincide with da Vinci’s rule. The diameters of such

branches may be modified gradually if mechanical constraints

exist, and there may be many branches in various states of

modification in nature. Thus, it seems natural that a scattering of

index values will occur after cladoptosis. However, without bark,

the estimated daughter/mother ratio fit da Vinci’s rule well, for

most branching points. Therefore, it is reasonable to suppose that

a branch of Abies homolepis will comply with da Vinci’s rule

regardless of the number of daughter branches.

The uniform stress model predicted the daughter/mother ratio

better than the elastic similarity model in both species. Therefore,

we propose that the branches we measured were more consistent

with the uniform stress hypothesis than with the elastic similarity

hypothesis.

Da Vinci’s rule does not define the locations at which cross-

sectional areas should be measured. The daughter/mother ratio

measured at points nearest the branching point often deviated

from 1.0, but the deviation was moderate and the ratio could be

1.0 if measurements were made farther from the branching point.

The daughter/mother ratios calculated by the biomechanical

models followed the same trend, and similar ratio values were

predicted. Thus, Leonardo da Vinci’s rule does not rule out

compliance with biomechanical models in realistic circumstances.

Similarly, the models do not preclude compliance with da Vinci’s

rule, although predictions of the two models and da Vinci’s rule

are not identical.

The method used here can also be applied to branches that are

not horizontal, and can be modified to include the mechanical

stress caused by wind, provided that the displacement of the

branch is negligible. Indeed, the mechanical stress due to dynamic

loads such as wind and snow is an important factor in a tree’s

mechanical safety [17], [25–26]. The biomechanical calculations

can be applied to any branch form by decomposing the load acting

on the branch, whatever the cause, into three-dimensional

elements (two vertical and one horizontal). Further verification

of various branch shapes requires additional data on the

mechanical state of branches in nature.

We did not investigate tree branching in terms of hydraulic

ability which is also a possible factor limiting tree morphology in

this study. Further studies are required to clarify the relationship

between hydraulic ability and tree branching.

Figure 9. Changes in strain values of branches after bending, freed from their own weights. Changes in strain values (me) for three
branches of Fagus crenata and four branches of Abies homolepis after being freed from their own weights, plotted against the distance from the fixed
end of each branch. The lines are drawn to connect the points of each branch. Legends show individual numbers of each branch.
doi:10.1371/journal.pone.0093535.g009
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