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Abstract

Purpose

Early confirmation or ruling out biliary atresia (BA) is essential for infants with delayed onset

of jaundice. In the current practice, percutaneous liver biopsy and intraoperative cholangiog-

raphy (IOC) remain the golden standards for diagnosis. In Taiwan, the diagnostic methods

are invasive and can only be performed in selective medical centers. However, referrals

from primary physicians and local pediatricians are often delayed because of lacking clinical

suspicions. Ultrasounds (US) are common screening tools in local hospitals and clinics, but

the pediatric hepatobiliary US particularly requires well-trained imaging personnel. The

meaningful comprehension of US is highly dependent on individual experience. For screen-

ing BA through human observation on US images, the reported sensitivity and specificity

were achieved by pediatric radiologists, pediatric hepatobiliary experts, or pediatric sur-

geons. Therefore, this research developed a tool based on deep learning models for screen-

ing BA to assist pediatric US image reading by general physicians and pediatricians.

Methods

De-identified hepatobiliary US images of 180 patients from Taichung Veterans General Hos-

pital were retrospectively collected under the approval of the Institutional Review Board.

Herein, the top network models of ImageNet Large Scale Visual Recognition Competition

and other network models commonly used for US image recognition were included for fur-

ther study to classify US images as BA or non-BA. The performance of different network

models was expressed by the confusion matrix and receiver operating characteristic curve.

There were two methods proposed to solve disagreement by US image classification of a

single patient. The first and second methods were the positive-dominance law and threshold
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law. During the study, the US images of three successive patients suspected to have BA

were classified by the trained models.

Results

Among all included patients contributing US images, 41 patients were diagnosed with BA by

surgical intervention and 139 patients were either healthy controls or had non-BA diagno-

ses. In this study, a total of 1,976 original US images were enrolled. Among them, 417 and

1,559 raw images were from patients with BA and without BA, respectively. Meanwhile,

ShuffleNet achieved the highest accuracy of 90.56% using the same training parameters as

compared with other network models. The sensitivity and specificity were 67.83% and

96.76%, respectively. In addition, the undesired false-negative prediction was prevented by

applying positive-dominance law to interpret different images of a single patient with an

acceptable false-positive rate, which was 13.64%. For the three consecutive patients with

delayed obstructive jaundice with IOC confirmed diagnoses, ShuffleNet achieved accurate

diagnoses in two patients.

Conclusion

The current study provides a screening tool for identifying possible BA by hepatobiliary US

images. The method was not designed to replace liver biopsy or IOC, but to decrease human

error for interpretations of US. By applying the positive-dominance law to ShuffleNet, the

false-negative rate and the specificities were 0 and 86.36%, respectively. The trained deep

learning models could aid physicians other than pediatric surgeons, pediatric gastroenterolo-

gists, or pediatric radiologists, to prevent misreading pediatric hepatobiliary US images. The

current artificial intelligence (AI) tool is helpful for screening BA in the real world.

Introduction

Prolonged jaundice in neonates and infants is often encountered by pediatricians and pediatric

surgeons. The common types include hemolytic jaundice, infectious jaundice, breast milk

jaundice, obstructive jaundice, and rare autoimmune diseases [1, 2]. If the serum direct biliru-

bin level exceeds 1.0 mg/dL or the ratio of direct to indirect bilirubin level exceeds 15%–20%

[3], obstructive jaundice is impressed and early surgical intervention is often required. Biliary

atresia (BA) is the most common etiology of obstructive jaundice for neonates and infants. In

general, surgery before 60 days of age is considered beneficial. Thus, early suspicion, sensitive

screening tools, and accurate diagnostic methods for BA are highly demanded. Basic

approaches for obstructive jaundice include infant stool card screening, capillary heel stick

sampling, and transcutaneous bilirubinometer. The stool card screening is a simple tool for

parents to detect abnormal stool color. In addition, the high sensitivity and low PPV of stool

cards represent appropriate screening values [4]. Meanwhile, the capillary heel stick sampling

and transcutaneous bilirubinometer are basic tools to evaluate serum bilirubin levels instead of

direct venous blood sampling. The two less invasive tools are developed to replace invasive

blood sampling for infants but not for screening BA [5].

However, liver biopsy and intraoperative cholangiography (IOC) remain the gold standard

for BA diagnosis. The two invasive procedures require judicious clinical decisions and can
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only be performed in exclusive centers. Sensitivity (50%–100%) and specificity (66.7%–100%)

of percutaneous liver biopsy are not ideal because of technical issues such as sampling error

and inaccurate pathological interpretation [6]. IOC can only be performed by pediatric sur-

geons who can perform simultaneous Kasai portoenterostomy, thus the procedure should be

preserved for patients with the most possibility of BA. Meanwhile, for patients without BA, the

invasive diagnostic tools are often considered unnecessary by parents and could lead to addi-

tional complications. Some advanced non-invasive image studies have been used for early

screening and diagnosis. Hepatobiliary scintigraphy has a sensitivity of 98.1%–99.2%, however,

the specificity is as low as 68.5%–72.2% [7]. Moreover, the isotopes for the examination are no

longer available in most regions and countries. Magnetic resonance imaging (MRI) presents

good sensitivity and specificity of up to 98% [8]. However, the procedure requires sedation,

and MRI equipment with better accuracy of infant images is not common in local hospitals.

Hepatobiliary ultrasound (US) has the advantages of feasibility and non-invasiveness. Screen-

ing of BA based on the US depends on triangular cord sign and gallbladder anomaly in fasting

status [2]. Furthermore, a triangular cord sign defines fibrosis of the extrahepatic bile duct

over the hepatic hilum, and a hyperechogenic area posterior to the hilum vessels could be visi-

ble. The sensitivity and specificity of the triangular cord sign are 61%–84% and 95%–99%,

respectively. Typically, the gallbladder size should be larger during fasting and smaller after

feeding. Patients with BA often had invisible gallbladder and no size change after feeding. The

sensitivity and specificity of US gallbladder size for BA are 76%–91% and 81%–97%, respec-

tively. Collectively, the US has a sensitivity and a specificity of 70%–99% and 79%–94% [9].

However, the high diagnostic performance of the US can only be achieved by well-trained

pediatric surgeons, pediatricians, and pediatric radiologists. Image quality is highly user-

dependent, and the inter-observer difference is expected, particularly for primary physicians

and pediatricians other than experts.

This study took the work of Kuo et al. [10] as a reference and successfully established a US-

based deep learning model for BA screening without human interpretation. Hepatobiliary US

images of patients with and without BA were retrospectively collected as a raw database. There

were no marking or prior identification of US details, such as triangular cord sign, gallbladder

size, hepatic hilum structure, or intrahepatic bile ducts made on the raw images to exclude

expertise requirements, prevent human error, and expand further applications without aid

from specialists. The new artificial intelligence (AI) model improves the screening process for

BA and earlier detects disease. For patients with obstructive jaundice rather than BA, this

model may prevent unnecessary surgeries or liver biopsies at outpatient service. At present,

scanty reports discussed BA diagnosis by AI-based US image classification [11]. In this study,

a reliable model was established to facilitate the non-invasive early screening of BA.

Methods

Study structure

This research mainly included four parts, namely data collection and labeling, ultrasonic

image data preprocessing, CNN network model training and classification, evaluation, and

optimization network. The workflow chart is shown in Fig 1. The details of each step will be

addressed.

Data collection and labeling

Patients with accessible pre-operative hepatobiliary US images who underwent Kasai portoen-

terostomy for BA in Taichung Veterans General Hospital before December 31, 2020, were ret-

rospectively collected. For comparison, continuous non-BA patients with hepatobiliary US

PLOS ONE Biliary atresia screening by ultrasound-based deep learning models

PLOS ONE | https://doi.org/10.1371/journal.pone.0276278 October 19, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0276278


images obtained between January 1, 2020–September 1, 2020, were also gathered. Meanwhile,

patients older than one year, without accessible US images, or who had hepatobiliary tract sur-

gery before the US were excluded. Patients’ characteristics, the number of patients, and US

images are listed in Table 1. Patients with BA were younger than patients without BA, how-

ever, the gender distribution and body weight were the same in the two groups. Serum alanine

aminotransferase (ALT) and γ-glutamyltransferase (GGT) were high in BA patients. The study

Fig 1. Workflow chart of neural network training for US image recognition. ROI: range of interest. PIQE: perception-based quality evaluator.

https://doi.org/10.1371/journal.pone.0276278.g001

Table 1. Patients’ characteristics, patient number, and US images amounts of BA and non-BA groups.

Biliary atresia Non-biliary atresia

Number of Total

Patients 41 139 180

Original US images 417 1,559 1,976

Included images 350 1,416 1,766

Characteristics p-value

Female 53.7% 43.9% 0.271

Age (month) 1.8 (1.5–2.2) 2.9 (2.5–3.4) 0.035

Body weight (kg) 4.37 (3.99–4.76) 4.84 (4.42–5.26) 0.298

Total bilirubin (mg/dL) 8.87 (7.61–10.12) 4.95 (3.81–6.10) <0.001

Direct bilirubin (mg/dL) 4.19 (3.70–4.68) 1.06 (0.70–1.42) < 0.001

Aspartate aminotransferase, AST (U/L) 156.3 (119.0–193.7) 94.1 (42.0–146.3) 0.125

Alanine aminotransferase, ALT (U/L) 117.7 (84.7–150.7) 39.0 (27.9–50.0) < 0.001

Alkaline phosphatase, ALP (U/L) 717.0 (596.3–837.6) 544.6 (359.2–730.0) 0.098

γ-glutamyltransferase, GGT (U/L) 768.4 (578.4–958.4) 138.5 (83.6–193.3) < 0.001

Images with poor quality and Doppler mode were excluded before entering training or the test set. Data presentation: mean (95% confidence interval) for continuous

variables. Significance tests: Chi-squared test for categorical variables and t-test for continuous variables.

https://doi.org/10.1371/journal.pone.0276278.t001
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was approved by the Institutional Review Board (IRB) II of Taichung Veterans General Hospi-

tal (consent number CE21036B3). Images for the study were reviewed by two authors (S.Y.H.

and C.M.C.) independently, and any disagreement was resolved by discussion. Images from

different angles observing the hepatobiliary region were ultimately collected; thus, one patient

would have various US images for analysis.

This study is conducted to observe images of hepatobiliary US to determine whether or not

the patient has BA. The brightness mode (B-mode) prevents overfitting and facilitates future

application (Fig 2A). Color Doppler images would be excluded in further training (Fig 2B).

Four angles of observation of hepatobiliary US images were routinely obtained. The first

involved the right liver lobe, right kidney, and right psoas muscle. Meanwhile, the second

included the gallbladder and portal vein. The third observed the hepatic vein, inferior vena

cava, and portal vein, and the final view was focused on the portal vein, common bile duct,

and gallbladder. All US examinations were performed by one experienced sonographer using

a Philips HD 11 XE ultrasound scanner and an S12-4 sector-array transducer (Philips Medical,

Eindhoven, The Netherlands).

Preprocessing of ultrasound images

For clinical references, some texts were marked in the original US images, such as “NPO",

"Feeding", and “GB” for nil per os (fasting), post-feeding, and gallbladder, respectively. In the

preprocessing stage, the texts were filtered out to acquire original US images and avoid texts

appearing in the region of interest (ROI). Then, after obtaining the original hepatobiliary US

images selected by two pediatric surgeons, the first step was to crop the target range. Herein, a

custom mask was used to filter out unwanted ROI information, preserve the fan-shaped area

in the US images, delete the marginal black area, and neglect information on equipment

descriptions. There was no further specific identification of anatomical landmarks or signs for

BA diagnosis made to simulate routine hepatobiliary US evaluated by non-experts. Subse-

quently, images were written into the data table of the corresponding category while the index,

file name, and location of images were recorded. The quality of the image was important for

the performance of the neural network model, and the inconsistency of the image quality dur-

ing the training and verification phases would decrease the performance of the network model

Fig 2. Examples of US images from a patient of BA. A. an US image in brightness mode. B. an US image with annotation in

Doppler mode. GB: gallbladder.

https://doi.org/10.1371/journal.pone.0276278.g002
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[12]. Therefore, a Perception-based Image Quality Evaluator (PIQE) was used to screen the

process [10, 13]. In addition, quality metrics provided objective image quality scores, and two

types of algorithms could be used, full-reference and no-reference, respectively. The former

compared the input images with the original reference images without distortion whereas the

latter compared the statistical features of the input images with a set of features derived from

the image database. This study used PIQE by block-wise distortion estimation to calculate the

non-reference image quality score [13].

The PIQE score calculated the mean subtracted contrast normalized (MSCN) coefficient of

each pixel in the image. The first step was to calculate the parameters of local mean removal

and divisive normalization for the input image. This step extracted the natural scene statistics

(NSS) feature. Afterward, only the spatially active blocks were evaluated for the quality score.

Image distortion could be divided into three categories: blockiness, blur, and noise. The spa-

tially active block distortion could be divided into two types of processing: noticeable distor-

tion and white noise. Then, the variance of the block is used to measure the two kinds of

distortions, and the quality of the whole image was expressed in a percentage� 100%. In this

study, the cutoff value of PIQE scores to determine good quality is� 10%.

As the test set, 11 patients with BA (143 US images) and 45 patients without BA (525 US

images) were randomly selected with a total of 668 US images. The randomization process was

performed by the blinded author (S.T.D.) who had no access to patients’ characteristics or any

clinical information. In addition, some images were randomly selected as the test set among

the included US images. The rest of the images were designated into training and validation

sets. Data augmentation of the training and validation sets was performed to increase the num-

ber of data sets, reduce model overfitting, and increase the generalization ability of the network

model (Fig 3). The images were randomly zoomed (0.8–1.2 times), rotated (-90˚ to 90˚),

flipped vertically, flipped horizontally, and cropped (resize after cropping). The number of

training and validation sets was increased to train the network models and improve the robust-

ness in practical applications. After data augmentation of the non-test set, the PIQE score was

used for evaluation. The images of the lowest 10% scores were chosen as the validation set and

the rest as the training set. In the preliminary stage of the study, 5-fold cross-validation had

Fig 3. Examples of US images from a patient with BA. A. An original US image. B. The images after data augmentation.

https://doi.org/10.1371/journal.pone.0276278.g003
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been tried, however, the performance of the models was poor, thus 10-fold cross-validation

was used for the final version of the experiment.

Network model training and classification

As shown in Table 1, a total of 180 patients (41 and 139 patients with and without BA) were

included, thus providing a total of 1,976 original US images (417 images of BA and 1,559

images of non-BA). After the adoption of brightness mode and clear images, a total of 1,766

images (350 of BA and 1,416 of non-BA) were included for further study. Among them, 11

patients with BA (143 US images) and 45 patients with non-BA (525 images), a total of 668

original images were initially selected as the test set and excluded as training or validation.

After the data augmentation, a total of 21,010 images (3,786 and 17,224 images of BA and non-

BA, respectively) were used for training and validation of the study.

In addition, a trilinear interpolation was used to resize the image size to 224 × 224 × 3

before the images were inputted into the network model. The output class was divided into

two categories; "with biliary atresia" and "without biliary atresia.” Each network model was ini-

tialized with Xavier. Moreover, the optimizer used is the SDGM. The initial learning rate was

0.001, and the learning rate was reduced by 0.1 every 10 epochs. The mini-batch size was 25

and a total of 100 epochs were run. All network models were trained using the same training

parameters.

Results

Performance of CNN models

Under the unified training parameters, data set, and execution environment, the accuracy, F1

score, specificity, false-positive rate (FPR), and false-negative rate (FNR), area under the

receiver operating characteristic curve (AUC), and the execution time of each network model

were listed in Table 2. The best performance among models was highlighted by bold text.

The channel shuffle processing method of ShuffleNet had good results for the classification

of US images for BA diagnosis. The network has up to 90.57% accuracy, 67.83% sensitivity,

32.17% FNR, and the highest F1 score. Furthermore, ResNet-50 and DenseNet-201 presented

the best specificity and FPR among the compared models. However, the difference from Shuf-

fleNet was only 0.19% and 0.19% for specificity and FPR, respectively. The execution time of

MobileNetV2 is the shortest among all networks, thereby maintaining a certain degree of

Table 2. Evaluation of the execution results of different network models for the classification of US images.

Network Accuracy Precision Sensitivity Specificity FPR FNR F1 score AUC Runtime (s)

ResNet-101 86.8263% 78.9474% 52.4476% 96.1905% 3.8095% 47.5524% 63.0252% 84.40% 11.500042

ResNet-50 86.5269% 81.1765% 48.2517% 96.9524% 3.0476% 51.7483% 60.5263% 86.12% 5.524834

ResNet-18 86.8263% 78.3505% 53.1469% 96.0000% 4.0000% 46.8531% 63.3333% 84.66% 4.224259

VGG-16 85.4790% 75.5556% 47.5524% 95.8095% 4.1905% 52.4476% 58.3691% 84.55% 11.426453

VGG-19 84.5808% 73.8095% 43.3566% 95.8095% 4.1905% 56.6434% 54.6256% 83.99% 19.198317

ShuffleNet 90.5689% 85.0877% 67.8322% 96.7619% 3.2381% 32.1678% 75.4864% 92.62% 4.495658

GoogleNet 85.3293% 75.8621% 46.1538% 96.0000% 4.0000% 53.8462% 57.3913% 84.59% 3.902386

MoblieNetV2 85.7784% 78.5714% 46.1538% 96.5714% 3.4286% 53.8462% 58.1498% 82.21% 3.852861

DenseNet-201 89.2216% 84.4660% 60.8392% 96.9524% 3.0476% 39.1608% 70.7317% 91.85% 17.020106

The results were disclosed by accuracy, precision, sensitivity, and specificity. F1 score was defined as the harmonic mean of precision and recall. FPR: false-positive rate.

FNR: false-negative rate. AUC: area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0276278.t002
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accuracy. In addition, the training errors of ResNet-101, ResNet-50, ResNet-18, and VGG-16

were not found during the training process, which caused the overfitting of models. Conse-

quently, the accuracy of the test set decreased. Therefore, the implementation results of each

network model will be described in S1 File to understand each network model’s ability to iden-

tify BA by US images. In general, as the network gets deeper based on the same initial struc-

ture, the accuracy should increase accordingly [14]. However, based on the results of ResNet

(S1A–S1C Fig), the best performance was provided by ResNet-50 rather than ResNet-101.

All classification network models were used to detect whether the single US image repre-

sented BA. For multiple images of one patient, the most intuitive way was to divide the image

(IBA) identified as biliary atresia by all the input images (Iall). The Formula was:

BA Probability ¼
IBA
IAll

The detailed execution records of ShuffleNet on the test set were the best among the mod-

els. Among the 56 patients tested, 44 patients had all US images correctly classified for BA

diagnosis (BA for 5 patients and non-BA for 39 patients). The disagreement in individual US

image classification was noted in 12 patients, and the patient-by-patient results were listed in

Table 3. Images predicted “have” indicated AI diagnosis of BA, and images predicted “none”

represented AI excluding BA. The diagnosis was confirmed by IOC for patients with BA and

clinical follow-up for patients without BA.

The extremely low accuracy (11.11% and 13.79%) was observed in two patients with BA.

The deficiency of AI classification might be due to the few numbers of BA images in the data-

base. Herein, the classification results of US images of “Have02” and “Have06” patients were

illustrated. Only one of nine US images of the “Have02” patient was correctly classified by the

ShuffleNet model (Fig 4). The only image labeled as “have” was an oblique subcostal scan of

the right liver without demonstrating hilum structure but intrahepatic portal vein. The image

of the hepatic hilum with a fuzzy triangular cord sign was marked as “none” with a probability

of 58.2%. The result indicated that the identification of BA by ShuffleNet could be significantly

altered by the clear demonstration of hilum structures.

Table 3. The identification results of test patients with disagreement of individual US image by ShuffleNet.

Patient No. Diagnosis Number of images Images predicted “Have” Images predicted “None” Accuracy BA probability

Have01 BA 7 4 3 57.1429% 57.1429%

Have02 BA 7 6 1 85.7143% 85.7143%

Have03 BA 9 1 8 11.1111% 11.1111%

Have04 BA 14 13 1 92.8571% 92.8571%

Have05 BA 25 23 2 92.0000% 92.0000%

Have06 BA 29 4 25 13.7931% 13.7931%

None01 Non-BA 14 1 13 92.8571% 7.1429%

None02 Non-BA 8 1 7 87.5000% 12.5000%

None03 Non-BA 12 7 5 41.6667% 58.3333%

None04 Non-BA 17 2 15 88.2353% 11.7647%

None05 Non-BA 15 4 11 73.3333% 26.6667%

None06 Non-BA 9 2 7 77.7778% 22.2222%

Images predicted “have” indicated AI diagnosis of BA, and images predicted “none” represented AI excluding BA.

https://doi.org/10.1371/journal.pone.0276278.t003
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Four US images of the “Have06” patient were correctly classified as BA, and the scanned

anatomical structures were right side liver parenchyma, gallbladder, and hilum structure (Fig

5). Like the “Have02” patient, images of the right liver revealed diagnostic value in US-based

AI model classification. A total of 25 images of the “Have06” patient were identified as the

non-BA with a high probability (65.5%–100%). The results showed the incapability to achieve

correct prediction based on a single network model, like ShuffleNet for the “Have06” patient.

Methods to resolve disagreement by individual US images

Two feasible methods were proposed based on the patient-based experimental results to

decrease the effect of the outliers. The first method was the positive-dominance law. That was,

for a single patient, if the CNN model predicted any input B-mode US as BA, the patient

would be classified as “BA.” The prediction results of the test set by ShuffleNet following posi-

tive-dominance law were listed in Table 4. However, this method might lead to an increase in

FPR of 13.64% in this case.

For a single patient, the weighted average of the probability of BA recognized by the net-

work was calculated based on the prediction results of the input B-mode US images. The

patient was then classified as BA if the value was greater than a certain threshold (20% in

this case). The method was named thresholding law and the results of ShuffleNet were listed

in Table 4. In the preliminary stage of the study, thresholds of 10%, 20%, and 30% were

used, and the final threshold was set as 20% for better performance. Herein, the higher

threshold would further compromise the sensitivity of the AI tool. The results of threshold-

ing law were improved by accuracy, precision, specificity, and FPR as compared with posi-

tive-dominance law.

Application for upcoming patients

There were three patients suspected of having BA by two authors (S.Y.H. and C.M.C.) within

one month after the network training. Some trained models tested raw images of hepatobiliary

US. The prediction results and final diagnoses were listed in Table 5. The final diagnoses were

confirmed by IOC. For Case 1, only the ShuffleNet strongly predicted BA (93.75%), and most

models made the correct prediction as to the final diagnosis. Meanwhile, for Case 2, only the

ShuffleNet predicted BA, and for Case 3, ShuffleNet and GoogleNet predicted BA. The latter

Fig 4. The detailed identification results of the “Have02” patient with BA. The first box above the image represents the prediction by the network model. The “have”

and the “none” means BA was predicted and the non-BA, respectively. The second box represents the probability of the prediction. Meanwhile, the third box represents

whether or not the judgment was correct (O is correct and X is wrong).

https://doi.org/10.1371/journal.pone.0276278.g004
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two patients were confirmed to have BA by IOC and then underwent simultaneous laparo-

scopic Kasai portoenterostomy.

Discussion

Image classification is a typical task in computer vision, and the output is the category and

probability of the images. Object recognition and detection identify the category and location

in the images. A bounding box is often used to output the detected category, probability, and

location information. A convolutional neural network (CNN) is the most popular solution for

image classification. In addition, various CNN models are applied to medical US images,

whether a single model or a combination of different network models for classification and

prediction, respectively [15, 16].

In the field of image classification, the residual network (ResNet) [17, 18] is often the first

choice for its simple and practically deeper construction. Moreover, as compared with AlexNet

[19], VGGNet [20], and GoogLeNet [21], ResNet has proven that as the depth of the network

increases, the accuracy and other indicators of the network should be increased instead of

deteriorating or gradient vanishing. However, the theoretical benefits provided by the deeper

Fig 5. The detailed identification results of the “Have06” patient with BA. The first box above the image represents

the prediction by the network model. The “have” and the “none” means BA was predicted and the non-BA,

respectively. The second box represents the probability of the prediction. Meanwhile, the third box represents whether

or not the judgment was correct (O is correct and X is wrong).

https://doi.org/10.1371/journal.pone.0276278.g005
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construction of ResNet were not shown in this study, and overfitting is assumed to be the rea-

son. Calculations of MobileNetV1 would be less than half of the original convolution structure

[22–24]. MobileNetV2 is based on MobileNetV1, and linear bottlenecks and inverted residuals

are added [25] to reduce the information loss caused by rectified linear units (ReLU). In this

study, the shortest runtime was created by MobileNetV2. SqueezeNet is a lightweight network

model, and the size of parameters is only 2.14% of AlexNet with the equivalent performance

[26]. ShuffleNet is based on SqueezeNet with some changes [27]. The ShuffleNetV1 architec-

ture refers to the ResNet bottleneck design. Furthermore, the group convolution and channel

shuffle are used to compress calculations, exchange information between channels, and learn

more complex features. ShuffleNetV2 avoids the increasing multiply-accumulate (MAC) of

many 1 × 1 pointwise convolutions as compared with ShuffleNetV1 [28]. Therefore, choosing

an appropriate lightweight CNN is vital for further study. A simple comparison between Mobi-

leNetV2 and ShuffleNetV2 according to the work of Ma et al. in 2018 [28] proved that Shuffle-

NetV2 provides less amount calculation and requires few parameters. However, the Top-1

accuracy of all listed models by Ma et al. is not satisfying. The Top-5 accuracy of ShuffleNetV2

decreases from 92.4% to 83.6%, following the trend of structural complexity.

Meanwhile, transfer learning effectively reduces network model overfitting, solves time-

consuming problems, and prevents cumbersome data labeling and complex data acquisition

[29, 30]. The practical application of image classification could be more effective, robust, and

extensive. However, accuracy in medical imaging is the most critical outcome, particularly for

image recognition and classification of diagnosis. Based on the known poor accuracy, the pre-

Table 4. Confusion matrix and execution results of test set by ShuffleNet obeying different laws of interpretation.

Positive-dominance law Thresholding law

Confusion Matrix by Patients Accuracy 89.09% Confusion Matrix by Patients Accuracy 90.91%

Predicted

Actual

BA Non-BA Precision 64.71% Predicted

Actual

BA Non-BA Precision 75.00%

Sensitivity 100.00% Sensitivity 81.82%

BA Patients 11 0 Specificity 86.36% BA Patients 9 2 Specificity 93.18%

FPR 13.64% FPR 6.82%

Non-BA Patients 6 38 FNR 0.00% Non-BA Patients 3 41 FNR 18.18%

F1-Score 78.57% F1-Score 78.26%

Positive-dominance law indicated that the classification would be BA even if only one US image was predicted positive. Thresholding law indicated BA if more than

20% of images were predicted positive.

https://doi.org/10.1371/journal.pone.0276278.t004

Table 5. Prediction results for BA of three successive patients.

Case 1 Case 2 Case 3

Network BA Probability BA Probability BA Probability

ResNet-101 56.25% 23.53% 46.15%

VGG-16 12.50% 29.41% 23.08%

ShuffleNet 93.75% 88.24% 100.00%

GoogleNet 18.75% 52.94% 69.23%

MobileNetV2 31.25% 47.06% 46.15%

DenseNet-201 31.25% 29.41% 53.85%

Final Diagnosis Non-BA BA BA

All three cases were clinically suspected to have a BA and the final diagnosis was achieved by IOC.

https://doi.org/10.1371/journal.pone.0276278.t005
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trained network by ImageNet would be abandoned in the preliminary stage of this study.

Instead, training new models would be initiated from scratch. The trained network models

would be tested, compared, and modified in the following stage.

Among patients with prolonged jaundice, BA could be suspected by the shape of the hepatic

portal (vascular and bile duct entrance) and gallbladder morphology in US images. The contri-

bution of deep learning to the classification was significant. Thus far, deep learning has

achieved rapid development in network architecture or models, such as deeper network archi-

tectures and deep generative models. There have been various papers on applying deep learn-

ing in medical image analysis. These reports focused on the entire field of medical image

analysis, like US, MRI, or computerized tomography (CT) scan [15, 16, 29, 30].

Zhou et al. [11] used CNN models to detect BA from US gallbladder and hilum bile duct

structure images. The patient-level sensitivity and specificity were 93.1% and 93.9%, respec-

tively. Herein, an AUC of 0.956 was achieved. However, the results were contributed by exper-

tise (human or machine) cropping images, and the images of liver parenchyma and

surrounding anatomical structures were not considered. For a regular abdominal US examina-

tion, as many as 10–20 images would be acquired, particularly when the clinical suspicion was

unclear. In addition, by focusing on the critical structures of BA, like gallbladder and bile

ducts, overfitting of the model might be an issue. Furthermore, the visualization of the gall-

bladder in US images was required in the data set; thus, patients without fasting US images

might be lost. In the outpatient clinic setting, screening US study would often be performed

randomly even after feeding. In this study, no limitation of feeding conditions was set for bet-

ter simulation of the clinical scenario before the US image is obtained. Kuo et al. [10] devel-

oped an AI method for estimating glomerular filtration rate by renal US images without pre-

processing image identification or labeling. The concept was adopted in the study, and deep

learning models were to find the classification of BA or non-BA based on less selected and ran-

dom hepatobiliary US images. Meanwhile, two methods were proposed to solve the disagree-

ment of image-based prediction. For thresholding law, the threshold value was set by

researchers without supporting evidence, and the value might be changed by increasing the

size of the database. Though the thresholding law decreased FPR by 6.82%, the high FNR of

18.18% was not acceptable in clinical application. The prognosis of BA has known to be signifi-

cantly influenced by the time of intervention [1, 2]. Therefore, the early diagnosis was crucial

for BA patients. The main requirement of the screening tool should be high sensitivity. The

FPR of 13.64% by positive-dominance law meant that one or two of every 10 patients who

underwent IOC would eventually be confirmed with a non-BA diagnosis. The negative results

of IOC to exclude BA are acceptable for pediatricians and pediatric surgeons. In addition, the

clinicians could make more precise diagnoses by incorporating US-based AI classification

with stool color, laboratory data, and other image studies.

Pathological jaundice of infants caused by BA is a critical clinical condition. For now, inva-

sive examination methods such as liver biopsy and IOC are still the golden standard for diagno-

sis. This study explored the possibility of non-invasive diagnostic methods using hepatobiliary

US images based on deep learning methods. The experimental results showed that the construc-

tion of the ShuffleNet network was excellent at processing US images for diagnosis of BA, with

an accuracy of 90.57%. Thus, the results of real-world data revealed that only the ShuffleNet

could predict BA with a higher probability. Moreover, ShuffleNet had the advantages of rapid

processing and a lightweight model. Further application in community clinics and rural regions

would be more feasible. All hepatobiliary US images were included in the database of this study,

and the generalization might prevent expertise selection before image processing and overfitting

of model training. Based on US images of disagreement prediction, right liver parenchyma mor-

phology seemed important for BA diagnosis in addition to the gallbladder and hepatic hilum.
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The main limitations of this study were the size of the US image database, the doubt of over-

fitting, and more requirements of test sets for verification. In addition, the overdiagnosis of BA

by ShuffleNet was an issue. The lower sensitivity of the current models had left room for fur-

ther perfection by adding more images of the training set. However, the reported high sensitiv-

ity was achieved by experts of pediatric hepatobiliary US image reading. In the real world, the

diagnosis is often delayed by inexperienced physicians, and this study verified the method’s

feasibility to assist the screening of BA by US-based deep learning models. Finally, the current

study only calculated the different diagnostic results of ShuffleNet following positive-domi-

nance and thresholding laws, the two methods dealing with classification disagreement, and

the calculation of other models should be further performed.

Conclusion

ShuffleNet has the best prediction performance among tested CNN models for diagnosing BA

from ultrasound images. The disagreement of individual US images of one patient could be

resolved by applying the positive-dominance law. US images of the right liver are potential

roles in screening the BA. Moreover, the lightweight model has a promising application for

non-experts in local clinics or rural regions.
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5. Ercan Ş., Özgün G. The accuracy of transcutaneous bilirubinometer measurements to identify the

hyperbilirubinemia in outpatient newborn population. Clin. Biochem. 2018; 55:69–74. https://doi.org/10.

1016/j.clinbiochem.2018.03.018 PMID: 29601801

6. Lee J. Y., Sullivan K., El Demellawy D., Nasr A. The value of preoperative liver biopsy in the diagnosis

of extrahepatic biliary atresia: A systematic review and meta-analysis. J. Pediatr. Surg. 2016; 51:753–

761. https://doi.org/10.1016/j.jpedsurg.2016.02.016 PMID: 26932252

7. Kianifar H. R., Tehranian S., Shojaei P., Adinehpoor Z., Sadeghi R., Kakhki V. R. D., et al. Accuracy of

hepatobiliary scintigraphy for differentiation of neonatal hepatitis from biliary atresia: systematic review

and meta-analysis of the literature. Pediatr Radiol 2013; 43:905–919. https://doi.org/10.1007/s00247-

013-2623-3 PMID: 23519699

8. Lin D. C., Wu K. Y., Sun F. J., Huang C. C., Wu T. H., Shih S. L., et al. A quantitative image analysis

using MRI for diagnosis of biliary atresia. Clin Imaging 2019; 53:186–190. https://doi.org/10.1016/j.

clinimag.2018.10.001 PMID: 30415184

9. Lee H. J., Lee S. M., Park W. H., Choi S. O. Objective criteria of triangular cord sign in biliary atresia on

US scans. Radiology 2003; 229:395–400. https://doi.org/10.1148/radiol.292020472 PMID: 14595143

10. Kuo C. C., Chang C. M., Liu K. T., et al. Automation of the kidney function prediction and classification

through ultrasound-based kidney imaging using deep learning. NPJ Digit. Med. 2019; 2:1–9. https://

doi.org/10.1038/s41746-019-0104-2 PMID: 31304376

11. Zhou W., Yang Y., Yu C., et al. Ensembled deep learning model outperforms human experts in diagnos-

ing biliary atresia from sonographic gallbladder images. Nat. Commun. 2021; 12:1–14. https://doi.org/

10.1038/s41467-021-21466-z PMID: 33627641

12. Yim, J., Sohn, K. A. Enhancing the performance of convolutional neural networks on quality degraded

datasets. In: 2017 International Conference on Digital Image Computing: Techniques and Applications

(DICTA) IEEE 2017; pp. 1–8. https://doi.org/10.1109/DICTA.2017.8227427.

13. Venkatanath, N., Praneeth, D., Bh, M. C., Channappayya, S. S., Medasani, S. S. Blind image quality

evaluation using perception based features. In: 2015 Twenty First National Conference on Communica-

tions (NCC) IEEE 2015; pp. 1–6. https://doi.org/10.1109/NCC.2015.7084843.

14. Wu Z., Shen C., Van Den Hengel A. Wider or deeper: Revisiting the resnet model for visual recognition.

Pattern Recognit 2019; 90:119–133. https://doi.org/10.1016/j.patcog.2019.01.006

15. Akkus Z., Cai J., Boonrod A., Zeinoddini A., Weston A. D., Philbrick, et al. A survey of deep-learning

applications in ultrasound: Artificial intelligence–powered ultrasound for improving clinical workflow. J.

Am. Coll. Radiol. 2019; 16:1318–1328. https://doi.org/10.1016/j.jacr.2019.06.004 PMID: 31492410

16. Liu S., Wang Y., Yang X., et al. Deep learning in medical ultrasound analysis: a review. Engineering

2019; 5:261–275. https://doi.org/10.1016/j.eng.2018.11.020

PLOS ONE Biliary atresia screening by ultrasound-based deep learning models

PLOS ONE | https://doi.org/10.1371/journal.pone.0276278 October 19, 2022 14 / 15

https://doi.org/10.1136/adc.2006.101451
http://www.ncbi.nlm.nih.gov/pubmed/17878208
https://doi.org/10.2214/AJR.10.5180
http://www.ncbi.nlm.nih.gov/pubmed/21427309
https://doi.org/10.1186/s12929-018-0475-8
http://www.ncbi.nlm.nih.gov/pubmed/30367658
https://doi.org/10.1007/s00383-017-4175-3
https://doi.org/10.1007/s00383-017-4175-3
http://www.ncbi.nlm.nih.gov/pubmed/28983697
https://doi.org/10.1016/j.clinbiochem.2018.03.018
https://doi.org/10.1016/j.clinbiochem.2018.03.018
http://www.ncbi.nlm.nih.gov/pubmed/29601801
https://doi.org/10.1016/j.jpedsurg.2016.02.016
http://www.ncbi.nlm.nih.gov/pubmed/26932252
https://doi.org/10.1007/s00247-013-2623-3
https://doi.org/10.1007/s00247-013-2623-3
http://www.ncbi.nlm.nih.gov/pubmed/23519699
https://doi.org/10.1016/j.clinimag.2018.10.001
https://doi.org/10.1016/j.clinimag.2018.10.001
http://www.ncbi.nlm.nih.gov/pubmed/30415184
https://doi.org/10.1148/radiol.292020472
http://www.ncbi.nlm.nih.gov/pubmed/14595143
https://doi.org/10.1038/s41746-019-0104-2
https://doi.org/10.1038/s41746-019-0104-2
http://www.ncbi.nlm.nih.gov/pubmed/31304376
https://doi.org/10.1038/s41467-021-21466-z
https://doi.org/10.1038/s41467-021-21466-z
http://www.ncbi.nlm.nih.gov/pubmed/33627641
https://doi.org/10.1109/DICTA.2017.8227427
https://doi.org/10.1109/NCC.2015.7084843
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.1016/j.jacr.2019.06.004
http://www.ncbi.nlm.nih.gov/pubmed/31492410
https://doi.org/10.1016/j.eng.2018.11.020
https://doi.org/10.1371/journal.pone.0276278


17. Szegedy, C., Liu, W., Jia, Y., et al. Going deeper with convolutions. In: Proceedings of the IEEE confer-

ence on computer vision and pattern recognition 2015; pp. 1–9. https://doi.org/10.1109/CVPR.2015.

7298594.

18. He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition. In: Proceedings of the

IEEE conference on computer vision and pattern recognition 2016; pp. 770–778. https://doi.org/10.

1109/cvpr.2016.90.

19. Krizhevsky A., Sutskever I., Hinton G. E. Imagenet classification with deep convolutional neural net-

works. Advances in neural information processing systems 2012; 25. https://doi.org/10.1145/3065386

20. Simonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv 1409.1556. 2014.

21. Shelhamer E., Long J., Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans.

Pattern Anal. Mach. Intell. 2016; 39:640–651. https://doi.org/10.1109/TPAMI.2016.2572683 PMID:

27244717

22. Howard, A. G., Zhu, M., Chen, B., et al. Mobilenets: Efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:1704.04861. 2017.

23. Zhang T., Zhang X., Shi J., Wei S. Depthwise separable convolution neural network for high-speed

SAR ship detection. Remote Sensing 2019; 11:2483–2519. https://doi.org/10.3390/rs11212483

24. Huang, G., Liu, S., Van der Maaten, L., Weinberger, K. Q. Condensenet: An efficient densenet using

learned group convolutions. In: Proceedings of the IEEE conference on computer vision and pattern

recognition 2018; pp. 2752–2761. https://doi.org/10.3390/s21237862.

25. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C. Mobilenetv2: Inverted residuals and linear

bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition

2018; pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474.

26. Hu, J., Shen, L., Sun, G. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on

computer vision and pattern recognition 2018; pp. 7132–7141. https://doi.org/10.1109/CVPR.2018.

00745.

27. Zhang, X., Zhou, X., Lin, M., Sun, J. Shufflenet: An extremely efficient convolutional neural network for

mobile devices. In: Proceedings of the IEEE conference on computer vision and pattern recognition

2018; pp. 6848–6856. https://doi.org/10.1109/CVPR.2018.00716.

28. Ma, N., Zhang, X., Zheng, H. T., Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture

design. In: Proceedings of the European conference on computer vision (ECCV) 2018; pp. 116–131.

https://doi.org/10.1007/978-3-030-01264-9_8.

29. Mutasa S., Sun S., Ha R. Understanding artificial intelligence based radiology studies: What is overfit-

ting? Clin Imaging 2020; 65:96–99. https://doi.org/10.1016/j.clinimag.2020.04.025 PMID: 32387803

30. Kaur T., Gandhi T. K. Deep convolutional neural networks with transfer learning for automated brain

image classification. Mach Vis Appl 2020; 31:1–16. https://doi.org/10.1007/s00138-020-01069-2

PLOS ONE Biliary atresia screening by ultrasound-based deep learning models

PLOS ONE | https://doi.org/10.1371/journal.pone.0276278 October 19, 2022 15 / 15

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TPAMI.2016.2572683
http://www.ncbi.nlm.nih.gov/pubmed/27244717
https://doi.org/10.3390/rs11212483
https://doi.org/10.3390/s21237862
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1016/j.clinimag.2020.04.025
http://www.ncbi.nlm.nih.gov/pubmed/32387803
https://doi.org/10.1007/s00138-020-01069-2
https://doi.org/10.1371/journal.pone.0276278

