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Abstract
Metastasis is the spread of cancer cells around the body and the cause of the
majority of cancer deaths. Metastasis is a very complex process in which
cancer cells need to dramatically modify their cytoskeleton and cope with
different environments to successfully colonize a secondary organ. In this
review, we discuss recent findings pointing at Rho-ROCK or actomyosin force
(or both) as major drivers of many of the steps required for metastatic success.
We propose that these are important drug targets that need to be considered in
the clinic to palliate metastatic disease.
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Introduction
Metastatic disease is still largely incurable because of its systemic 
distribution and resistance to current therapies, and it is the 
cause of more than 90% of cancer-related deaths1,2. In spite of its 
clinical importance, the underlying cellular and molecular mecha-
nisms of cancer metastasis are only partially understood3. Thus, 
improved knowledge of how cancer cells acquire metastatic traits 
is necessary to unravel novel drug targets and prognostic markers 
of distant relapse.

Metastasis is a complex multi-stage process by which cancer cells 
disseminate from primary tumors, survive in distant sites and 
eventually grow as secondary tumors3. The main events of the 
metastatic cascade involve loss of cell-cell contacts, cancer cell 
migration, local invasion of the surrounding extracellular matrix 
(ECM), interactions with stroma, intravasation and transit into 
blood or lymphatic vessels, arrest at secondary sites, extravasation, 
survival and colonization of distant sites4. Genetic alterations and 
deregulation of critical oncogenic signaling pathways affecting 
survival, proliferation, apoptosis, and cell motility, regulate many 
of these complex metastatic events3,5. In addition, the interaction 
with the tumor microenvironment such as ECM, growth-supportive 
stromal cells, inflammatory cells and endothelial cells strongly 
impacts the metastatic capabilities of cancer cells6,7.

Many signaling pathways have been reported to have an impact 
on metastasis and have been the focus of excellent reviews8–15. In 
the present review, we will focus on Rho-ROCK signaling and 
actomyosin contractility, key regulators of several main steps in 
metastasis. Rho-ROCK, through its actions on cytoskeletal dynam-
ics and through regulation of critical signaling pathways, controls 
several cellular processes important for metastasis such as cell 

migration, local invasion, survival at the secondary site, and tumor 
outgrowth16–18.

Rho GTPases and metastasis
The Rho family of small GTPases plays crucial roles in the reg-
ulation of the actin cytoskeleton, cell polarity, cell migration, 
cell proliferation, invasion, and metastasis19. Rho GTPases act 
as molecular switches cycling between a guanosine triphosphate 
(GTP)-bound active state and guanosine diphosphate (GDP)-bound 
inactive state to translate extracellular signals into different cellu-
lar responses19. Their activity is controlled by guanine nucleotide 
exchange factors (GEFs) and GTPase-activating proteins (GAPs)18. 
The best studied and most conserved Rho family members across 
eukaryotic species are Ras-related C3 botulinum toxin substrate 
1 (Rac1), cell division control protein 42 homolog (Cdc42), and 
Ras homolog gene family member A (RhoA)18. Rac1 stimulates 
lamellipodia formation20, whereas RhoA regulates the forma-
tion of stress fibers or favors amoeboid migration depending 
on the cellular context and the properties of the matrix. RhoA 
bound to GTP leads to activation of its effectors Rho-associated 
protein kinases (ROCK1 and ROCK2)21–23. ROCK1/2 serine/ 
threonine kinases promote actomyosin contractile force gen-
eration by decreasing myosin phosphatase activity and thereby 
increasing phosphorylation of myosin light chain 2 (MLC2)24. On 
the other hand, Cdc42 induces filopodia formation25, but Cdc42 
signaling can also generate actomyosin contraction through p21 
protein (Cdc42/Rac)-activated kinase 2 (PAK2) and myotonic dys-
trophy kinase-related Cdc42-binding kinase (MRCK) kinases26,27. 
Deregulation of the Rho-ROCK signaling pathway has been found 
in a variety of cancer types and in several cases correlates with 
disease progression28–30 (Table 1). Furthermore, inhibition of ROCK 
signaling could suppress migration and invasion in vitro and impair 

Table 1. Rho, ROCK or actomyosin contractility are implicated in all stages of the 
metastatic cascade and in major cancer types. Shown are examples in the literature of 
where different stages of the metastatic cascade have been shown to be influenced by 
Rho-ROCK and/or actomyosin contractility signalling. (SCC= Squamous cell carcinoma)

Cancer type Step of metastatic dissemination Reference

Breast, colon Local invasion and migration 40,46,52,68

Breast Intravasation 40,66,71

Breast Survival in circulation, adhesion to 
vessels, early lung colonization 92

Oesophageal Invasion and survival in circulation 104

Lung Transendothelial migration 81

Prostate Transendothelial migration 75

SCC Fibroblast mediated invasion and 
migration 42

Melanoma Local invasion and migration 23,32,45,46,49,105

Melanoma
Intravasation, extravasation, survival in 
circulation, adhesion to vessels, early 
lung colonization

23,32,48,54,58,92,95–97,105
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the metastatic process in vivo, suggesting that ROCK inhibitors 
might be potential anti-metastatic agents30–32.

Rho/ROCK signaling and actomyosin contractility in 
early dissemination
The ability of cancer cells to migrate into and invade surrounding 
tissue is a critical step in the metastatic cascade, which requires 
increased cell motility driven by altered cytoskeletal organiza-
tion and contacts with the ECM and the stroma33. Cancer cells can 
move either collectively or as individual cells34,35. The majority 
of tumors originate from epithelial tissues, and epithelial cancer 
cells that leave the primary tumor undergo a complex program 
called epithelial-mesenchymal transition (EMT). Incomplete 
or partial EMT allows collective migration in which cells can 
maintain cell-cell adhesions and migrate collectively in a coordi-
nated manner as strands, sheets, or cell clusters. On the other hand, 
complete EMT is associated with the loss of cell-cell adhesions 
in favor of cell-ECM interactions and the concomitant acquisition 
of individual migratory characteristics36,37. After undergoing EMT, 
individual cancer cells can engage into elongated mesenchymal 
or rounded amoeboid modes of movement, distinguished by their 
different usage of signaling pathways. Mixed mesenchymal and 
amoeboid phenotypes have also been identified38,39. Individual cell 
migration seems to be required for blood-borne metastasis40.

Rho/ROCK signaling and actomyosin contractility in cancer 
cells
Actomyosin contractility driven by Rho or ROCK signaling is 
key in controlling tumor dissemination, as all forms of cell 
migration require a certain degree of actomyosin force34,41. Dur-
ing collective cell migration, actomyosin contractility is high 
around the edges of groups of invading cancer cells, which gen-
erates pulling forces between the substrate and the follower cells, 
together with a prominent actomyosin ring at lateral regions of 
the groups to maintain coupling between cells and collective 
forward movement42,43. On the other hand, in individual migra-
tion, the contractile cortex is crucially important for amoeboid 
to intermediate forms of movement, and some degree of con-
tractility is also required to retract protrusions in mesenchymal 
migration39,44–46. The mesenchymal mode of movement is charac-
terized by an elongated, spindle-like shape, high levels of adhe-
sion, and Rac-dependent adhesive actin-rich protrusions23,46,47. On 
the other side of the spectrum, in amoeboid migration, cancer cells 
adopt a rounded or irregular morphology with blebs as functional 
protrusions. Amoeboid motility is promoted by high levels of 
RhoA/Ras homolog gene family member C (RhoC) or ROCK-
driven actomyosin contractility and requires lower levels of adhe-
sion that allow higher speeds of movement46–50.

Cancer cell migration is a dynamic process, and individual cancer 
cells can switch between modes of movement to adapt to the chang-
ing microenvironment and facilitate tumor dissemination. Different 
cues will favor either a mesenchymal-amoeboid transition (MAT) 
or an amoeboid-mesenchymal transition (AMT)23,45,49,51,52. Their 
core regulatory network is the mutually inhibitory circuit between 
Rac1 and Rho GTPase signaling in migrating cells (Figure 1). 
Higher Rac1 activity promotes cell elongation and permits long 
actin-rich protrusions characteristic of mesenchymal migration. 

Moreover, active Rac1 negatively regulates Rho or ROCK signaling 
and suppresses amoeboid movement. On the other hand, active Rho 
or ROCK supports bleb-based amoeboid migration23,45,49,51,52 and 
limits excessive Rac1-dependent adhesion via regulation of the Rac 
GAPs ARHGAP22 and filamin-A-associated Rho GTPase activa-
tion protein (FilGAP)23,53. Furthermore, cancer cells control amoe-
boid migration at the transcriptional level under circumstances in 
which matrix compliance allows sustained actomyosin contractil-
ity (Figure 1). Different chemical cues have been shown to control 
this process. For instance, amoeboid melanoma cells support con-
tractility, establishing a positive feedback loop with the cytokines 
leukemia inhibitory factor (LIF)/IL6 and the Janus kinase 
(JAK)/signal transducer and activator of transcription (STAT) path-
way to maintain Rho-ROCK activity49. As a result of high STAT3 
activity, very contractile cells secrete different factors, including 
matrix metalloprotease 9 (MMP-9). MMP-9 promotes the gen-
eration of actomyosin contractile force and bleb-driven migration 
through a positive feedback loop via CD44 binding and increased 
MLC2 phosphorylation to sustain amoeboid invasion48. Moreover, 
amoeboid contractile cells secrete high levels of transforming 
growth factor beta (TGFβ), and downstream of it a Sma- and 
Mad-related protein 2 (SMAD2)-Cbp/P300-interacting transac-
tivator with Glu/Asp-rich carboxy-terminal domain (CITED1) 
transcriptional network sustains actomyosin contractility54. In addi-
tion, the physical properties of the matrix play an important role 
in establishing a balance between actomyosin levels and adhesion 
to regulate optimal migration efficiency34,39,47,55,56. Increased ECM 
density results in increased matrix stiffness, in which cells sense 
and respond by increasing Rho-mediated actomyosin contractility57. 
Furthermore, slow mesenchymal cells can switch to fast amoeboid 
migrating modes under conditions of low adhesiveness and high 
physical confinement47,56.

The ability to switch between different modes of migration is an 
important factor for metastatic dissemination, as cancer cells have 
to migrate through a range of ECMs to escape the primary tumor 
and spread to distant organs. Therefore, anti-metastatic treatments 
should target the ability of tumor cells to cope with such variabil-
ity. Recently, it has been described that potent ROCK inhibitors 
are able to strongly inhibit actomyosin contractility and collapse 
the actomyosin cytoskeleton, blocking both mesenchymal and 
amoeboid modes of movement32.

Intra-vital imaging studies have shown that bleb-driven highly 
contractile amoeboid migration is favored in the invasive fronts of 
melanomas and breast cancers23,29,45,48,49,58. Furthermore, in these 
studies, it has been shown that treatment with ROCK inhibitors or 
actomyosin perturbations (or both) is able to decrease tumor cell 
motility in vivo23,29,32,45,49,58. Hence, ROCK inhibition could effec-
tively impair local invasion and dissemination of cancer cells 
(Figure 1).

Rho/ROCK signaling and actomyosin contractility in the 
stroma
Within the tumor, a variety of non-cancer stromal cells interact with 
the cancer cells promoting tumorigenesis7. Actomyosin contractil-
ity not only is fundamental for cancer cell migration and invasion 
but also is crucial for maintenance of the carcinoma-associated 
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fibroblasts (CAFs) phenotype, an important stromal component in 
the tumor microenvironment7. Actomyosin contractility activated 
by ROCK signaling and the LIF/JAK/STAT pathway is cru-
cial for CAF-dependent pro-invasive physical remodeling of the 
ECM favoring tumor aggressiveness and dissemination42,49,59,60. 
Additionally, actomyosin contractility, Src function, and matrix 
stiffening induced by TGFβ, are required for Yes-associated protein 
(YAP) activation in CAFs to promote ECM remodeling and cancer 
cell invasion, and to generate a positive feedback loop that helps 
to maintain the CAF phenotype61 (Figure 1). Moreover, contrac-
tility in CAFs has been shown to modulate EMT and metastasis- 
initiating cell properties in breast cancer models62.

Therefore, some degree of actomyosin contractility is essential 
for both cancer cells and stroma for efficient cell movement in the 

initial steps of the metastatic cascade34,41,49,59,61, and some factors 
such as TGFβ and LIF can stimulate contractility both in cancer 
cells and in fibroblasts.

Rho/ROCK signaling and actomyosin contractility in 
transendothelial migration
After local invasion within the primary tumor microenvironment, 
cancer cells need to spread throughout the body and colonize 
new organs to form metastases. They do so by exploiting the vas-
cular and lymphatic systems. The process through which cancer 
cells enter and exit vessels crossing the endothelial layer is known 
as transendothelial migration, which is extremely complex and 
involves the interaction with several different cell types, such as 
platelets, immune cells and endothelial cells, and the activation 
of a variety of signaling pathways63. These events are in some 

Figure 1. Rho/ROCK and actomyosin contractility in early dissemination. ROCK-driven actomyosin contractility is stimulated by 
extracellular signals such as leukemia inhibitory factor (LIF) and transforming growth factor beta (TGFβ) to promote rounded amoeboid 
cancer cell motility. Rounded amoeboid cells display blebbing as well as high levels of actomyosin contractility and a rounded morphology. 
They interact with the extracellular matrix (ECM) by physically deforming it and by secreting metalloproteases (MMPs). In the stroma, 
ROCK-driven actomyosin contractility promotes the transformation of fibroblasts into cancer-associated fibroblasts (CAFs), driven by 
Yes-associated protein (YAP) as well as by extracellular factors. Blue indicates positive regulators of contractility, purple indicates negative 
regulators of contractility and orange lines indicate actomyosin contractility. Abbreviations: CAF, carcinoma-associated fibroblasts; CITED1, 
Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain, 1; FilGAP, filamin-A-associated Rho GTPase activation 
protein; JAK, Janus kinase; RhoA, Ras homolog gene family member A; ROCK, Rho-associated protein kinase; SMAD2, Sma- and 
Mad-related protein 2; STAT3, signal transducer and activator of transcription 3.
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cases similar to those occurring during inflammation or infection, 
when immune cells need to enter and exit vessels. In fact, parallels 
between cancer cell and immune cell migration allow for interest-
ing speculation in areas of cancer cell dissemination that are still 
not fully understood.

Intravasation. The first step in this metastatic cascade is intra-
vasation, the entry of tumor cells into blood vessels. Intravasa-
tion depends on the weakening of cell-cell junctions between 
endothelial cells, which allows cancer cells to squeeze in between 
adjacent endothelial cells and enter the vessel lumen63. From a 
molecular perspective, not as much is known about intravasation 
compared with other steps in the metastatic cascade as this is an 
experimentally challenging step to study64,65. In fact, intravasation is 
dependent on the ability of cancer cells to invade towards blood 
vessels, so it is difficult to distinguish between genes involved 
in invasion and intravasation63. RhoA signaling has been linked 
to the process of intravasation66 (Figure 2). Specifically, RhoA 
activity in cancer cells is thought to be stimulated by macrophage 
contact and leads to the formation of invadopodia. Invadopodia 

are instrumental in the degradation and eventual breakdown of 
the matrix barrier, which allows for tumor cell intravasation. 
Furthermore, highly contractile, rounded amoeboid melanoma cells 
have been shown to intravasate more efficiently than low-contrac-
tility elongated cells in vivo67,68. Once in the bloodstream, cells 
are transported throughout the body by the blood flow (Figure 2).

Extravasation. Eventually, cancer cells flowing through the 
bloodstream need to exit blood vessels to form secondary tumors. 
This process is known as extravasation and entails several sequen-
tial steps. First of all, cancer cells form loose adhesions to the 
vascular endothelium, which is known as tethering. These loose 
adhesions then are tightened to form firm adhesions: firmly adher-
ing cells then can cross the endothelial barrier and extravasate63.

The best-studied mechanism for extravasation is known as 
paracellular extravasation, during which cancer cells exit the vessel 
by squeezing in between endothelial cells. An alternative mecha-
nism for cancer cell extravasation is transcellular extravasation, 
where tumor cells exit the vessel by going through endothelial 

Figure 2. Rho/ROCK and actomyosin contractility in intravasation and extravasation. RhoC/ROCK signaling promotes survival of cancer 
cells in the blood flow as well as adhesion to the endothelium and extravasation. ROCK-driven actomyosin contractility within endothelial 
cells can be stimulated by secreted factors and is essential for cancer cell extravasation. Abbreviations: RhoC, Ras homolog gene family 
member C; ROCK, Rho-associated protein kinase.
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cells63,69. Transcellular extravasation has been observed in immune 
cells70 and has also been identified in cancer cells, where it probably 
plays a role in some cases71.

Rho/ROCK signaling and actomyosin contractility in cancer 
cells
Rho or ROCK-driven actomyosin contractility within extravasat-
ing cells has been shown to play an important role. For instance, 
in monocytes, RhoA activity has been shown to be necessary 
for tail retraction during extravasation72. In the context of tran-
scellular extravasation, monocytes can rely on RhoA and ROCK 
signaling73,74.

On the other hand, in prostate cancer cells, it is RhoC and ROCK 
signaling that is essential for interaction with endothelial cells, 
promoting adhesion and paracellular extravasation75. As a result of 
its role in promoting extravasation, RhoC signaling is a key driver 
of tumor dissemination and metastasis75, in part explaining how 
RhoC was one of the first genes identified as a metastasis driver76. 
Furthermore, RhoA and RhoC have been shown to drive adhesion 
to the endothelium and transendothelial migration in breast and 
prostate cancer cells77,78. Consequently, rounded-amoeboid cancer 
cells with high levels of RhoA or ROCK-driven actomyosin con-
tractility are more efficient during transendothelial migration 
than elongated cells both in vitro and in vivo67,68,79. Additional evi-
dence supporting the importance of RhoA-driven contractility in 
transendothelial migration comes from studies examining the role 
of RhoA regulators. For instance, FilGAP, a Rac GAP, promotes 
RhoA signaling and rounded-amoeboid motility by suppressing 
Rac, and as a consequence it enhances in vivo extravasation of 
breast cancer cells53. Conversely, the RhoA GAP ARHGAP7 has 
been shown to be a negative regulator of transendothelial migration 
in thymic lymphoma80.

Cancer cells that successfully extravasate need to cross the vas-
cular basement membrane that surrounds the vessel63. Since acto-
myosin contractility has been shown to promote the secretion of 
proteases in rounded amoeboid cells48, it is tempting to speculate 
that highly contractile extravasating cells could have an advantage 
when crossing the vascular basement membrane.

Rho/ROCK signaling and actomyosin contractility in 
endothelial cells
In order for paracellular extravasation to occur, cancer cells need 
to weaken cell-cell junctions within the endothelium. This can be 
mediated by regulating Rho or ROCK signaling and actomyosin 
contractility within the endothelial cells themselves (Figure 2). 
Lung cancer cells have been shown to induce adherens junc-
tion disassembly by stimulating actomyosin contractility through 
Rho/ROCK in endothelial cells81. Furthermore, thrombin stimula-
tion of endothelial cells has been shown to induce ROCK activity 
and subsequently lead to cytoskeletal remodeling, junction disrup-
tion, and endothelial permeability82,83. Tumor-derived thrombin 
induces endothelial gap formation and transendothelial migration84. 
Furthermore, cancer cells have been shown to use thrombin within 
blood vessels in order to promote metastasis85. This prompts the 
speculation that actomyosin contraction in endothelial cells could 
be controlled by thrombin produced by cancer cells.

As well as leading to junction disassembly, actomyosin contrac-
tility in endothelial cells allows for endothelial cell retraction86,87, 
which increases endothelial permeability. Moreover, ROCK-driven 
actomyosin contractility in endothelial cells has been shown to 
prevent endothelial cell re-spreading downstream of ephrin-B 
signaling, which maintains increased endothelial permeability88. 
Conversely, ROCK inhibition has been shown to decrease endothe-
lial permeability after hemorrhage89,90. Although these studies have 
not been conducted in cancer models, ROCK activity in endothelial 
cells could be similarly regulated while in contact with disseminat-
ing cancer cells.

In brief, we speculate that the ability of cancer cells to form 
secondary tumors is to a certain extent dependent on their abil-
ity to manipulate the cytoskeleton of endothelial cells; thus, 
increasing endothelial permeability could be a crucial step to pro-
mote extravasation. More work is needed to validate the roles of 
Rho/ROCK or actomyosin contractility (or both) in tumor cells 
during both cancer intravasation and extravasation.

Rho/ROCK signaling and actomyosin contractility in 
metastatic colonization
Following extravasation at secondary sites, cancer cells that 
survive can form micro-metastasis and colonize new sites. In order 
for this colonization to take place, cancer cells must be able to 
adhere to endothelial cells, extravasate, survive and proliferate at 
the secondary site. The first few hours of colonization are crucial 
in determining the success of this process, as cells will undergo 
apoptosis if they do not adhere to their new niche. Furthermore, 
once established, cells must be able to evade the immune response 
in order to survive91. Although we have discussed that Rho/ROCK 
signaling is important for early dissemination, there is also evidence 
to suggest that Rho/ROCK signaling, actomyosin contractility or 
its regulators, or a combination of these are important for efficient 
colonization at secondary sites.

In vivo studies where cancer cells are injected intravenously 
(i.e., experimental metastasis assays) show that high levels of 
actomyosin contractility play a role in seeding of and colonizing 
the lung. For instance, cells selected for efficient colonization in 
the lung such as the highly metastatic A375M2 melanoma cell line 
have higher levels of RhoC76, RhoA23 and phosphorylated MLC248 
when compared with low metastatic A375P melanoma cells.

Several studies have confirmed the importance of the initial hours 
in seeding during colonization. For example, serum response 
factor (SRF) co-activators myocardin-related transcription fac-
tors (MRTFs) are able to control the expression of MLC292 
(Figure 3). MRTF and SRF are both important for early stages of 
lung colonization in breast cancer and melanoma92. Furthermore, 
depletion of MLC2 itself has also been shown to reduce lung 
colonization92. Conversely, enhanced actomyosin contractility 
favors colonization: for example, depletion of the actomyosin con-
tractility suppressors Rac1 and its GEF dedicator of cytokinesis 
3 (DOCK3) favors early lung colonization23. In melanoma, pigment 
epithelium-derived factor (PEDF) reduces lung colonization and 
suppresses lung tumor outgrowth93,94. PEDF is a negative regulator 
of Rho-ROCK signaling through supporting DOCK3-Rac1 
activity95 (Figure 3). Furthermore, oncogenic BRAF suppresses 
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phosphodiesterase 5A (PDE5A), which in turn inhibits actomy-
osin contractility96 (Figure 3). Therefore, re-expression of PDE5A 
reduces the ability of melanoma cells to colonize the lung and pre-
vents short-term survival and long-term cancer growth in the lung96.

As mentioned earlier, Cdc42 can also promote actomyosin con-
tractility in cancer cells26. Further evidence of the importance of 
actomyosin contractility in early colonization has been shown 
by experiments in which loss of Ras protein-specific guanine 
nucleotide-releasing factor 2 (RasGRF2), an inhibitor of Cdc4297, 
enhanced colonization of the lungs in a Rac-independent manner. 
This was associated with higher actomyosin contractility levels97 
(Figure 3).

TGFβ signaling plays an important role in promoting cancer 
cell colonization40,54,98 (Figure 3). We recently found that TGFβ 

increases actomyosin contractility in melanoma cells54. While TGFβ 
is known to promote EMT99 in epithelial cancers, in melanoma 
TGFβ signals through SMAD2 and the adaptor CITED1 to 
support contractile amoeboid migration54. TGFβ no longer sus-
tains lung colonization in melanoma cells if the SMAD2-CITED1 
axis is not functional54, which serves to highlight the multiple levels 
in which actomyosin contractility promotes colonization.

Furthermore, ROCK regulates expression of several MMPs, includ-
ing MMP-9, which promote early stages of lung colonization48 
(Figure 3). While MMPs exert their catalytic function in degrada-
tion of the ECM during local invasion, the non-catalytic roles of 
MMP-9 could promote the survival of cancer cells at the metastatic 
secondary sites. For example, it has been shown that non-catalytic 
functions of MMP-9 regulate STAT3 functions to drive survival in 
B-cell chronic lymphocytic leukemia (B-CLL) cells100.

Figure 3. Rho/ROCK and actomyosin contractility in colonization and metastasis. Actomyosin contractility promotes cancer cell 
colonization and outgrowth at a secondary site to form metastases. Contractility is under the control of a wide variety of pathways, 
including SRF/MRTF, TGFβ-SMAD-CITED1, MMP-9, BRAF-V600E and Cdc42 signaling. Blue indicates positive regulators of contractility,  
and purple indicates negative regulators of contractility. Abbreviations: CITED1, Cbp/P300-interacting transactivator with Glu/Asp-rich 
carboxy-terminal domain, 1; Cdc42, cell division control protein 42 homolog; MLC2, myosin light chain 2; MMP, matrix metallopeptidase; 
MRTF, myocardin-related transcription factors; PDE5A, phosphodiesterase 5A; PEDF, pigment epithelium-derived factor; RasGRF2, Ras 
protein-specific guanine nucleotide-releasing factor 2; ROCK, Rho-associated protein kinase; SMAD, Sma- and Mad-related protein; SRF, 
serum response factor; TGFβ, transforming growth factor beta.
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From these results, it is clear that positive and negative regulators 
of Rho/ROCK signaling or actomyosin contractility (or both) are 
critical for cancer cells to efficiently colonize the metastatic sites in 
experimental metastasis models.

We have highlighted the crucial role that Rho/ROCK signaling 
or actomyosin contractility play in dissemination and metastatic 
colonization using a range of experimental cancer models. A 
highly contractile phenotype is clearly critical for effective can-
cer colonization, ultimately supporting the idea of developing 
drugs to inhibit actomyosin contractility. In vivo validation of the 
role of Rho/ROCK signaling or actomyosin contractility (or both) 
in metastasis is important to qualify these signaling modules as 
potential drug targets. Experimental metastasis models are insight-
ful for understanding the processes of extravasation and colo-
nization to the lungs, but recapitulation of the entire metastatic  
cascade, including local invasion, dissemination and intravasation, 
requires the use of spontaneous metastasis models101. Indeed, it has 
recently been shown that a new class of ROCK inhibitors has 
the ability to prevent both experimental and spontaneous metas-
tases formation32. It will be of great importance to combine these 
mouse models with non-invasive cell-tracking techniques102,103 to 
understand the entire process and how early Rho/ROCK signal-
ing should be targeted in order to effectively block the metastatic 
cascade.
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