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SUMMARY

The prediction of drug-target interactions (DTIs) is a critical phase in the sustainable drug development
process, especially when the research focus is to capitalize on the repositioning of existing drugs. Compu-
tational approaches to predicting DTIs can provide important insights into drug mechanisms of action.
However, current methods for predicting DTIs based on the structural information of the knowledge
graph may suffer from the sparseness and incompleteness of the knowledge graph and neglect the latent
type information of the knowledge graph. In this paper, we propose TTModel, a knowledge graph embed-
ding model for DTI prediction. By exploiting biomedical text and type information, TTModel can learn
latent text semantics and type information to improve the performance of representation learning.
Comprehensive experiments on two public datasets demonstrate that our model outperforms the
state-of-the-art methods significantly on the task of DTI prediction.

INTRODUCTION

The process of identifying potential beneficial treatment effects or medical uses of a new drug candidate is known as drug discovery. Iden-

tifying drug targets is a crucial step in the drug discovery process. Drugs function through interaction with various molecular targets such as

proteins. This interaction is called drug-target interaction (DTI).1 Proteins are one useful group of such targets. Through binding, drugs can

either enhance or inhibit functions carried out by proteins and thus affect the disease conditions.2 However, there is a limited number of

experimentally identified and validatedDTI pairs. Thus, DTI prediction is an essential task in the early stage evaluation of potential novel drugs

and the search for novel uses of existing drugs. Several approaches for predicting DTIs have been proposed so far, such as chemical-genetic3

and proteomic methods.4 Nevertheless, due to their reliance on laboratory experiments and physical resources, these approaches can only

process a limited number of probable medicines and targets. As a result, computational prediction approaches have attracted a lot of

attention recently since they can considerably speed up the assessments of potential DTIs.

Recently, Yamanishi et al. proposed amethod topredict drug targets computationally.4 Thismethodemploys a statistical model that predicts

drug targets based on a bipartite graph of chemical and genomic data. Sleno L. et al. introduced a method to improve the performance by em-

ploying neighbor-based interaction-profile inference for both drugs and targets.5 Furthermore, Cheng et al. suggested amethod for predicting

DTIsbycombiningdrug similarity, target similarity, andnetwork-based inference.6,7 Liuetal. proposedamodel to leveragedrug-drugand target-

target similarity measures to infer potential drug targets.8 However, these methods only utilize a single measure to model components’

similarities. Nascimento A et al. adapted to a linear combination of multiple similarity measures to model the overall similarity between drugs

and targets.9 Olayan et al. proposed an approach which used a multi-phase procedure to predict drug targets from relevant heterogeneous

graphs.1 This approach’s idea is to use nonlinear fusion to integrate several similarity indices and randomwalk features obtained from the input

graphs. Despite thismodel achieving better performance, it needs time-consuming training andpredictionprocedures as they need to compute

the similarity features for each drug and target pair duringboth training andprediction. In addition,most of thesemethods have a high false-pos-

itive rate, particularlywhen largeDTI datasets areused. SHGCL-DTI10 is designed tosupplement the classical semi-supervisedDTI prediction task

with an auxiliary graph contrastive learning module. Recently, Mohamed S et al. presented an approach, named TriModel, that uses prior infor-

mationaboutdrugsandtargets toovercomethe restrictionsdescribedabovebyapproachingtheproblemas linkprediction inknowledgegraphs

(KGs).11 This approach has the advantage that they consider the structural information in the KG. However, due to the biomedical KGs being

usually spare, noisy, and incomplete, TriModelwhich only relies on the structure informationof the KGmay suffer from the sparseness and incom-

pletenessof theKG.For instance,when thenumberofoccurrencesof anentity in theKG is less, themodel learns less informationabout this entity,

resulting in inaccurate representation of this entity. In addition, the latent entity type information can provide KGwith supplemental information,

enhancing the model’s understanding of entities and triples. However, the majority of existing approaches neglect type information.

To solve the above problems, we propose a method, TTModel, that utilizes biomedical text and type information to enhance the perfor-

mance of knowledge graph embedding (KGE) model for DTI prediction. Specifically, unstructured text contains rich and complementary
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Figure 1. An example of the relation triples and the type triples
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information about entities and relationships, providing semantic information for KGEmodels and effectively alleviating the data sparsity issue

in knowledge graphs. Furthermore, the type information of entities can also provide important information for the KGE model, which can be

regarded as relatively accurate prior knowledge. Entities with the same type tend to have similar representations.12,13 Compared with

different types of entities, the entity vector representations with the same type are closer to each other in vector space.14,15 For example,

the entities aspirin and genistein belong to the type of Drug, and Diabetes belongs to the type of Disease. The vector representations of

aspirin and genistein should be closer to each other than to Diabetes. However, each entity has multiple latent types, and diverse latent

type vector representations should be focused on different specific relations. For example, in Figure 1, given two sentences ‘‘BACKGROUND:

Interleukin-2 (IL-2) recently was approved by the Food and Drug Administration for the treatment of renal cell cancer.’’ and ‘‘Interleukin-2 is a

glycoprotein physiologically produced by human lymphocytes which is capable of mediating some still unknown immunologic reactions.’’,

the triples treats(Interleukin-2, renal cell cancer) and is_a(Interleukin-2, glycoprotein) are extracted from SemMedDB.16 The triples in entity

level could be extended to triples in the type level. Specifically, in triple is_a(Interleukin-2, glycoprotein), the Interleukin-2 is considered as

a protein. In triple treats (Interleukin-2, renal cell cancer), the Interleukin-2 is considered as a drug. The entity Interleukin-2 has different

type vector representations when focused on different relations. In addition, entities with the same explicit type often have different fine-

grained property information. For example, given two triples treats (SGLT2 inhibitors, Diabetes) and treats (Doxorubicin, Tumor) in the

KG, both SGLT2 inhibitors andDoxorubicin belong to the typeDrug. However, SGLT2 inhibitors is used to treatDiabetes, whileDoxorubicin

is used to treat Tumor. As a result, SGLT2 inhibitors andDoxorubicinwill have different representations. Therefore, we propose the TTModel,

which can capture type information and textual semantic information to enhance the performance of the KGEmodel. Particularly, thismethod

can effectively alleviate the problem of the long-tail scenario in the biomedical field. As shown in Figures 2 and 3, we train our model to learn

the effective representations of drugs and targets in the KG. These representations are then used to score possible drug target pairs. We

compare TTModel with other state-of-the-art models using experimental evaluation on standard benchmarks. Experimental results show

that TTModel outperforms all baseline methods.

The main contributions of our work can be summarized as follows.

(1) Wemodel biomedical text and type information to enrich the general features of entities and relations and endow the model with the

ability to deal with long-tail circumstances.

(2) Our automated text and type representation learning mechanism is a pluggable module that can be easily incorporated into different

KGE models.

(3) To verify the performance in the long-tail scenario, we construct a long-tail dataset. The evaluation results demonstrate the superiority

of our proposed model over other state-of-the-art methods.
RESULTS

To explore the effectiveness of the TTmodel, we conducted experiments on different datasets to show the model’s performance.

Datasets

Yamanishi_084 and DrugBank_FDA1 as the gold standard datasets currently used in the field of DTI prediction,17,18 which have been widely

used in several studies, such as,1,11 and.19 Therefore, we utilize these two datasets, i.e., Yamanishi_084 and DrugBank_FDA,1 for the exper-

iments. The Yamanishi_08 dataset is a collection of known DTIs gathered from different sources, including KEGG BRITE,20 BRENDA.21

SuperTarget22 and DrugBank.23 It consists of four groups of DTIs corresponding to four different target protein classes: (1) enzymes (E),

(2) ion-channels (IC), (3) G-protein-coupled receptors (GPCR), and (4) nuclear receptors (NR).4 TheDrugBank_FDA dataset consists of a collec-

tion of DTIs of FDA approved that are gathered from DrugBank database https://www.drugbank.ca. We adopt the supplement KG provided

by TriModel11 which extracted from Uniprot,24 KEGG,25 InterPro,26 and DrugBank.23 In order to facilitate comparative experiments, we utilize
2 iScience 27, 109393, June 21, 2024
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Figure 2. A diagram of the training pipeline of the TTModel model
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the common data processing for these datasets following the set of TriModel. The details of the benchmarking datasets are shown in Table 1.

In addition, we obtain the entity and relation text data from Uniprot, KEGG, InterPro, DrugBank and PubMed.
Evaluation protocol and experimental setup

Following the same setting of the experiments in TriModel,11 10-fold cross-validation (CV) is used to evaluate the model on the Yama-

nishi_0827 and DrugBank_FDA1 datasets. Specifically, for both datasets, we divide all DTI data into 10 splits, and train on the 9 splits. We
Figure 3. The framework of the TTModel

Given a triple, we randomly initialize the entity and relation representations as input for the relation triple encoder. Simultaneously, we randomly initialize the

entity and relation type representations as input for the type triple encoder. Subsequently, the relation triple encoder and type triple encoder are used to

generate representations for entities, relations, and types. Text information is only used in the relation triple encoder. In cases where the entity or relation

lacks textual information, we solely rely on the structural information from the KG.

iScience 27, 109393, June 21, 2024 3



Table 1. The details of the benchmarking datasets used in this work

Dataset Group Drug Protein DTIs

Yamanishi_08 E 445 664 2926

IC 210 204 1476

GPCR 223 95 635

NR 54 26 90

All 791 989 5127

DrugBank_FDA – 1482 1408 9881
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evaluate the model 10 times on each split, and repeat it 5 times. The results are reported through average results across these runs. We

consider the interactions from the known DTIs as positives, and all the other possible combinations between the investigated dataset as neg-

atives. We evaluate the prediction performance using the term of AU-PR28 and AUC. To determine the AU-PR, we calculate the recall, and

precision, based on true positive (TP), false positive (FP), and false negative (FN) values, respectively. AU-PR is calculated based on different

precision and recall values at different cut-offs that are used to construct the curve, and then the area under this curve is calculated. The closer

the value of AU-PR is to 1, the better the performance is.

Recall =
TP

TP+FN
(Equation 1)
Precision =
TP

TP+FP
(Equation 2)

We use the supporting KGs to perform a grid search to learn the model’s best hyper-parameters. In all of experiments, we initialize our

model embedding using the uniform random generator and the model is optimized using the adaptive gradient, where the learning rate is

among {0.01, 0.02, 0.03}, the dimension of the entity and relation embeddings in relation triple are among {50, 100, 150, 200}, the dimension of

the type and relation embeddings in type triples are among {50, 100, 150, 200}, the batch size is among {128, 256, 512, 1024}. Table 2 lists the

detailed hyper-parameters of TTModel.
Baseline

Since TTModel mainly utilizes the structured and text information of the KG, methods that additionally introduce pharmacological features of

drugs and proteins, such as SMILES strings and protein sequences, are not selected for comparison. We compare our method against a va-

riety of baselines which can be categorized as follows.

(1) BLM-NII27: this method is developed to improve the previous approach by using neighbor-based interaction-profile inference for both

drugs and targets.

(2) KRONRLS-MKL9: thismodel has used linear combinations ofmultiple similarity measures tomodel the overall similarity between drugs

and targets.

(3) NRLMF8: this model introduces the exclusive use of drug-drug and target-target similarity measures to infer possible drug targets.

(4) DNILMF29: this model leverages matrix factorization to predict drug targets over drug information networks.

(5) DDR1: this method utilizes a heterogeneous graph that contains knownDTIs withmultiple similarities between drugs andmultiple sim-

ilarities between proteins.

(6) TriModel11: this method is based on formulating the problem as a link predicting drug target proteins.

(7) DTiGEMS+19: this method integrates different techniques from machine learning, graph embedding, and similarity-based methods.

(8) SHGCL-DTI10: this approach aims to supplement classical semi-supervised DTI prediction tasks through an auxiliary graph-contrastive

learning module.
Table 2. The hyper-parameters of the TTModel

Dataset Batch size Relation triple embedding size Type triple embedding size Learning rate b1 b2

Enzymes(E) 1024 100 50 0.01 0.1 0.3

Ion Channels(IC) 1024 100 50 0.01 0.1 0.3

G-Protein Coupled Receptors(GPCR) 1024 100 50 0.01 0.1 0.3

Nuclear Receptors(NR) 1024 100 50 0.01 0.2 0.4

DrugBank_FDA(DB) 1024 100 50 0.01 0.1 0.3

KGHC 1024 100 50 0.01 0.4 0.5

4 iScience 27, 109393, June 21, 2024



Table 3. A comparison with state-of-the-art models on standard datasets

Model Ft. E IC GPCR NR DB

Str. AUC AU-PR AUC AU-PR AUC AU-PR AUC AU-PR AUC AU-PR

BLM-NII 0.96 0.86 0.91 0.83 0.88 0.53 0.91 0.62 0.90 0.12

KRONRLS-MKL 0.93 0.87 0.90 0.86 0.91 0.67 0.87 0.51 0.88 0.35

NRLMF 0.95 0.89 0.98 0.79 0.95 0.69 0.93 0.72 0.93 0.32

DNILMF 0.96 0.85 0.94 0.87 0.96 0.70 0.92 0.66 0.95 0.42

DDR Ext. 0.97 0.92 0.98 0.92 0.96 0.79 0.92 0.83 0.96 0.61

TriModel 0.99 0.96 0.99 0.95 0.99 0.80 0.99 0.84 0.99 0.64

DTiGEMS+ 0.99 0.97 0.99 0.96 0.99 0.86 0.97 0.88 – –

SHGCL-DTI 0.85 0.88 0.85 0.89 0.88 0.90 0.97 0.97 – –

TTModel 0.99 0.98 0.99 0.98 0.99 0.92 0.97 0.93 0.99 0.90

TTModel_RotatE 0.99 0.98 0.99 0.98 0.99 0.95 0.98 0.95 0.99 0.91
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Results and analysis

Table 3 shows the results in terms of the AU-PR and AUC for all compared models. The Ft: column represents model’s feature type. The Str:

feature type represents protein and drug structure-based features and Ext: denotes extensive prior knowledge feature. Overall best results

are in bold. We first can observe that our method outperforms almost baseline algorithms. For each dataset, TTModel performs better than

the DTiGEMS+19 in terms of AU-PR 1%, 2%, 6%, and 5% for the E, IC, GPCR, and NR datasets, respectively. It verifies the effectiveness of our

model. Then, most models that use extensive prior knowledge features outperformmodels that use protein and drug structure-based features.

This shows that the prior knowledge feature can improve performance in DTI prediction. Besides, TriModel11 can perform better than DDR.1

Because DDR only employs networks with single relation, and TriModel allows for encodingmultiple types of associations within the same graph

and thus utilizes more complex patterns. It illustrates the multiple types of related information that are beneficial to DTI prediction.

Compared with the TriModel and SHGCL-DTI,10 our model achieves better performance.We believe that the success of themodel can be

attributed to the utilization of biomedical text and type information, whichwere not leveraged in the previous graph-basedmodels. Firstly, we

utilize the large-scale biomedical text feature combined with the KG. This allows the model utilizes the semantic feature from biomedical

text and KG feature at the same time. Other models, which only use the topology information of graph, may cause the predictive ability

to inevitably suffer from the sparseness and incompleteness of the graph data. Secondly, the latent type information can provide significant

supplements for entity and relation representation. The type triple encoder can well integrate the latent entity type information into KG

representation. Compared with other graph-based methods, TTModel can automatically learn the text semantic and type information to

enhance the entity and relation representation.

Additionally, we have supplemented the experiments to explore the impact of using different encoder on the TTModel. TTModel_RotatE

represents the model adopting RotatE30 as the encoder. TTModel_RotatE outperforms TTModel, indicating that RotatE has more advan-

tages over TransE. The results suggest that TransE is not able to fully exploit the structural information of the knowledge graph and might

therefore hamper the performance of TTModel in predicting DTI. Consequently, there is great potential for a strategy that fuses type infor-

mation and text information of the knowledge graph, as it could maximize the value of the structural information present in the KG.

To verify the performance of the long-tail scenario, we construct a dataset, named KGHC, to simulate a long-tail scenario. Specifically, we

adopt a new benchmarking dataset (KGHC) which is collected by extracting the abstracts which are related to hepatocellular carcinoma from

PubMed.31 Each triple in KGHCcontains an accurate text description for relationships. For example, the triple associated withðObesity;HCCÞ
is extracted from the sentence ‘‘Obesity - A number of observational studies have linked excess body fat with a higher risk for HCC.’’We think

this sentence is the accurate text description for the tripe associated withðObesity;HCCÞ and retain this information as an attribute. The detail

of KGHC is introduced in our previous work.32 Following the method of,12 we construct the long-tail dataset for KGHC. Specifically, we count

the entities with less than 50 occurrences in the dataset to filter the testing set. In total, KGHC contains 5,028 entities, 28 relations, 8,917 triples

for training, 147 triples for validating and 145 triples for testing.We evaluate themodel 5 times on the KGHC and average results across these

runs.We add two commonmetrics, i.e., Mean Rank (MR) of correct entities andHits@10 (H@10) whichmeans the proportion of correct entities

in the top 10. A lowMR score or a high H@10 score is preferred. As shown in Table 4, the improvement is rather significant for KGHC, which is

exactly the sparse KG. This finding empirically demonstrates that our model maintains performance for sparse KGs, and this is probably

because the semantic and type information can provide a good supplement for KGE model.
Table 4. The results on the KGHC

AU-PR MR H@10

TransE 0.66 58.48 0.33

TTModel 0.72 28.91 0.73

iScience 27, 109393, June 21, 2024 5



Figure 4. The ablation study on NR
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DISCUSSION

Ablation study

In this section, we discuss possible reasons for the improved high performance of our approach when compared to the baseline methods. To

test the effectiveness of the central idea, we implement the ablation study of TTModel on NR. As shown in Figure 4, the TransE_type model

removes the text information of TTMode and its relation triple encoder uses only the structural information of triples. TransE_text removes the

type triple encoder and type similarity constraint of TTModel. Its relation triple encoder simultaneously utilizes both structural and text infor-

mation. TransE_sc represents that we omit the type embeddings similarity constraint from TTModel. The results show that the metric is

improved when the biomedical text feature is added to the model. It verifies that the text information can provide beneficial features for

the KGE model. In addition, an improvement is achieved when the type feature and type similarity constraint are added to the model. It il-

lustrates that the type information and type similarity constraint can improve the performance of the model. We also evaluate the effort of

different distance methods in type embedding similarity constraint. TTModel_md and TTModel_ed represent the utilization of Manhattan

distance and Euclidean distance in type embedding similarity constraint, respectively.We can observe that the performance of theManhattan

distance (AU-PR: 0.934) and Euclidean distance (AU-PR: 0.938) in the TTModel is similar.

Case study

To evaluate the performance of the model in incomplete scenarios, we conducted the comparative experiments by removing textual infor-

mation related to biological entities. As shown in Figure 5, S_d represents the removal of all drug-related textual information. S_t represents

the removal of all target-related textual information, and S_dt represents the TTModel that does not utilize any textual information. It can be

observed that the model’s performance decreases when removing textual information related to drugs or targets. The most significant per-

formance drop is observed when the model completely abstains from using textual information. S_dt achieves the worst performance, which

demonstrates the beneficial impact of textual information on the model’s performance.

In addition, we conduct the experiments with different ratios between the number of positive and negative samples to investigate the

effects on TTModel. Following the setting of SHGCL-DTI10 method, we build three experimental datasets, each containing all the 90 positive
Figure 5. The impact of textual Information on the TTModel on the NR
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Table 5. Results of positive and negative examples with different ratios in NR

Ratio AUC AU-PR

1:1 0.98 0.97

1:5 0.98 0.95

1:all 0.98 0.95
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samples from the NR dataset. Meanwhile, these three experimental sets consist of 90 negative samples (1:1 ratio), 450 negative samples (1:5

ratio), and 1,314 negative samples (1:all ratio), respectively. Then we perform 10-fold cross-validation experiment using these three experi-

mental datasets for TTModel_RotatE. The experimental results are shown in Table 5. We can observe that TTModel_RotatE achieves the

best performance on the AUC and AU-PR metric when the ratios are 1:1.

Visualization of clustering entity type representations

To verify the proposedmethod and learn the entity type information, we conduct the case study in Figure 6. Specifically, we leverage K-Means

to cluster the type embeddings on KGHC and then t-SNE to reduce dimensionality for 2d visualization. Figure 6 (a) and (b) show the clustering

of entity embedding and the clustering of the entity type embeddings on KGHC dataset. It can be clearly observed that entity type clustering

has better compactness than entity clustering, which demonstrates that entity type embeddings could reflect the characteristics of types. We

also take the relation ‘‘treats’’ as an example and obtain the triples whose relation is ‘‘treats’’. Then, we utilize the head entities and head entity

type embedding in these triples which learns from the proposedmethod by relation triple encoder and type triple encoder for clustering.We

observe that most of these header entities contain two entity types, i.e., ‘‘Drug’’ and ‘‘Protein’’. Therefore, we set the k value to 2. Figure 6

(c) and (d) show the clustering of entity embedding and entity type embedding, respectively. We can find that most of blue points represent

the type of ‘‘Drug’’ and most of red points represent the type of ‘‘Protein’’. It is evident that some type embeddings representing the type
Figure 6. The visualization of entity and entity type embeddings clustering using TTModel on KGHC

iScience 27, 109393, June 21, 2024 7
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Drug such as curcumin and genistein are clustered into the same type while others stay far away. These visualization results can verify that our

model can learn the entity type information. Combinedwith the results of the ablation study, it can be further verified that the type information

can improve the performance of the KGE model.

Limitations of the study

Weattempt to incorporate the textual and type information into the KGEmodel to enhance the accuracy of entity and relation representation.

However, we only utilize the latent type information in the KG and ignore the deep hierarchical information. In future work, we aim to learn

hierarchical information by further improving the type triple encoder.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Data and code TTModel https://github.com/Nan-ll/TTModel

Other

Baseline Model KRONRLS-MKL www.cin.ufpe.br/�acan/kronrlsmkl/

Baseline Model DNILMF https://github.com/minghao2016/DNILMF

Baseline Model DDR https://bitbucket.org/RSO24/ddr/

Baseline Model TriModel drugtargets.insight-centre.org

Baseline Model DTiGEMS+ https://github.com/MahaThafar/Drug-Target-

Interaction-Prediciton-Method

Baseline Model SHGCL-DTI https://github.com/catly/SGCL-DTI

BioBERT: a biomedical language model for

biomedical vector extracting

BioBERT https://github.com/dmis-lab/biobert
RESOURCE AVAILABILITY

Lead contact

Further information and request should be directed to the lead contact, Zhihao Yang (yangzh@dlut.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The data reported in this paper is publicly available on GitHub (https://github.com/Nan-ll/TTModel).

� All original code has been deposited at GitHub and is publicly available as of the date of publication. The DOI is listed in the key re-

sources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Problem Formulation

We denote KGs asG = fE;R;Tg, where E;R ˛Rm and T indicate sets of entities, relations, and triples, respectively.m represents the dimen-

sion of entities and relations in KG. Each triple represents a relation between the head entity and the tail entity. For each entity, relation, and

word, we use the boldface to indicate their low-dimensional vectors, respectively.

Relation triple encoder

The biomedical text information can provide the potential textual semantic information for KGE model. Therefore, in this section, we intro-

duce an unsupervised method that leverages biomedical text information to enhance the entities and relations representation. To capture

information of the entities from the biomedical textual data, we obtain the representations of entities by training word embedding on the

biomedical text. Specifically, the entities are extracted from the biomedical text usually consist of the words. We adopt the BioBERT33 model,

to embed the entity text. BioBERT https://github.com/dmis-lab/biobert is pre-trained on biomedical domain corpora (PubMed abstracts and

PMC full-text articles). Compared with the traditional word embedding only learns a global vector representation for a word, BioBERTmodel

can provide different representations for a varying sense of the same word according to the contextualized information. We first obtain the

entity name from Uniprot,24 KEGG,25 InterPro26 and DrugBank,23 Comparative Toxicogenomics Database (CTD)34 such as Estradiol. Then an

augmented vector for entity e is defined as:

e = a1 $ ek + ð1 � a1Þ$ewM (Equation 3)

where ek ˛Rm denotes entity embedding learned from the KG, ew ˛Rw represents the entity embedding obtained from the BioBERTmodel.

w denotes the dimension of word embedding.M˛Rw3m represents the global matrix which is utilized tomap the text vector space to the KG
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vector space. For the entity which cannot obtain the entity text, we only leverage the entity representation learned from KG, and the weight

factor a1 is set to 1.

For each relation r, there are several entity pairs that can form fact triples with the relation r. The same relationship is expressed differently

in different entity pairs. To enhance the effectiveness of KGEmodels, we utilize semantic information extracted from biomedical text to assist

relations in fitting the most reasonable entity pairs. Given a sentence containing two entities, and the sentence can accurately represent the

semantic information of triple, we think the sentence includes implicit features of the textual relationship between the two entities. We fuse

the latent semantic information from biomedical text into the KGE model. Specifically, for each triple, we obtain the relation text from

PubMed and utilize the BioBERT model to obtain the embedding of the sentence as the relationship context representation. The enhanced

relation representation function is shown as:

r = a2 $ rk + ð1 � a2Þ$rwN (Equation 4)

where rk ˛Rm represents the relation embedding which obtains from the KG. rw ˛Rw is the text embedding which obtains from the BioBERT

model. Then we adopt the global matrixN˛Rw3m to map the text vector space to the KG vector space. Thus, each latent feature contains a

contribution from the original relation vector and from the BioBERT vector. We only use the rk when the triple cannot obtain the relation text

information, and the weight factor a2 is set to 1. The enhanced relation representations not only contain the semantic information from the

text, but also contain the structure information from the KG. We adopt the score function of relation triple encoder which was proposed by

TransE.35 For TransE, given a triple ðh;r;tÞ, this method expects h+ rzt when ðh; r; tÞ is hold. This indicates that the tail entity t should be the

nearest neighbor of ðh + rÞ. Hence, TransE assumes the score function as:

frðh; tÞ = kh + r � tk (Equation 5)
E1 = keh + r � etk (Equation 6)

Different from the TransE, the entity and relation vector representations of relation triple encoder utilize not only the structural information of

triples, but also the semantic information of text. As shown in Equation 6, eh and et represent the head entity vector representation and tail

entity vector representation, respectively, which are obtained from Equation 3. r denotes the relation vector representation which obtains

from the Equation 4.
Type triple encoder

Most of the proposed methods merely rely on the structured information in KG, paying less attention to type information. In fact, entity type

information can provide important information for KGE and deepen the model’s understanding of entities and triples.12 For the biomedical

field, entity type often has a structured systemdefinedmanually, which can be regarded as a priori knowledge. However, there are also certain

differences in the potential type information of entities according to the relationship in different triples. This also sideways effects that the

same entity has different representations in different triples. Therefore, in this section, we will detail how to obtain the type information

and use them to enhance the entity and relation representation. Specifically, given an entity and its associated relation in a triple, we aim

to learn the entity type vector representation with a relation-aware projection mechanism to output the type representation. We obtain

the entity type representation:

gðe; rÞ = peQr (Equation 7)

where pe ˛Rd represents the type embedding of entity e with dimension d.Qr ˛Rd3d is denoted as the projection weight matrix associated

with the relation r, which could automatically select the latent information of each type embedding most relevant to the relation r. ph, pt

denote the type embedding of head entity and the type embedding of tail entity embedding, respectively. The score function involved in

type triples is defined as,

E2 =
���pyh + ry � pyt

��� (Equation 8)

where pyh and pyt which obtain from Equations 9 and 10 are the type embeddings of entities h and t both focusing on the relation r.

pyh = gðh; rÞ (Equation 9)
pyt = gðt; rÞ (Equation 10)

ry ˛Rd represents the embedding of the relation r in the type triple.
Type embeddings similarity constraint

Due to the head or tail entities sharing the same relation tend to cluster and have similar representation. For example, for the relation treats,

the head entity type is usually drug and the tail entity type is usually diseases, symptoms, etc. Therefore, we expect triples with the same rela-

tionship, the type embedding of head entities involved in the triples are closer to each other, and correspondingly, the type embedding of tail
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entities involved in the triples are closer to each other. Specifically, for two triples, the score function for evaluating the dissimilarity of the type

embedding is defined as follows,

E3ððh1; r1; t1Þ; ðh2; r2; t2ÞÞ =
1

2

����pyh1 � pyh2

��� +
���pyt1 � pyt2

���� (Equation 11)

where pyh1 and pyh2 represent two head entity type embedding which obtain from Equation 9 and pyt1 and pyt2 represent two tail entity

embedding which obtain from Equation 10, respectively. It is expected to be a low score when the type representation is consistent with

the same relation.
Model training

The designed relation triple encoder, type triple encoder, and type embeddings similarity constraint optimized according to a three-compo-

nent objective function:

L =
X

ðh;r;tÞ˛ S

( X
ðh0 ;r;t0 Þ˛ S0

fL1 + b1L2g + b2L3

)
(Equation 12)

where L1, L2, and L3 are the loss functions that correspond to the relation triple encoder, the type triple encoder and type embeddings

constraint, respectively, b1 ˛ ½0; 1� and b2 ˛ ½0; 1� denote the weights of L2 and L3 for the tradeoff between the relation triple, the type triple

and the type similarity constraint. S contains all the triples in the train set, and S0 is the corrupted triples set generated by replacing the entities

and relations in S. Taking TransE35 as an example, L1, L2, and L3 are defined as:

L1 = max
�
0;g1 + E1 � E0

1

�
(Equation 13)
L2 = max
�
0;g2 + E2 � E0

2

�
(Equation 14)
L3 =
X

ðhp ;r ;tpÞ˛P

X
ðhn ;rn ;tnÞ˛P 0

max
�
0;g3 + E3 � E 0

3

�
(Equation 15)

where g1, g2, and g3 are the margin parameters between correct triples and negative triples. As the embeddings of entities and relations are

normalized, the margin g1, g2, and g3 can actually regularize the above objective and keep the weights from collapsing or deviating. E1 is the

relation triple encoder score function, E2 is the type triple encoder score function, and E3 is the type embeddings similarity constraint score

function. E0
1, E

0
2, and E3

0 represent the score function with negative instances.maxð0; xÞmaximizes the margin between 0 and x. In L3, given a

relation r, we treat the triples with the same relation r as positive samples, expecting the type embedding of head entities or tail entities to be

close to each other. Simultaneously, we consider the triples with different relation as negative, expecting the type embedding of head entities

or tail entities to be far from each other. Specifically, given a triple (h, r, t), (hp, r, tp) is a positive instance in the set P containing other triples

correlated to the same relation r, while (hn, rn, tn) is any negative instance in the set P
0 containing the other triples without the relation r. To train

the parameters of the score function, it needs to make the margin-based score function minimization as its training objective.

In the test phase, the energy function for evaluation is designed as follows:

Ep = E1 + b1E2 (Equation 16)

where E1 is the energy function of relation triple and E2 is the energy function of type triple. b1 is the weight which is the same as Equation 12.
QUANTIFICATION AND STATISTICAL ANALYSIS

In the final evaluation of the model’s performance, we employed a 10-fold cross-validation approach. The ultimate results consisted of the

mean of the 10-folds, with specific evaluation metrics including AUC and AU-PR.
12 iScience 27, 109393, June 21, 2024
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