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Abstract
Cell and tissue shape changes are the fundamental elements of
morphogenesis that drive normal development of embryos into fully
functional organisms. This requires a variety of cellular processes including
establishment and maintenance of polarity, tissue growth and apoptosis,
and cell differentiation, rearrangement, and migration. It is widely
appreciated that the cytoskeletal networks play an important role in
regulating many of these processes and, in particular, that pulsed
actomyosin contractions are a core cellular mechanism driving cell shape
changes and cell rearrangement. In this review, we discuss the role of
pulsed actomyosin contractions during developmental morphogenesis,
advances in our understanding of the mechanisms regulating actomyosin
pulsing, and novel techniques to probe the role of pulsed actomyosin
processes in  model systems.in vivo 
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Introduction
Most embryos are initially relatively spherical and undergo exten-
sive morphogenetic changes to generate the final form of the 
organism. Morphogenesis occurs through overall changes in tis-
sue shape and organization resulting from coordinated behaviors 
at the cellular level. A key element of many of these coordinated 
behaviors is actomyosin contractility, exerting force within the 
cell as well as across cells through connections at adherens junc-
tions. Pulsed contractions, generated by myosin II motors and 
the rapid association and disassociation of F-actin and myosin 
II (reviewed in 1–3), function to propagate cell shape changes 
and to generate epithelial cell rearrangement (4 and reviewed 
in 5, illustrated in 3). We will refer to this contractile function  
as actomyosin pulsing throughout this review.

The past decade has seen a new focus on the dynamics of acto-
myosin contractility and the importance of pulsed actomyosin 
contractions for cell and tissue shape changes such as apical 
constriction, epithelial folding, and tissue extension and closure. 
Apical constriction is required for the bending and folding of 
epithelia and occurs during the formation of tubes, cell ingres-
sion, and extrusion of apoptotic or delaminating cells (reviewed 
in 6). Columnar epithelial cells shorten their apical edge in order 
to become wedge shaped through the process of apical constric-
tion (reviewed in 6). Actomyosin pulsing drives polarization of the 
Caenorhabditis elegans zygote, as well as the ingression of endo-
dermal, mesodermal, and germline precursors from the surface of 
the embryo to the interior blastocoel space during gastrulation in C. 
elegans. Actomyosin pulsing is also important for tube formation 
in the Drosophila leg, salivary, and renal tissue7–9, as well as the  
Xenopus neural epithelium10. Additionally, an imbalance of acto-
myosin contractility in Drosophila ventral furrow cells leads to 
polarized apical constriction along the dorsoventral axis, caus-
ing longitudinal folding of the tissue and the internalization of 
mesodermal precursors during gastrulation11–14. Actomyosin 
pulse-driven apical constriction also drives apoptotic extrusion 
of human colon cancer cells and delamination and ingression of  
neuroblasts during Drosophila gastrulation15–17.

Our understanding of actomyosin network organization and the 
processes that drive actomyosin pulsing has been rapidly evolv-
ing. We will describe several models that have provided insights 
into the role of actomyosin pulsing in developmental mor-
phogenesis and discuss recent advances in experimental tools  
that will help further clarify these mechanisms.

Models of pulsed actomyosin contraction
Following the initial description of actomyosin pulsing in the 
C. elegans zygote18, studies of Drosophila embryogenesis fur-
ther demonstrated the importance of actomyosin contraction for 
cell shape changes and morphogenesis. In particular, the proc-
esses of gastrulation and dorsal closure have provided new 
insights into the importance of actomyosin pulsing to tissue 
morphogenesis. Gastrulation is initiated by apical constriction 
of a row of cells on the ventral side of the embryo, leading to  
ventral furrow formation and subsequent invagination and dela-
mination of the presumptive mesodermal cells19. Dorsal clo-
sure, on the other hand, is the process of closure of a gap in the  
dorsal epithelial sheet resulting from germband retraction. The 

epithelial sheets on either side of the hole are drawn together and 
fuse at the dorsal midline to cover the underlying amnioserosa20. 
Live imaging of actin and myosin during dorsal closure showed 
that myosin II was localized with F-actin in a supracellular purse 
string at the margins of the converging epidermal cells21. Con-
traction of this actomyosin cable was found to promote dorsal 
closure in coordination with apical contraction of the amni-
oserosa cells, providing a model of coordinated epidermal and  
amnioserosa contractile forces, dependent on actin interactions 
with myosin II21.

Studies of Drosophila gastrulation subsequently revealed subcel-
lular details of actomyosin pulsing which challenged the actomy-
osin purse string model. Live imaging showed myosin II locali-
zation to the medial apical cortex of ventral furrow cells, and 
actin arrayed radially towards the adherens junction, in contrast 
to the circumferential junctional localization of myosin observed 
in the supracellular purse string during dorsal closure12,21. Api-
cal constriction of ventral furrow cells was found to be driven 
by repeated cycles of contraction of this medioapical actomyosin 
network followed by a pause in which the apical cell shape is  
stabilized12. Two critical aspects of this process for efficient 
constriction of the apical domain were found to be the connec-
tion between actin and adherens junction proteins6,22 and con-
tinuous turnover of the actin network23. Loss of connection to 
the adherens junction led to failure of stabilization of the new 
apical shape, and inhibition of actin turnover led to loss of con-
nection between the actin and adherens junction23. These data 
established a new model for apical constriction, in which pulsed 
actomyosin contractions in the medioapical cortex exert force  
on the adherens junctions to shrink the apical surface centripetally 
in a ratcheted manner (12, reviewed and illustrated in 3).

Subsequent studies provided evidence for a role for actomy-
osin pulsing during Drosophila dorsal closure, also implicating 
tension-based control and a ratchet mechanism of pulsing24–26. 
Intrinsic pulsatile apical constriction of the amnioserosa cells 
initiates dorsal closure by bringing the adjacent epidermal cells 
dorsally, followed by the formation of an actin cable within the 
epidermal cells24,25. This supracellular cable maintains epider-
mal displacement, as the actomyosin cable tension increases 
slowly throughout dorsal closure, suppressing and stabiliz-
ing the forces generated by the amnioserosa actomyosin pulsing 
to further close the purse string25. In this model, the two tissues  
coordinate to drive dorsal closure, and the actin cable behaves 
as a ratchet to compress the amnioserosa cells and promote net 
contraction of the tissue25. However, more recent work, in which 
myosin II was selectively eliminated from either the amniose-
rosa or the epidermal tissue, showed that amnioserosa apical 
constriction could drive dorsal closure autonomously without 
the actin cable, while the actin cable was important for zippering  
integrity27. On the other hand, dorsal closure was delayed 
in embryos lacking an actin cable, suggesting that the purse 
string ratchet mechanism may be required to initiate dorsal  
closure27.

The purse string model as developed in the studies of  
dorsal closure has informed the analysis of tissue fusion in 
other situations, in particular closure of the neural tube in  
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mammalian embryos. Neural tube closure involves shape changes 
and rearrangement of the epithelial cells of the neural plate 
to form neural folds that come together and fuse along the dor-
sal side of the embryo28. Imaging of mouse embryos at the late 
stages of neural tube closure demonstrated that a supracellular 
actin cable colocalizes with cell junctions to form a continuous  
purse string structure along the dorsal neural folds of the pos-
terior neuropore. Unlike Drosophila dorsal closure, where 
the actin cable is dispensable for apposition of the epidermal 
folds, the actin cable in the neural folds is important for closure 
of the posterior neuropore. Laser ablation of the supracellular  
cable leads to failure of neural tube closure, indicating that it bears 
tension and acts to stabilize the neural folds as they fuse28. Acto-
myosin pulsing has not yet been demonstrated in the mammalian 
neural epithelium; however, the apical constriction leading to 
elevation of the neural folds suggests that mechanisms similar to  
those seen in Drosophila ventral furrow formation may also 
promote tissue shape change during mammalian neurulation,  
warranting further investigation.

Actomyosin pulsing during convergence and 
extension of tissues
Further evidence of the importance of medial actomyosin con-
tractility came from studies of epithelial convergent extension 
during Drosophila germband extension. Germband extension 
begins following gastrulation and consists of extension of the 
ventral germband around the posterior end of the embryo. The 
extension of this epithelium is powered by an extrinsic anterior–
posterior force provided by invagination of the posterior mid-
gut29 and convergent extension of the germband epithelium30,31. 
Convergent extension is the process by which tissues converge 
along the mediolateral axis and concomitantly extend along the  
anterior–posterior axis, thereby narrowing and lengthening 
the tissue (reviewed in 32,33). In epithelial tissues, conver-
gent extension involves cell rearrangement through polarized 
changes in apical intercellular junctions, enabled by actomy-
osin pulsing32. During germband extension, ectodermal cells of 
the embryo rearrange through concerted changes in intercellu-
lar junctions between groups of four30 or more cells31 (reviewed 
in 34). Junctions oriented along the dorsoventral axis (vertical  
junctions) shrink to generate a singular point of contact between 
all of the cells, followed by expansion of new junctions along the 
anterior–posterior (horizontal) axis. Initial studies documented 
polarized junctional localization of myosin II and the require-
ment for myosin function in junctional dynamics30,31, while  
subsequent studies showed that junction shrinkage depended on 
differential cortical tension35 and pulses of actomyosin contrac-
tility36. They identified two distinct pools of myosin II: a medial 
apical population similar to that seen in the ventral furrow cells 
and a junctional population12,36–38. The vertical junctions go  
through repeated cycles of shrinking and pausing, where shrink-
age is mediated by the medial myosin II pool while the stabiliz-
ing pause that follows is regulated by junctional myosin II36. 
Interestingly, the polarized effect of the medial actomyosin net-
work on the vertical junctions in this system is due to polarized  
anchorage to adhesion proteins in the horizontal junctions,  
causing flow of the medial actomyosin pulses toward the  
vertical junctions36.

Further studies on Drosophila germband extension in recent 
years have elaborated on the role of pulsing in junction remod-
eling. A recent study has implicated radially directed force in 
driving tricellular vertex sliding to promote junctional shrink-
age, which additionally involves a third pool of myosin at the cell 
vertices39. Inhibition of myosin II was found to block the exten-
sion of new horizontal junctions, implicating medial myosin II  
as a necessary driver of not only junction shrinkage but also 
the subsequent growth of the new junctions40,41. These obser-
vations provide an answer to one of the enduring mysteries of 
the process of epithelial cell rearrangement, namely how the 
direction of the new junction is determined and how it is elon-
gated. Although medial myosin, and not junctional myosin, 
is necessary for junctional remodeling, actomyosin pulsing is 
dependent on anchorage to junctional and apical polarity pro-
teins26,36,39. In particular, Canoe, the Drosophila homolog of afadin  
which links junctional and cytoskeletal proteins, has been found 
to provide the necessary connections to E-cadherin for force 
transduction37, and a very recent study shows that Polycha-
etoid, the homologue of the tight junction protein ZO-1, is con-
comitantly required to maintain adhesion integrity, allowing  
efficient cell rearrangement15,36,37,40,42. Furthermore, the dura-
tion of pulsed actomyosin contractions in amnioserosa cells 
during Drosophila dorsal closure is regulated by Bazooka, the  
Drosophila homolog of the apical protein Par326.

What is not clear from these data is the nature of the ratchet, i.e. 
how the contractile changes are stabilized between contractile 
pulses. While viscoelastic properties of the cell cortex promot-
ing dissipation of the contractile force and actin turnover are 
clearly significant43, recent studies have revealed an important 
role for Rab35, a GTPase involved in endosome recycling to 
the plasma membrane, in mediating membrane dynamics44,45.  
Rab35 function is required for internalization of plasma mem-
brane during junctional shrinkage and for establishing a focal 
point for endocytic pathways45. The internalization of plasma 
membrane provides the ratchet function to the process; without 
Rab35, the shrinkage gained by pulsed apical actomyosin con-
tractions reverses during the phase in which the cytoskeleton is  
dissociated and reforms in preparation for the next contractile 
phase45. Furthermore, the distribution of Rab35 compartments 
mirrors the asymmetry (or lack thereof) of junctional shrink-
age45. The activity of the small GTPase Rab35 is dependent on 
activation by its guanine nucleotide exchange factor (GEF), 
Sbf44; however, loss of Sbf has the additional effect of dis-
rupting the localization of myosin II as well as the balance of  
contractile behaviors between cells44. Thus, Sbf/Rab35 may act 
to coordinate actomyosin with membrane trafficking to promote  
efficient cell shape change.

Actomyosin contractility has also been recently demonstrated 
to mediate Xenopus neural tube extension and C. elegans epi-
dermal elongation46–48. Actomyosin activity reduces Xeno-
pus neural tissue stiffness in order to promote elongation of 
the tissue46. Additionally, accumulations of actomyosin were  
observed at the shrinking junction of intercalating Xenopus 
neural epithelial cells, consistent with the junction rearrange-
ment model proposed by Rauzi et al. as discussed above47.  
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Furthermore, recent work in C. elegans body-axis elongation 
supports a ratchet model where the formin FHOD-1, important 
for actin capping, bundling, and nucleation, stabilizes actin after  
remodeling and severing caused by contraction to promote elonga-
tion of the tissue48.

Pulsed actomyosin contractions have also been implicated in 
the extension of mammalian tissues. Elongation of cell–cell 
contacts during compaction in the eight-cell mouse embryo 
was found to rely on pulsed actomyosin contraction49. Fur-
thermore, mutations in Shroom, an actin regulator, disrupted  
actomyosin localization, disturbed cell junctions, and caused 
failure of neural tube closure50, suggesting that the actomy-
osin network may play a role in apical constriction and conver-
gent extension during mammalian neural tube closure. Further 
studies are needed to evaluate if actomyosin pulsing promotes  
proper neural tube development in mammals.

Actomyosin pulsing during morphogenesis has been predomi-
nantly studied in epithelial tissue. However, recent evidence 
suggests that pulsed contractions play a role in morphogenesis 
of mesenchymal tissues as well. During Xenopus gastrulation, 
actomyosin contraction in the mesoderm causes the shrinkage of 
anterior and posterior cell junctions, allowing for mediolateral 
cell intercalation and body-axis extension (51 and reviewed 
in 52). This ratchet mechanism of actomyosin pulsing was  
also demonstrated in the mesoderm during Xenopus neural 
extension, where the mesenchymal deep neural cells extend 
lamellipodia mediolaterally and then actomyosin contractility 
drives the intercalation of these cells with their neighbors53–55. 
Together these data provide evidence for a role for actomy-
osin pulsing in mesoderm morphogenesis. However, the differ-
ences between actomyosin organization and contractility in the 
mesoderm versus epithelial tissues are still not fully understood,  
given the differences in cellular organization and apparent lack 
of a medial apical pool of myosin. Interestingly, basolateral 
intercalation of epithelial cells during Drosophila germband 
extension is driven by active migration and basolateral protru-
sions similar to mechanisms functioning in Xenopus mesoderm 
extension56. Further investigation is necessary to elucidate the 
mechanisms influencing actomyosin contraction in the meso-
derm and how pulsing may be coordinated between epithelial and  
mesenchymal cells to regulate morphogenesis.

Molecular mechanisms of actomyosin pulsing
It is clear that actomyosin pulsing affects morphogenesis and that 
the organization of actin and myosin II is necessary for pulsing, 
so the next question is how actomyosin organization is regulated 
during tissue morphogenesis. A key signaling pathway in the 
context of actomyosin contractility is the Rho family of small 
GTPases, comprising Rho GEFs and GTPase-activating pro-
teins (GAPs) that regulate the Rho, Rac, and Cdc42 GTPases.  
Rho signaling was first identified to affect cell shape changes 
and early development in Drosophila embryos where loss of 
Rho GEF2 led to disruptions in apical constriction needed to  
complete gastrulation57,58. RhoA regulates actin pulsing by 
controlling actomyosin assembly and disassembly independ-
ent of myosin II activation in the early C. elegans embryo59.  
However, myosin-independent actions of RhoA are less  

common than those that directly involve regulation of myosin. 
During C. elegans ovulation and fertilization, for example, 
Rho1 activity facilitates myosin-dependent contractions of the 
spermatheca, the organ which houses sperm and where ferti-
lization occurs, leading to the expulsion of the fertilized egg 
into the uterus60,61. Additionally, RhoA functions to regulate 
myosin II in Drosophila, as the Cumberland GAP (C-GAP), 
a RhoA GAP, influences apical constriction of ventral fur-
row cells by promoting the medial localization of myosin II in  
coordination with a RhoA GEF in a cyclical manner to initi-
ate pulsing behavior62. Furthermore, Rho kinase and Rho1 GTP 
exhibit pulsatile localization to the medial actomyosin network, 
tuning the network dynamics to promote pulsing contractions 
during Drosophila germband extension63. Recent experiments 
in Drosophila ectoderm further implicate the Rho pathway in 
actomyosin pulsing and, interestingly, demonstrated that the  
medial and junctional pools of actomyosin are regulated by two 
distinct Rho GEFs, Rho GEF2 and Dp114RhoGEF, respectively64. 
The mediation of actomyosin pulsing through two distinct Rho-
mediated mechanisms is further supported by the finding that the 
Rho G-protein-coupled receptor Gα

12/13
 affects medial actomy-

osin specifically, with no effect on junctional actomyosin65. RhoA 
has also been identified as an actin pulse regulator in Xenopus  
junction organization and cytokinesis66,67.

Although the zippering closure of the mouse neural epithelium 
has been identified to be reliant on an actin cable28, inhibiting 
actomyosin cross-linking, F-actin assembly, or myosin II activ-
ity does not disrupt neural tube closure68. However, inhibiting 
Rho kinase or blocking F-actin disassembly prevents closure68. 
Further studies in mouse whole embryo cultures provided evi-
dence that inhibition of Rho kinase prevented neural tube clo-
sure by disrupting apical constriction and actomyosin cable  
organization69. The results of these studies demonstrate that 
Rho has a role in regulating neural tube closure and actomyosin 
organization. However, further studies are needed in order to 
understand whether actomyosin pulsing is occurring in mamma-
lian systems and, if so, to elucidate the specific mechanisms by 
which Rho is mediating pulsing and how they compare to those  
elucidated in Xenopus and Drosophila.

Novel techniques to investigate actomyosin pulsing
Although we have made great strides in understanding the 
role of actomyosin pulsing during morphogenesis, there is still 
much that is unknown about the cellular and molecular mecha-
nisms driving this contractility. The classic experimental tools 
to study actin have several limitations which restrict our abil-
ity to visualize actin interactions and dynamics, measure forces, 
and manipulate mechanical and molecular variables in vivo3.  
Importantly, although actomyosin pulsing has been observed in 
single-cell embryos and in vitro cell culture assays70–72, and actin 
contraction has been shown in purified actin73, contractile puls-
ing has not been observed in biochemical assays which lack the 
cytoskeletal turnover and signaling dynamics observed during  
actomyosin pulsing in vivo. This emphasizes the need for 
novel tools to visualize pulsing in vivo; therefore, we will 
highlight a few techniques that could address the limitations  
of classical actomyosin contractility experiments.
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Single-walled carbon nanotubules can improve the visualiza-
tion of actomyosin dynamics in vivo owing to the fact that they 
are fluorescent at near-infrared wavelengths and can be used 
as probes for specific proteins through targeting by short oli-
gonucleotides74. These probes were used in Xenopus to inves-
tigate the effect of crosslinking on cytoskeletal steady states75.  
Since they are photostable and minimally disruptive to endog-
enous tissue and protein, they can be utilized for long peri-
ods of time, allowing for the analysis of prolonged actin 
pulses in addition to analysis of rapid assembly and disas-
sembly during contraction75. With these advantages, carbon  
nanotubes could be useful for analyzing prolonged actomy-
osin pulsing during development in vivo in order to better  
understand the dynamics of actomyosin contraction.

The ability to measure tension and force in vivo would allow for 
the investigation of how actomyosin pulsing controls cell shape 
changes and intercalation during morphogenesis. Optical tweez-
ers can be used to measure tension at cell–cell interfaces by 
directly manipulating the tissue with a laser and then measuring 
the deflection of the junction76. The combination of optical 
tweezers and light-sheet microscopy was utilized to measure 
the dynamics of tension between cells in the Drosophila ger-
mband during morphogenesis76. The distribution of actomyosin 
changed from isotropic to anisotropic throughout extension, 
consistent with the ratcheted actomyosin contraction model76.  
Furthermore, inhibition of Rho kinase decreased tension at 
cell–cell contacts76. More recently, a novel fluorescent probe was 
developed to measure membrane tension without the need to 
disturb the cell structures. Fluorescent LIPid Tension Reporter 
(FliptR) contains a negatively charged carboxylate which allows 
for the insertion of the probe into the membrane77. In a non-con-
fined space, the two large dithienothiophene (DTT) flippers of  
FliptR can lay flat, whereas, if pressure is applied, the flip-
pers will twist to become planarized, subsequently changing 
the fluorescence lifetime77. Using fluorescence lifetime imag-
ing microscopy, the changes in fluorescence lifetime can be 
quantified and extrapolated as a measure of changes in mem-
brane tension77. These methods could provide insight into the  
mechanical and molecular mechanisms underlying the ratch-
eted actomyosin pulsing model by measuring tension and 
stress forces present at the cell junction, cell membrane,  

and cytoskeletal network interface with or without chemical  
inhibition in whole tissues in vivo.

Finally, the ability to perturb specific mechanical and molecu-
lar properties would allow for a detailed dissection of the 
mechanisms underlying actomyosin pulsing. One such way to 
manipulate tissue morphogenesis in a living embryo is through 
liposomal magnetic nanoparticles78. Magnetic nanoparticles  
are encapsulated into liposomes and injected into tissue, and 
an external magnetic field can be applied to the magnets to pro-
duce a pulsed force in the tissue78. Apical constriction and  
subsequently mesoderm invagination were induced by apical puls-
ing of magnetic particles in snail mutant Drosophila embryos 
which lack actomyosin contractility and otherwise present with 
disrupted morphogenesis78. Moreover, magnetic pulsing stabi-
lized Rho kinase and myosin II, demonstrating that this tech-
nique is able to mimic endogenous actomyosin pulsing78. The 
use of these nanoparticles could identify novel regulators of acto-
myosin pulsing by inducing ratcheted contractions in mutants 
with developmental defects. Together, these novel experimental  
techniques provide a toolset that will allow us to overcome 
the limitations of current probes and will be valuable in gain-
ing a better understanding of actomyosin pulsing during  
morphogenesis.

Conclusion
Actomyosin pulsing has been identified as a necessary regula-
tor of proper morphogenesis in several developmental processes 
in both invertebrates and vertebrates. Although the molecular 
mechanisms are not fully understood, pulsed actomyosin con-
tractions require proper organization of the actin cytoskeletal 
network, formation of active myosin II minifilaments, and con-
nection to cell junctions. Furthermore, evidence from a vari-
ety of model systems suggests that Rho plays an important 
role in regulating this cytoskeletal organization and persistent  
contractile actin function. The discovery of novel probes and 
analytical tools has improved upon existing techniques in order 
to better visualize, measure, and manipulate actin dynamics and 
forces in vivo. The use of these new experimental approaches 
will promote further examination of the role of actin pulsing 
in morphogenesis and will allow us to gain critical insight into  
the mechanisms underlying these mechanical forces.
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