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Abstract: Recently, high-entropy alloys (HEAs) and HEA-type compounds have been extensively
studied in the fields of material science and engineering. In this article, we report on the synthesis of
a layered system MBi2Te4 where the M site possesses low-, middle-, and high-entropy states. The
samples with M = Pb, Ag1/3Pb1/3Bi1/3, and Ag1/5In1/5Sn1/5Pb1/5Bi1/5 were newly synthesized
and the crystal structure was examined by synchrotron X-ray diffraction and Rietveld refinement.
We found that the M-Te2 distance was systematically compressed with decreasing lattice constants,
where the configurational entropy of mixing at the M site is also systematically increased. The details
of structural refinements and the electrical transport property are presented.

Keywords: high-entropy alloy; layered compound; synchrotron XRD; PbBi2Te4

1. Introduction

High-entropy alloys (HEAs) are alloys containing five or more elements with a concen-
tration range of 5–35 at% [1,2]. Due to the effects of high configurational entropy of mixing
(∆Smix), which is defined as ∆Smix = −R Σi ci ln ci, where ci and R are the compositional
ratio and the gas constant, respectively, the HEAs have exhibited high performance, such
as high stability or toughness under extreme conditions [1]. Since 2018, we have devel-
oped HEA-type compounds with a complicated structure (more complicated alloy-based
HEAs) [3]. In such compounds with two or more crystallographic sites, random and scat-
tered atomic bond lengths are expected due to the introduction of a HEA-type site, which
is a crystallographic site satisfying the definition of HEA by alloying. In the BiS2-based
RE(O,F)BiS2 (RE: rare earth) and cuprate RE123 (REBa2Cu3O7-d) layered superconduc-
tors [4–6], in which the RE site is alloyed with five elements, we found that the introduction
of HEA site does not largely affect electronic states because the superconducting transition
temperature (Tc) of HEA-type samples was comparable to that for zero- or low-entropy
samples. However, in BiS2-based REO0.5F0.5BiS2, the modification of local structure, the
decrease in in-plane atomic displacement parameter U11, was observed, and the supercon-
ducting properties were improved by the increase in ∆Smix at the RE site [7]. This trend
suggests that the presence of the HEA site affects the local structure of the layered system.
For the cases of low-dimensional structure, we studied quasi-two-dimensional TrZr2 (Tr:
transition metal) and found that the Tc is insensitive to ∆Smix [8,9]. However, the entropy
dependent evaluation of the sharpness of the specific heat jump at Tc in TrZr2 samples
clearly showed anomalous broadening as ∆Smix increased [10]. The results suggest that
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the HEA states would affect the superconducting gap opening. More recently, HEA-type
van-der-Waals layered superconductors were designed and synthesized [11]. For the cases
of three-dimensional structures, we have investigated the effect of the introduction of HEA
sites in NaCl-type MTe [12–14] and A15-type Nb3X and V3X [15,16]. In both systems,
the increase in ∆Smix resulted in the decrease in Tc. However, anomalous robustness of
superconductivity under high pressure was found to be induced by increasing ∆Smix in
MTe with a CsCl-type structure (high-pressure phase) [17], which is similar to that observed
in a HEA superconductor Ti-Zr-Hf-Nb-Ta [18]. Therefore, three-dimensional HEA-type
compounds will be important to find out the universality in HEA-type superconducting
materials. In addition, in V3X, intrinsic phase separation, which results in the satisfaction
with the condition of compositionally-complexed-alloy (CCA) states, was observed, and
the upper critical field was improved by the formation of the CCA states [17]. There-
fore, the three-dimensional system is also unique in the effects of HEA in compounds.
Furthermore, recent studies on HEA effects in thermoelectric materials have suggested
that the HEA effects can be very useful for achieving high thermoelectric performance in
three-dimensional and quasi-two-dimensional systems [19–23]. Based on those interests
in HEA-type compounds with functionality, we decided to study the effect of HEA in a
layered system PbBi2Te4. Recently, pressure-induced superconductivity was reported in
Ref. [24]. Having considered the modification of local structure in HEA-type compounds
and the positive effects on superconductivity in the layered REO0.5F0.5BiS2 system [7], we
expected the emergence of superconductivity by the HEA effects in MBi2Te4 where M is
occupied by Ag, In, Sn, Pb, and Bi. Unfortunately, we could not observe superconductivity
in the HEA-type (Ag1/5In1/5Sn1/5Pb1/5Bi1/5)Bi2Te4, but the observed structural changes
would be useful for material design with the concept of HEA.

2. Materials and Methods

The samples of PbBi2Te4 (nominal ∆Smix = 0), (Ag1/3Pb1/3Bi1/3)Bi2Te4 (MEA, nominal
∆Smix = 1.10 R), and (Ag1/5In1/5Sn1/5Pb1/5Bi1/5)Bi2Te4 (HEA: nominal ∆Smix = 1.61 R)
were synthesized using solid-state reaction. Since the optimal annealing condition changed
according to the composition (and possibly due to the difference in entropy of mixing),
we optimized the annealing conditions for the MEA and HEA samples. For example,
using the same condition as MEA for the HEA composition resulted in the scattering of
Ag concentration in the obtained sample. To avoid inhomogeneous compositions, we
optimized the condition, and a detailed investigation was performed on the best samples.
The raw materials were wires of Ag (99.9%, Kojundo Chemical Laboratory, Sakado, Japan)
and powders of In (99.99%, Kojundo Chemical Laboratory, Sakado, Japan), Sn (99.99%,
Kojundo Chemical Laboratory, Sakado, Japan), Pb (99.9%, Kojundo Chemical Labora-
tory, Sakado, Japan), Bi (99.999%, Kojundo Chemical Laboratory, Sakado, Japan), and Te
(99.999%, Kojundo Chemical Laboratory, Sakado, Japan). For PbBi2Te4, the stoichiometric
mixture of raw materials was sealed in an evacuated quartz tube (with a pressure lower
than 0.5 Pa), heated at 1093 K for 24 h in a box-type electric furnace and cooled to 373
K with a cooling rate of −5 K/h. Finally, the sample was furnace-cooled after all heat
treatments. A similar procedure, except for annealing conditions, was applied to other
samples and the heating condition was optimized by checking X-ray diffraction (XRD)
patterns collected on Miniflex600 (RIGAKU, Akishima, Japan; CuKα). For the MEA sample,
the stoichiometric mixture of raw materials was heated at 1273 K for 24 h and cooled to
673 K with a cooling rate of −12 K/h followed by holding the temperature at 673 K for
50 h in an evacuated quartz tube. For the HEA sample, the stoichiometric mixture of
raw materials was heated at 1323 K for 10 h and cooled to 623 K with a cooling rate of
−12 K/h, followed by holding the temperature at 623 K for 50 h in an evacuated quartz
tube. The obtained samples contained single crystals with a shiny plane. The chemical
compositions of samples were evaluated by energy-dispersive X-ray spectrometry (EDX)
using an SEM-EDX system (TM3030 scanning tunneling microscope (Hitachi Hightech,
Tokyo, Japan) equipped with an EDX spectrometer (SwiftED, Oxford, UK) on a shiny plane
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of the samples. The composition was evaluated by taking an average of 13 points. The
synchrotron X-ray diffraction (SXRD) patterns were obtained using the multiple microstrip
detector MYTHEN system [25] at the BL02B2 beamline of the synchrotron facility SPring-8
(Harima, Japan) with X-ray of 25 keV (wavelength, λ = 0.496118(1) Å). We used powder
samples for SXRD, and the powders were sealed in a boro-silicate glass capillary with a di-
ameter of 0.1 mm. The Rietveld structure refinements were performed using the JANA2020
software [26]. The image of the crystal structure was drawn using the VESTA software [27].
The electrical resistivity was measured by the four-probe method on a Physical Property
Measurement System (PPMS, Quantum Design, San Diego, CA, USA). For the PbBi2Te4
and HEA samples, the resistivity measurements were performed with selected crystals
having a flat plane. The size of the PbBi2Te4 and HEA samples is 0.1 × 1.2 × 1.7 mm3

and 0.4 × 1.2 × 2.6 mm3, respectively. The terminals were fabricated using Ag paste and
Au wires with a diameter of 25 µm. Magnetization was measured by a superconducting
quantum interference device (SQUID) magnetometer on MPMS3 (Quantum Design, San
Diego, CA, USA).

3. Results

The SEM image for the HEA sample is shown in Figure 1d. In Table 1, actual com-
positions for the M site estimated by EDX are listed. In the EDX analysis, the Bi site
was assumed to be fully occupied with Bi, and the M-site composition was analyzed.
The obtained values for the MEA and HEA samples are Ag0.18Pb0.32Bi0.50Bi2Te4 and
Ag0.14In0.15Sn0.25Pb0.14Bi0.32Bi2Te4, respectively. We found that even for PbBi2Te4, Bi-rich
composition with ∆Smix = 0.61R for the M site was obtained. A similar trend of Bi-rich
composition was observed in Reference [22]. For the MEA and HEA samples, a slight
deviation of the actual composition from the nominal ones was observed, but the expected
∆Smix was almost preserved: ∆Smix = 1.02R and 1.55R for MEA and HEA, respectively.
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(a) Structure parameters of PbBi2Te4. Space group R3̅m; Z = 3; a = 4.43910(8) Å , c = 41.6331(12) Å ;  

wRp = 0.082; RB = 0.116, RF = 0.082, goodness-of-fit = 10.67. 

Atom Site Symmetry g x y z Uiso (Å2) 

Pb 3a 3̅m 1 0 0 0 0.032(1) 

Bi 6c 3m 1 0 0 0.42913(11) 0.0296(12) 

Te 6c 3m 1 0 0 0.13669(10) 0.0127(7) 

Te2 6c 3m 1 0 0 0.2878(2) = Uiso (Te) 

(b) Structure parameters of MEA. Space group R3̅m; Z = 3; a = 4.42165(11) (8) Å , c = 41.331(2) Å ;  

wRp = 0.054; RB = 0.076, RF = 0.059, goodness-of-fit = 6.32. 

Atom Site Symmetry g x y z Uiso (Å2) 

Ag 3a 3̅m 1/3 0 0 0 0.015(2) 

Figure 1. Rietveld profile fitting results for MBi2Te4: (a) PbBi2Te4 (d-spacing range; d > 0.67 Å),
(b) MEA (d > 0.66 Å), and (c) HEA (d > 0.67 Å). The red dots show the measured data (Iobs), and
the blue lines are the fitted profiles (Ical). The green line is the difference curve (Iobs-Ical), and the
black, violet and pink ticks are the peak positions for the main phase (MBi2Te4) and the impurity of
PbBi4Te7 and PbTe. The PbBi2Te4 sample included PbBi4Te7 (21%) and PbTe (13%). The MEA sample
included PbBi4Te7 (38%). The HEA sample included PbBi4Te7 (16%). (d) SEM image of the HEA
sample.



Materials 2022, 15, 2614 4 of 8

Table 1. Occupancies of atoms in the M site. The numbers in the brackets are standard deviations.

Nominal Composition Occupancy of Atom in M-Site

Ag In Sn Pb Bi
PbBi2Te4 – – – 0.7(2) 0.3(1)

(Ag1/3Pb1/3Bi1/3)Bi2Te4 0.18(3) – – 0.32(2) 0.50(3)
(Ag1/5In1/5Sn1/5Pb1/5Bi1/5)Bi2Te4 0.14(3) 0.15(3) 0.25(3) 0.14(3) 0.32(2)

The SXRD patterns and the Rietveld fitting results are shown in Figure 1. In the
multi-phase Rietveld refinements, the impurity amount was also refined. For PbBi2Te4
(Figure 1a), two impurity phases of PbBi4Te7 (21%) and PbTe (13%) were detected. The
MEA and HEA samples included 38% and 18% of the PbBi4Te7 impurity. The formation of
impurity phases would be understood by the presence of three phases (PbTe, PbBi2Te4, and
PbBi4Te7) in the ternary phase diagram at similar temperature regions. Although we tried
to optimize annealing conditions, the amount of impurity phases could not be reduced. In
the HEA sample, however, the amount of impurity was the lowest, which would suggest
that the MBi2Te4 phase was stabilized by the HEA effect at the M site [28].

The structural parameters obtained from the Rietveld refinements are listed in Table 2a–
c, and the typical bond distances are plotted in Figure 2 as a function of ∆Smix/R (EDX) at
the M site. With increasing ∆Smix, the M-Te2 distance decreases, which is probably well
explained by the change in average ionic radius. The shrinkage of the M-Te2 distance
affects other structural parameters; the Te2-M-Te2 angle increases, the MTe6 octahedron
is compressed along the c axis, and the BiTe6 octahedron is compressed along the ab
plane. Although those changes would be caused by chemical pressure effects, which is the
shrinkage of unit cells and/or bonds by the decrease in the average ionic size at the M site,
we found an interesting trend in the isotropic displacement parameter (Uiso) at the M site.
With increasing ∆Smix, Uiso at the M site clearly decreases (Table 2). In the Discussion, we
briefly discuss the origin and commonality of this trend in HEA-type compounds.
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a-axis. (b–e) Atomic distance of M-Te2, Te-Te, Bi-Te and Bi-Te2. The blue lines are eye guides.
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Table 2. Refinement results for the SXRD data. In analysis, the occupancy of 3a site atoms were fixed
nominal values, respectively.

(a) Structure parameters of PbBi2Te4. Space group R3m; Z = 3; a = 4.43910(8) Å, c = 41.6331(12) Å; wRp = 0.082; RB = 0.116,
RF = 0.082, goodness-of-fit = 10.67.

Atom Site Symmetry g x y z Uiso (Å2)

Pb 3a 3m 1 0 0 0 0.032(1)
Bi 6c 3m 1 0 0 0.42913(11) 0.0296(12)
Te 6c 3m 1 0 0 0.13669(10) 0.0127(7)

Te2 6c 3m 1 0 0 0.2878(2) = Uiso (Te)

(b) Structure parameters of MEA. Space group R3m; Z = 3; a = 4.42165(11) (8) Å, c = 41.331(2) Å; wRp = 0.054; RB = 0.076, RF = 0.059,
goodness-of-fit = 6.32.

Atom Site Symmetry g x y z Uiso (Å2)
Ag 3a 3m 1/3 0 0 0 0.015(2)
Pb 3a 3m 1/3 0 0 0 = Uiso (Ag)
Bi 3a 3m 1/3 0 0 0 = Uiso (Ag)
Bi2 6c 3m 1 0 0 0.42750(7) 0.0325(8)
Te 6c 3m 1 0 0 0.13618(9) 0.0100(6)

Te2 6c 3m 1 0 0 0.28980(12) = Uiso (Te)

(c) Structure parameters of HEA. Space group R3m; Z = 3; a = 4.40848(9) Å, c = 41.2768(15) Å; wRp = 0.063; RB = 0.101, RF = 0.076,
goodness-of-fit = 8.84.

Atom Site Symmetry g x y z Uiso (Å2)
Ag 3a 3m 1/5 0 0 0 0.007110(15)
In 3a 3m 1/5 0 0 0 = Uiso (Ag)
Sn 3a 3m 1/5 0 0 0 = Uiso (Ag)
Pb 3a 3m 1/5 0 0 0 = Uiso (Ag)
Bi 3a 3m 1/5 0 0 0 = Uiso (Ag)
Bi2 6c 3m 1 0 0 0.42785(7) 0.0333(8)
Te 6c 3m 1 0 0 0.13631(8) 0.0143(9)

Te2 6c 3m 1 0 0 0.29037(9) = Uiso (Te)

In Figure 3, the temperature dependences of electrical resistivity (ρ) normalized by
that at 300 K (ρ (T)/300 K) are displayed. For both the PbBi2Te4 and HEA samples, metallic
conductivity, which is regarded by the decrease in ρ with decreasing temperature, is
observed. For the HEA sample, the temperature dependence is weak and the residual
resistivity at the lowest temperature is larger than that for PbBi2Te4. A similar trend was
observed in other HEA-type materials as reviewed in Ref. [3]. Therefore, we consider that
the HEA state introduced in the M site in MBi2Te4 affects transport properties in this system
as well. Although we measured ρ and magnetization down to 1.8 K, no superconducting
signal was observed. Since the present samples contain impurity phases as described in the
refinement part, high quality samples are desired to further discuss the effect of the HEA
states on transport properties.
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4. Discussion

Here, we briefly discuss the origin of the decrease in Uiso in MEA (Ag0.18Pb0.32Bi0.50Bi2
Te4) and HEA (Ag0.14In0.15Sn0.25Pb0.14Bi0.32 Bi2Te4). When one or more sites of compounds
were substituted by different elements, an increase in disorder on atomic distance is
expected, and off-centering of the atomic position is also expected. Although the increase
in disorder due to element substitutions should strongly depend on the type of compounds
(crystal structure), an increase in Uiso is simply expected for compounds with element
solution. However, in this system, Uiso decreases with increasing ∆Smix as shown in
Figure 4. We consider that the decrease in Uiso is correlating with the change in lattice
vibration. According to Ref. [29], PbBi2Te4 possesses anharmonic lattice vibration. In
our recent study on a BiS2-based layered system RE(O,F)BiS2, we showed that lattice
anharmonicity is enhanced in the low-entropy region, and is suppressed in the middle-
to-high entropy region [30]. According to those facts, we consider that the decrease in
Uiso in MBi2Te4 is also related to the suppression of the anharmonic vibration. Hence, the
synthesis and structural characterization for MBi2Te4 with different ∆Smix would give a
strategy to tune lattice vibration in functional materials.
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5. Conclusions

We synthesized a new layered system MBi2Te4 where low-, middle-, and high-entropy
states are present in the M site: the samples with nominal M = Pb, Ag1/3Pb1/3Bi1/3, and
Ag1/5In1/5Sn1/5Pb1/5Bi1/5 were synthesized by solid-state reaction. The crystal structure
was examined by synchrotron X-ray diffraction and Rietveld refinement. We found that the
M-Te2 distance was systematically compressed with decreasing lattice constants, where
∆Smix at the M site is also systematically increased. We found that Uiso at the M site
decreases with increasing ∆Smix. The result is similar to that observed in other systems
with anharmonic lattice vibration. Therefore, we concluded that the increase in ∆Smix
results in the suppression of anharmonicity in MBi2Te4.
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