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Abstract

Arterial hypotension during the early phase of anesthesia can lead to adverse outcomes

such as a prolonged postoperative stay or even death. Predicting hypotension during anes-

thesia induction is complicated by its diverse causes. We investigated the feasibility of

developing a machine-learning model to predict postinduction hypotension. Naïve Bayes,

logistic regression, random forest, and artificial neural network models were trained to pre-

dict postinduction hypotension, occurring between tracheal intubation and incision, using

data for the period from between the start of anesthesia induction and immediately before

tracheal intubation obtained from an anesthesia monitor, a drug administration infusion

pump, an anesthesia machine, and from patients’ demographics, together with preexisting

disease information from electronic health records. Among 222 patients, 126 developed

postinduction hypotension. The random-forest model showed the best performance, with an

area under the receiver operating characteristic curve of 0.842 (95% confidence interval

[CI]: 0.736-0.948). This was higher than that for the Naïve Bayes (0.778; 95% CI: 0.65-

0.898), logistic regression (0.756; 95% CI: 0.630-0.881), and artificial-neural-network

(0.760; 95% CI: 0.640-0.880) models. The most important features affecting the accuracy of

machine-learning prediction were a patient’s lowest systolic blood pressure, lowest mean

blood pressure, and mean systolic blood pressure before tracheal intubation. We found that

machine-learning models using data obtained from various anesthesia machines between

the start of anesthesia induction and immediately before tracheal intubation can predict

hypotension occurring during the period between tracheal intubation and incision.

Introduction

Arterial hypotension during surgery occurs frequently and is associated with adverse patient

outcomes [1, 2]. Hypotension during the early phase of anesthesia, so-called postinduction
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hypotension (PIH), is related to multiple causative mechanisms, such as the patient’s age, pre-

induction systolic blood pressure (SBP), and emergency surgery [3]. In addition to these fac-

tors, comorbidity, preoperative use of medications, and anesthesia techniques, including the

type and dose of anesthetic agent administered, also contribute to the development of PIH.

Given these complex causes, prediction of hypotension during anesthesia induction remains

difficult. If PIH could be accurately predicted, anesthesiologists would thereby be able to deter-

mine appropriate management proactively, thus preventing the negative outcomes associated

with hypotension. These days, modern anesthesia data have been expanded to include high-

resolution time-synchronized physiological and pharmacological data from multiple anesthe-

sia devices [4]. This adds a large amount of anesthesia-related data to traditional electronic

health records (EHRs); however, in a busy operating room environment it is not easy for an

anesthesiologist to analyze these data in real time to predict PIH occurrence. Considering this,

machine learning can be used as an alternative to assist the anesthesiologist in predicting PIH

using such data. In the field of anesthesiology, various machine-learning models have been

introduced to predict postoperative in-hospital mortality [5], hypotension [6], and PIH [7],

showing prediction performance similar to, or better than, traditional modeling. We investi-

gated the feasibility of developing a machine-learning model to predict PIH by adding intrao-

perative vital signs and anesthetic drug administration data obtained through high-resolution

time-synchronized intraoperative data-mining techniques to EHR data.

Materials and methods

Patient population

Adult patients (age > = 18 years) who underwent laparoscopic cholecystectomy under general

anesthesia at Soonchunhyang University Bucheon Hospital, Bucheon City, Republic of Korea,

between October 29, 2018, and May 5, 2019, were included in this retrospective study. EHR

and anesthesia data were retrieved from our department’s web database. Briefly, intraoperative

vital signs and pharmacological data from multiple anesthesia drug-delivery and monitoring

devices were recorded in a time-synchronized fashion using a Vital Recorder [8]. Together

with these data, EHR data were also stored in our departmental database. The construction of

the database was approved by our institutional review board (approval No. 2018-06-012).

Additional approval from our institutional review board was obtained for this specific study

(approval No. 2019-07-012).

Primary outcome

We divided the PIH into two phases (early and late PIH). In this study, early PIH refers to

hypotension occurring during the early phase of anesthesia induction, which is from the start

of anesthesia to tracheal intubation, and late PIH is defined as hypotension occurring during

the late phase of anesthesia induction, which is from tracheal intubation to incision. The pri-

mary outcome of the current study was the prediction of late PIH by machine-learning data

obtained in the early phase of anesthesia induction. Hypotension was defined as SBP< 90

mmHg or a mean blood pressure (MBP) < 65 mmHg.

Anesthesia

When the patient arrived in the operating room, routine monitoring was initiated, including

electrocardiography, pulse oximetry, intermittent noninvasive blood pressure measurements,

and bispectral index scoring. General anesthesia was induced and maintained with total intra-

venous anesthesia (TIVA) using propofol and remifentanil via a target-controlled infusion
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(TCI) pump (Orchestra Base Primea with module DPS; Fresenius Kabi AG, Germany) that

contained a microprocessor programmed with pharmacokinetic models for each drug. The

concentrations of propofol and remifentanil at the effect site (i.e., brain) were typically set at

3–6 μg/mL and 2–6 ng/mL, respectively. After loss of consciousness, 0.6–1 mg of rocuronium

was given intravenously to facilitate tracheal intubation. Thereafter, anesthesia was maintained

with the target propofol and remifentanil concentrations titrated by the attending anesthesiol-

ogist’s clinical judgement based on the patient’s clinical signs and bispectral index score.

Data collection

Demographic data (age, sex, height, weight, body mass index (BMI), American Society of

Anesthesiologists (ASA) physical status grade, and underlying disease type) and data recorded

from the Vital Recorder (vital signs, parameters related to mechanical ventilation, pharmaco-

logic data such as propofol, remifentanil, and vasoactive drug administration) from anesthesia

induction to incision were retrieved from our database. The timing of anesthesia induction

was defined as the initial administration of propofol via a TCI pump. Table 1 summarizes the

data collected from the EHR and Vital Recorder. Baseline blood pressure and heart rate were

recorded when the first blood pressure and heart rate measurements were obtained in the

operating room.

Data analysis

Data collection and preprocessing. In addition to demographic data, vital signs, propo-

fol, and remifentanil data collected by the Vital Recorder from different devices were collected.

The intervals of the recording differed depending on the properties of the vital sign being mea-

sured. For example, blood pressure measured noninvasively was recorded once a minute,

whereas the target-controlled infuser was recorded irregularly (e.g., at intervals of 1, 3, or 5s).

We unified the bio-signal information record interval to 3 s for machine learning and replaced

it with the last value if there was a gap in the data due to the time difference. Each record of a

vital sign recorded in 3-s increments was labeled as 1 for hypotension according to the criteria

above.

Data exploration. The physiological and pharmacological data were divided into two

periods: (1) early-phase anesthesia induction, i.e., data from anesthetic induction to tracheal

intubation, and (2) late-phase anesthesia induction, i.e., data from tracheal intubation to inci-

sion. The period was classified as hypotension if there was more than one hypotension label

between tracheal intubation and incision or normal if there was no hypotension label in the

same period.

Data from anesthetic induction to tracheal intubation. The frequency and duration of

early PIH (hypotension occurring between anesthetic induction and tracheal intubation) were

used as input features for late PIH prediction, corresponding to hypotension occurring

between tracheal intubation and incision.

Data from tracheal intubation to incision. The hypotension information after tracheal

intubation was used as an output class for machine learning (late PIH). The occurrence of

hypotension was assigned if there was more than one hypotension label between tracheal intu-

bation and incision. We also considered hypotension to have occurred when drugs that

increase blood pressure were administered between tracheal intubation and incision, as these

drugs indicate a response to signs of hypotension. This resulted in two patients being switched

from the normal class to the hypotension class.
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Statistical analysis

Feature

In this study, we used a total of 89 features. To avoid issues associated with dimensionality, we

performed feature selection using the caret R package. Table 2 shows the features selected by

feature selection.

Feature selection. We extracted 89 features from EHR and Vital Recorder data to predict

late PIH using machine learning. The number of pieces of information for each sample is the

Table 1. Data description.

Data source Categories Features

Electronic Health Record Demographic data Age

Sex

Height

Weight

Body mass index

ASA classification

Comorbidities Cardiovascular disease

Respiratory disease

Gastrointestinal disease

Renal disease

Endocrine disease

Neurologic disease

Vital Recorder Anesthetic drug† Volume

Plasma concentration

Effect-site concentration

Target concentration

Vasoactive drug administration† Vasopressor

Vasodilator

Noninvasive blood pressure† Systolic

Mean

Diastolic

Baseline blood pressure‡ Systolic

Mean

Diastolic

Heart rate† Heart rate

Mechanical ventilation data† Tidal volume

Minute ventilation

Respiratory rate

Max positive airway pressure

Hypotension† Frequency

Duration

Average duration

The table notes the demographic information of the patient recorded in the electronic health record, derived features of the biomedical signal data, anesthetic drug

derivative, hypotensive information, disease information in the pre-anesthetic history field, and drug information administered during anesthesia.
†These features were observed from anesthetic induction to tracheal intubation.
‡Baseline blood pressure was defined as the initial blood pressure in the operating room.

https://doi.org/10.1371/journal.pone.0231172.t001
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Table 2. Features.

All features (89) Feature set A (42) Feature set B (20) Feature set C (23)

Age • • •

Sex •

Height

Weight

Body mass index •

ASA classification

Comorbidities

Cardiovascular disease

Hypertension •

Atrial fibrillation

Coronary artery disease •

Angina pectoris •

Congestive heart failure •

Respiratory disease

Asthma •

Chronic obstructive pulmonary disease •

Gastrointestinal disease

Hepatitis •

Liver cirrhosis •

Viral carrier •

Hepatitis B viral infection

Renal disease

Chronic kidney injury •

End-stage renal disease •

Endocrine disease

Diabetes mellitus •

HbA1c

Thyroid disease •

Neurologic disease

Cerebrovascular disease •

Cerebral aneurysm •

Baseline blood pressure

Systolic •

Mean •

Diastolic • •

Noninvasive blood pressure†

Systolic min • •

Systolic max •

Systolic mean • •

Systolic sd • •

Mean min • •

Mean max •

Mean mean • •

Mean sd • •

Diastolic min •

Diastolic max

Diastolic mean • •

(Continued)
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Table 2. (Continued)

All features (89) Feature set A (42) Feature set B (20) Feature set C (23)

Diastolic sd

Heart rate†

min •

max • •

mean •

Anesthetic drug†

Volume

Propofol min

Propofol max • • •

Propofol mean • •

Remifentanil min •

Remifentanil max • •

Remifentanil mean • • •

Plasma concentration

Propofol min

Propofol max • • •

Propofol mean

Remifentanil min

Remifentanil max

Remifentanil mean

Effect-site concentration

Propofol min

Propofol max

Propofol mean

Remifentanil min •

Remifentanil max

Remifentanil mean •

Target concentration

Propofol min •

Propofol max

Propofol mean

Remifentanil min •

Remifentanil max

Remifentanil mean • •

Vasoactive drug administration†

Ephedrine

Ephedrine volume •

Phenylephrine •

Phenylephrine volume

Esmolol •

Esmolol volume

Labetalol •

Labetalol volume

Mechanical ventilation data†

Tidal volume min •

Tidal volume max • •

Tidal volume mean • •

(Continued)
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dimensionality. Large dimensionality makes model training difficult and requires more data

[9]. The more information we know, the more possibilities we can utilize, but large dimension-

ality is not always good. The performance of a model may be high without unnecessary vari-

ables, but decline as unnecessary variables are added. As dimensionality increases with

additional training data, the performance may drop sharply. In addition, if the number of vari-

ables exceeds the training data, the model may not explain new data. When features are added,

the model becomes more complex and is more likely to overfit. Therefore, it is better to select

only the most useful features. The training data used in this study comprised 75% (166 cases)

of the total data. If we had used all 89 extracted features, there would have been a high risk of

dimensionality complications. To prevent over-fitting and improve performance, we applied

three feature selection strategies.

First, redundant features were removed. The data included correlated attributes. Many

methods perform better when highly correlated attributes are removed. In this study, we

removed attributes with an absolute correlation coefficient of 0.5 or greater. Forty-two features

were selected and defined as Feature set A.

Second, features were ranked by their importance. The importance of a feature can be esti-

mated from the data after the model is created. Some methods, such as decision trees, have

built-in mechanisms to report variable importance. For other algorithms, the importance can

be estimated using the receiver operating characteristic (ROC) curve analysis performed for

each feature. Twenty features were selected and defined as Feature set B.

Last, specific features were selected using the recursive feature elimination (RFE) method, a

popular automatic method for feature selection provided by the caret R package. This is a

greedy optimization algorithm that is used to find the best performance variable. RFE is a

wrapper method that uses a subset of variables to learn the model, allowing the addition or

subtraction of features from previous models based on inference; it continues to generate the

model and keeps the best- or worst-performing models. It considers the next model until all of

the variables are gone, and then ranks the variables according to their removal order. Using

Table 2. (Continued)

All features (89) Feature set A (42) Feature set B (20) Feature set C (23)

Minute ventilation min

Minute ventilation max •

Minute ventilation mean

Respiratory rate min •

Respiratory rate max •

Respiratory rate mean •

Max positive airway pressure min •

Max positive airway pressure max •

Max positive airway pressure mean •

Hypotension†

Frequency •

Duration •

Average duration • •

Initially, 100 features were selected; however, no patients had 11 comorbidities: myocardial infarction, valve disease, hepatitis C viral infection, fatty liver, alcoholic liver

disease, autoimmune liver disease, acute kidney injury, myasthenia gravis, morbid obesity, epilepsy, or dementia. Thus, these features were excluded.
†Features observed between anesthesia induction and tracheal intubation.

https://doi.org/10.1371/journal.pone.0231172.t002
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the RFE method, 20 features were selected and defined as Feature set C. The experimental

results for each feature are summarized in the next section.

Machine learning model

We developed Naïve Bayes, logistic regression, random forest, and artificial neural network

(ANN) models for predicting late PIH. Naïve Bayes is a probabilistic classifier applying the

Bayesian theorem that assumes independence between properties [10]. Logistic regression is a

probabilistic model that uses the relationship between dependent and independent variables as

a concrete function for prediction models [11]. Random forest randomly samples training

data to create a large number of decision trees and then collects the results of the decision trees

to derive the final result by majority vote [12]. The decision tree predicts the value of the target

variable according to several input variables. Random forest has high accuracy because it gen-

erates a large number of these decision trees, collectively learns them, and derives a majority

result. It is also simple and fast, and it can handle large data sets and many input variables.

ANN mimics the brain’s information processing system, which involves complex neuron con-

nections and complex computations [13]. ANN derives a new value through a predetermined

function process when various information is input. The advantage of this algorithm is that

any estimation function can be approximated by reasonably complex neural networks with

high prediction accuracy. We performed repeated k-fold cross-validation to gurantee unbiased

performance. K-fold cross validation method is a statistical skill to measure the performance

of the model on new data after splitting the data into k folds. A fold is tested as new data for

the model built from remining k-1 folds, and this process is repeated while all folds are tested

once. K-fold validation has randomness in sample selection in forming a fold. When samples

are homogeneous, the randomness would not cause biased performance on a specific fold

split.

However, when samples are heterogeneous, the algorithm performance could change

depending which samples are split into which fold. The repeated k-fold validation comple-

ments this weakness by repeating the step splitting samples into folds n-times. Bio-medical

data, especially our bio-sensor data is diverse depending on patients, so we repeated four-fold

cross-validation 1000 times to generate stable performance.

Performance evaluation

The performance of the learning models is summarized using the area under the ROC (AUC),

accuracy, precision, and recall [14]. The evaluation of the model was based on whether the

answer given by the model matched the actual answer. Eq 1 describes the indices as True Posi-

tive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).

precision ¼
TP

TP þ FP

recall ¼
TP

TP þ FN

accuracy ¼
TP þ TN

TP þ FN þ FPþ TN

ð1Þ
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Determining the importance of explanatory features

The explanatory power of a model lies in its ability to identify the relative importance of the

explanatory features that affect the target output. To measure the importance of explanatory

variables in random forest, two importance indicators are used: the mean decrease in accuracy

and the mean decrease in Gini. The mean decrease in accuracy is a measure of the importance

of a variable based on its accuracy [15] and is defined as the average difference in accuracy that

occurs when a variable is removed and the model is rebuilt. If the accuracy is greatly reduced

by eliminating a variable, the variable has a significant effect on improving classification accu-

racy. The mean decrease in Gini is a measure of the decrease in the impurity of the selected

variables as each tree in the random forest extends its branches and uses the average value

from the entire tree. A higher mean decrease in Gini value for a particular variable means that

sorting individuals using that variable helps to group categories in a way that reduces impurity.

Therefore, both of the indicators that measure the importance of variables in random forest

have high importance if the values are large. A Shapiro–Wilk test for normality was conducted,

and t-tests or Wilcox tests for continuous data were performed based on the outcome. Cate-

gorical variables were evaluated using a chi-squared or Fisher’s exact test.

Results

The data from a total of 222 patients were analyzed. Among these, 126 patients developed late

PIH. Patients who developed late PIH tended to be significantly older and have a lower base-

line blood pressure compared with patients who did not. Effect site concentration of propofol

and remifentanil were not significantly different. The characteristics of patients are specified

in Table 3.

Late PIH: Hypotension after tracheal intubation

Fig 1 plots late PIH from two perspectives. Fig 1(a) and 1(c) present the distribution of patients

showing the first hypotension episode over time. In Fig 1(a), 32 of the 126 patients with hypo-

tension experienced their first hypotension within one minute immediately after tracheal intu-

bation. In Fig 1(c), within 4 minutes after tracheal intubation, 50% of 126 patients experienced

their first hypotension. Fig 1(b) and 1(d) show the number of hypotension episodes after tra-

cheal intubation over time. The number of hypotension episodes peaked at around 10 min

and then decreased. Fig 1(d) indicates that 70% of the hypotension episodes occurred within

12 min. The slope of Fig 1(d) gradually increased from 1 min to 3 min, before rising sharply

from 5 min to 12 min. After 12 min, the slope was more gradual. This means that many hypo-

tension episodes occurred between 5 and 12 min. The average value was 10 min, and the

median value was 9 min.

Late PIH prediction performance among machine-learning models

The performances of four machine-learning models in predicting late PIH are summarized in

Table 4. Among the models, random forest performed best; specifically, the recall and AUC

with feature set C were 83.65% and 84.23%, respectively (Fig 2).

Fig 3 shows a feature-importance plot from the random forest model with two indicators.

For the mean decrease in accuracy and the mean decrease in Gini, we see that NIBP SBP.min,

NIBP MBP.min, NIBP SBP.mean, and age variables are located at the top of the graph (Fig 3).
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Table 3. Patient characteristics.

Characteristic All patients (n = 222) Hypotension (n = 126) No hypotension (n = 96) p

Age—yr 53 (14) 55.7 (14.2) 49.5 (13) 0.001���

Sex (male) 104 (46.9%) 54 (42.9%) 50 (52.1%) 0.219

Height—cm 162.3 (9.3) 161.6 (9.7) 163.2 (8.7) 0.199

Weight—kg 65.2 (57, 73.8) 63.2 (55.1, 72.9) 66.9 (58.9, 77.2) 0.023�

BMI—kg/m2 24.7 (22.5, 27.3) 24.4 (22.3, 26.8) 25.1 (23.1, 27.4) 0.05�

ASA classification—no. 0.509

1 81 (36.5%) 42 (33.3%) 39 (40.6%)

2 117 (52.7%) 69 (54.8%) 48 (50%)

3 24 (10.8%) 15 (11.9%) 9 (9.4%)

Comorbidities—no.

Cardiovascular disease

Hypertension 71 (32%) 42 (33.3%) 29 (30.2%) 0.727

Atrial fibrillation 3 (1.4%) 3 (2.4%) 0 (0%) 0.35

Coronary artery disease 4 (1.8%) 3 (2.4%) 1 (1%) 0.815

Angina pectoris 5 (2.3%) 2 (1.6%) 3 (3.1%) 0.758

Congestive heart failure 1 (0.5%) 0 (0%) 1 (1%) 0.891

Respiratory disease

Asthma 16 (7.2%) 13 (10.3%) 3 (3.1%) 0.073

Chronic obstructive pulmonary disease 5 (2.3%) 2 (1.6%) 3 (3.1%) 0.758

Gastrointestinal disease

Hepatitis 1 (0.5%) 1 (0.8%) 0 (0%) >0.99

Liver cirrhosis 4 (1.8%) 3 (2.4%) 1 (1%) 0.815

Viral carrier 7 (3.2%) 4 (3.2%) 3 (3.1%) >0.99

Hepatitis B viral infection 11 (5%) 6 (4.8%) 5 (5.2%) >0.99

Renal disease

Chronic kidney injury 0.453

2 1 (0.5%) 0 (0%) 1 (1%)

3 4 (1.8%) 3 (2.4%) 1 (1%)

4 1 (0.5%) 1 (0.8%) 0 (0%)

End-stage renal disease 1 (0.4%) 1 (0.8%) 0 (0%) >0.99

Endocrine disease

Diabetes mellitus 45 (20.3%) 25 (19.8%) 20 (20.8%) 0.989

Thyroid disease 14 8 6 0.498

Neurologic disease

Cerebrovascular disease 9 (4.1%) 6 (4.8%) 3 (3.1%) 0.788

Cerebral aneurysm 1 (0.5%) 0 (0%) 1 (1%) 0.891

Baseline blood pressure—mmHg
Systolic 141 (127, 160) 138 (123, 154.8) 145.5 (133, 165) 0.001���

Mean 104 (92, 113) 98 (90, 110) 108 (98.8, 118) <0.001���

Diastolic 80.4 ±10.95 77.8 ±11 84 ±9.9 <0.001���

Noninvasive blood pressure†—mmHg
Systolic 118 (107.7, 128.3) 111 (102.9, 122.5) 123 (116, 132.9) <0.001���

Mean 87.3 (80.2, 95.3) 82.7 (76.7, 91.4) 91.1 (86.5, 99) <0.001���

Diastolic 70 ±9.5 75 ±11.23 74.6 ±10.7 <0.001���

Heart rate†—/min 75 ±11 75 ±11.2 74 ±10.7 0.767

Anesthetic drug†

Effect-site concentration

(Continued)
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Table 3. (Continued)

Characteristic All patients (n = 222) Hypotension (n = 126) No hypotension (n = 96) p

Propofol (mcg/ml) 4.2 (3.8, 4.6) 4.2 (3.8, 4.5) 4.3 (3.9, 4.7) 0.208

Remifentanil (ng/ml) 1.6 (1, 1.9) 1.5 (1, 1.8) 1.6 (1.2, 1.9) 0.251

Vasoactive drug administration†—no.

Ephedrine 6 (2.7%) 6 (4.8%) 0 (0%) 0.08

Esmolol 4 (1.8%) 2 (1.6%) 2 (2.1%) >0.99

Labetalol 1 (0.5%) 0 (0%) 1 (1%) 0.891

Mechanical ventilation data†

Tidal volume—ml 271.7 (223.6, 321.9) 268 (217.4, 320.7) 275.4 (232, 346.3) 0.332

Minute ventilation—L/min 3.3 (2.6, 4.2) 3.3 (2.6, 4.1) 3.3 (2.7, 4.5) 0.543

Respiratory rate—/min 11.7 (9.9, 14.1) 11.9 (9.8, 14.1) 11.6 (10.2, 14.2) 0.762

Max positive airway pressure—cmH2O 14.8 ±3.3 14.6 ±3.3 15 ±3.3 0.426

Data are expressed mean (standard deviation, SD) or median (interquartile range, IQR) values according to normality test results. For continuous variables, a t-test or

Wilcox test was performed as appropriate. For categorical variables, a chi-squared test or Fisher’s exact test was performed as appropriate.
†These features were observed from anesthetic induction to tracheal intubation.

� p < 0.05,

�� p < 0.01, and

��� p< 0.001.

https://doi.org/10.1371/journal.pone.0231172.t003

Fig 1. Distribution of hypotension after tracheal intubation. (a) the distribution of the elapsed time from tracheal intubation to first hypotension

event in terms of patients. (b) the distribution of the elapsed time from tracheal intubation in terms of hypotension episodes. (c) the cumulative

distribution of the elapsed time from tracheal intubation to first hypotension event in terms of patients. (d) the cumulative distribution of the elapsed

time from tracheal intubation in terms of hypotension episodes.

https://doi.org/10.1371/journal.pone.0231172.g001
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Discussion

In this study, we evaluated whether machine learning can be used to predict hypotension

occurring after tracheal intubation. We trained our model using data obtained from the early

phase of anesthesia induction. These data included not only EHR data but also early anesthesia

induction data collected from various machines such as a general anesthesia monitor, drug

infusion pump, mechanical ventilator, and anesthesia depth monitor. Our results show that:

machine learning can predict late PIH with a variable range; among the four methods used,

the random forest model showed the best performance (AUC = 0.84). Instead of using all 89

features, selected features (20 and 23 features) obtained using a feature-selection method pro-

vided the best performance. The three most important features affecting the accuracy of

machine-learning (e.g., random forest) prediction were the patient’s lowest SBP, lowest MBP,

and mean SBP before tracheal intubation. Among patients’ characteristics, patient age was an

important factor in predicting late PIH.

PIH is not uncommon, occurring in about 20% of patients [1]. It is associated with a high

prevalence of poor outcomes. Reich and colleagues reported that a prolonged postoperative

stay and death were more common in patients with early PIH that occurred within 10 min

after anesthesia induction [2]. In the current study, we investigated the occurrence of hypoten-

sion between tracheal intubation and incision. During this period, patients may experience a

variety of conditions that make them more prone to hypotension. After intubation, anesthesi-

ologists are busy working on several tasks, i.e., securing the tracheal tube, adjusting the anes-

thesia drug, inducing inspiratory oxygen flow and oxygen fraction, setting the tidal volume

and respiratory rate, and simultaneously entering data into the patient’s anesthesia records;

Table 4. Performance of the four machine-learning models for PIH prediction.

Naïve Bayes Logistic regression Random forest ANN

All features accuracy 55.74 62.01 76.28 70.7

precision 80 70.25 77.99 74.51

recall 13.33 60.79 81.28 74.5

AUC 60.16 60.47 79.5 76.01

95% CI 45.41–74.62 46.69–74.26 67.87–91.14 64.03–88

Feature set A

(Remove redundant features)

accuracy 53.64 59.97 68.28 64.53

precision 78.5 67.11 71.36 69.14

recall 28.02 59.23 74.61 69.27

AUC 67.23 66.78 71.85 70.72

95% CI 53.19–81.27 52.74–80.81 58.58–85.1 56.98–84.47

Feature set B

(Rank features by importance)

accuracy 70.2 79.16 78.8 70.61

precision 71.54 79.95 79.5 72.92

recall 79.71 85.01 84.58 77.64

AUC 77.82 75.56 83.78 67.57

95% CI 65.87–89.76 63.02–88.11 73.36–94.2 53.53–81.6

Feature set C

(Recursive feature elimination)

accuracy 70.02 68.56 79.48 68.62

precision 77.08 72.75 81.16 72.25

recall 67.13 71.67 83.65 72.97

AUC 77.25 73.42 84.23 72.3

95% CI 65.13–89.38 60.57–86.27 73.63–94.84 59.5–85.09

ANN, artificial neural network; AUC, area under receiver operating characteristic curve. Table notes the precision and recall for the hypotension class.

https://doi.org/10.1371/journal.pone.0231172.t004
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thus, it may be difficult for the anesthesiologist to concentrate fully on hemodynamic changes.

Surprisingly, half of the patients in our study developed hypotension during this period, even

though the hypotension threshold was set slightly higher (SBP of 90 mmHg or MBP of 65

mmHg) and anesthesia induction was provided solely by TIVA, which uses propofol and remi-

fentanil, the main anesthesia drugs contributing to the development of hypotension. We

assumed that this high incidence may largely have resulted from frequent blood pressure mea-

surements (i.e., every 1 min) and might otherwise have gone undetected if the blood pressure

Fig 2. Receiver operating characteristic curve. Naïve Bayes, logistic regression, random forest, and ANN models are expressed as black, blue, red,

and purple lines, respectively. Naïve Bayes with Feature set B (AUC, 77.82%), logistic regression with Feature set B (AUC, 75.56%), random forest

with Feature set C (AUC, 84.23%), and ANN with All features (AUC, 76.01%). ANN, artificial neural network.

https://doi.org/10.1371/journal.pone.0231172.g002
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measurements had been taken every 3 to 5 min. In this study, random forest showed the high-

est predictive performance among four machine-learning models. In general, random forest

performed very well, with minimal parameter tuning, and did not require scale data; however,

random forest did not work well with sparse data, such as text data. Each feature of the bio-

signal data was organically linked to the others. Thus, the Naïve Bayes classifier, which assumes

independence between features, showed relatively poor performance. Logistic regression

assumes only a linear relationship between a dependent variable and independent variables.

There is a limit to increasing the accuracy. For example, ANN models tend to overfit their

training data. Kendale and colleagues have shown that a gradient boosting machine algorithm

had an AUC of 0.77 in predicting PIH within 10 min of the recorded induction time of general

anesthesia [3].

When all 89 features were used, logistic regression and Naïve Bayes showed very poor pre-

diction performance (AUC = 0.6). In the case of using Feature set A, the predictive ability var-

ied, depending on the model. However, when Feature sets B and C were used, the predictive

performance increased in all models except ANN. Among them, random forest showed the

best performance. The main differences in Feature set A compared with sets B and C was that

Feature set A included many of the existing-disease features (15 features) and excluded almost

all of the blood pressure-related features. In contrast, Feature sets B and C had none of the

existing-disease features, but most blood pressure-related features were included. In particular,

Feature set C contained baseline blood-pressure and early PIH-related features that were not

included in B. Thus, the results indicate that the use of existing disease as a feature in predict-

ing late PIH does not improve prediction performance. However, the inclusion of blood-pres-

sure-related factors improved the prediction accuracy.

Fig 3. Feature importance plot from the random forest model. NIBP_SBP.min and NIBP_MBP.min were ranked as the first and second most

important features based on the importance plot of the random forest model. NIBP, noninvasive blood pressure; SBP, systolic blood pressure; MBP,

mean blood pressure; TV, tidal volume; CP, plasma concentration; HR, heart rate; DBP, diastolic blood pressure; RR, respiratory rate; CT, target

concentration.

https://doi.org/10.1371/journal.pone.0231172.g003
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Our analysis of important feature selection showed that lowest systolic pressure and MBP

during the early phase of anesthesia induction were the two most important features in pre-

dicting late PIH. This implies that low blood pressure before tracheal intubation is associated

with the development of late PIH. The high importance of these features seems reasonable to

anesthesiologists, considering the general tendency of anesthesiologists to predict blood pres-

sure a few minutes ahead by observing changes in blood pressure during the early phase of

anesthesia induction. This implies that our model identified an intuitive component of pre-

dicting late PIH. Among other features, patient age was ranked as the fourth most important

factor. This also makes sense, in that elderly patients are more vulnerable to developing hypo-

tension than are relatively young patients. Apart from these clinical aspects, variables recently

identified using traditional multivariate logistic regression models as significantly related to

PIH include pre-induction SBP, age, and emergency surgery [3]. Considering that machine-

learning predictions have taken the form of a black box and have not been able to provide con-

vincing information to clinicians, the similarity between the high-priority features in our study

and the variables resulting from traditional statistical approaches is meaningful, as it implies

that machine-learning techniques can provide information that clinicians can understand. In

addition, Kendale and colleagues, using a stochastic gradient boosting machine-learning algo-

rithm, also reported that the first MBP and age were the two most important predictive fea-

tures for PIH.

We assume that the relatively high prediction performance for late PIH in the current study

comes mainly from including features generated during the early stage of anesthesia induction.

In addition to EHR data, we can use features that may be directly related to the development

of hypotension. For example, blood pressure, anesthesia drug, and mechanical ventilator data

can be recorded in high resolution. Although these data can be obtained from EHRs (i.e., anes-

thesia records) retrospectively, the data may be incorrect, especially during the initial short

period of anesthesia induction. Apart from blood pressure recording, intravenous anesthesia

drug administration information cannot be recorded in anesthesia records to reflect real-time

changes unless specialized tools are used. Mechanical ventilation data are not recorded rou-

tinely on anesthesia records and often missed unless they are recorded separately. However,

these missing data are, in fact, clinically correlated with hypotension development. We were

able to record and store blood-pressure and heart-rate data as well as anesthesia drug and

mechanical ventilation information using a Vital Recorder. We found that propofol- and remi-

fentanil-related features also played important roles in improving prediction performance.

The incorporation of these features is expected to enhance hypotension prediction perfor-

mance considerably.

Limitations

There are several limitations to this study. We did not include post-tracheal intubation data to

train the machine-learning model to predict late PIH. In fact, post-intubation drug control

may or may not cause hypotension. However, we used data up to immediately before intuba-

tion on the premise that most anesthesiologists provide leveled anesthesia at incision after

intubation. Our study was performed only on laparoscopic cholecystectomy using TIVA. The

reason for this was as follows. First, the data from the infusion pump used in TIVA can be well

recorded. Second, by limiting the operation type to the same operation, the patient group

could consist of similar patients. Finally, the same procedure usually follows a common

sequence from induction of anesthesia to incision. This helped to eliminate unexpected vari-

ables that might occur in other operations. For example, if we had included high-risk surgery

that requires a procedure such as inserting a urinary catheter, radial artery catheter,
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nasogastric tube, or central venous catheter, this might have added additional factors that

could have caused dimensionality complications. Thus, our study cannot be applied to other

surgeries. The number of patients in this study was small, which could possibly lead to overfit-

ting. However, of the 222 patients, 126 were in the hypotension group and 99 were in the nor-

mal group; thus, the sample appeared to be fairly balanced.

Conclusion

We found that machine-learning models using data obtained from EHR and various anesthe-

sia machines between the start of anesthesia induction and immediately before tracheal intu-

bation can predict hypotension between tracheal intubation and incision. Random forest with

features selected by RFE showed the best performance for identifying late PIH. Lowest SBP,

lowest MBP, mean SBP before tracheal intubation, and patient age were important for the

accuracy and node impurity of the random forest model.
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