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Antioxidant proteins perform significant functions in disease control and delaying aging which can prevent free radicals from
damaging organisms. Accurate identification of antioxidant proteins has important implications for the development of new
drugs and the treatment of related diseases, as they play a critical role in the control or prevention of cancer and aging-related
conditions. Since experimental identification techniques are time-consuming and expensive, many computational methods have
been proposed to identify antioxidant proteins. Although the accuracy of these methods is acceptable, there are still some
challenges. In this study, we developed a computational model called ANPrAod to identify antioxidant proteins based on a
support vector machine. In order to eliminate potential redundant features and improve prediction accuracy, 673 amino acid
reduction alphabets were calculated by us to find the optimal feature representation scheme. The final model could produce an
overall accuracy of 87.53% with the ROC of 0.7266 in five-fold cross-validation, which was better than the existing methods.
The results of the independent dataset also demonstrated the excellent robustness and reliability of ANPrAod, which could be a

promising tool for antioxidant protein identification and contribute to hypothesis-driven experimental design.

1. Introduction

High concentrations of reactive oxygen species will result
in oxidative damage to proteins, DNA/RNA, and the poly-
unsaturated fatty acids, which in turn can lead to hyper-
tension, cancer, coronary heart disease, and Alzheimer’s
disease [1-4]. Antioxidant proteins eliminate excess free
radicals through interactions to protect cells and DNA
from oxidative damage, which is closely related to disease
control, so they have become a research hotspot in the
field of life science and pharmacology [5, 6]. The method
of identifying antioxidant proteins through biochemical
experiments has problems of being time-consuming and

expensive, so there is an urgent need to develop related
computation methods to complement the experiments.

In recent years, with the mass production of protein
sequences, a series of methods have been developed to
identify different types of proteins. Based on a support vec-
tor machine (SVM), Zuo et al. successfully predicted defen-
sin proteins with an accuracy of 92.38% [7, 8]. Feng et al.
designed a predictor called Aodpred to identify antioxidant
proteins, with a cross-validation accuracy of 74.79% [9]. Fu
et al. proposed a method called StackCPPred, which used a
stack-based machine learning method to effectively predict
cell-penetrating peptides [10]. Tan et al. applied the bino-
mial distribution method to recode the sequence to predict
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FiGURE 1: The workflow of ANPrAod predictor.

hormone-binding protein [11]. Research on these machine
learning methods yielded promising results, but there were
some limitations in predicting the accuracy and efficiency
of antioxidant proteins.

In this study, a novel feature extraction method, the
amino acid reduction alphabets combined with the N-pep-
tide composition strategy was used to identify antioxidant
proteins. Amino acid-reduced alphabets are often used for
large-scale protein structure analysis and prediction [8, 12,
13]. It can tolerate many changes in sequences while still
retaining the basic folding and function of the proteins.
Figure 1 shows the ANPrAod framework flow. First, a strict
benchmark dataset was constructed to ensure the validity of
the comparison among models. Subsequently, amino acid
reduction alphabets combined with N-peptide composition
(N =1, 2, 3) strategy was used to extract the feature vectors
and compare them to obtain the optimal scheme. Based on
the support vector machine (SVM), ANPrAod vyielded an
accuracy of 87.53% in the fivefold cross-validation which
was better than the existing methods through a series of com-
parison results. Finally, the prediction performance of
ANPrAod was objectively evaluated on the independent
dataset and principal component analysis (PCA), which
proved the robustness and reliability of the model. In conclu-
sion, ANPrAod was an effective tool for predicting antioxi-
dant proteins, which could assist experimental studies of
treatment-related diseases.

2. Materials and Methods

2.1. Dataset. The premise of building a high-quality model
is to use a reliable database [14-16]. To facilitate the com-
parison of our model with previous work, we used the
same benchmark dataset collected in the study of Feng
et al. [9, 17]. Finally, 1805 protein sequences were used
as the training dataset, including 253 antioxidant proteins
and 1552 nonantioxidant proteins. In addition, a strictly
independent dataset was constructed by us, containing
240 protein sequences (50 antioxidant proteins and 190
nonantioxidant proteins) from Uniprot to objectively eval-
uate the robustness of the model.

2.2. Support Vector Machine. The support vector machine
includes four main kernel functions: linear kernel function,
polynomial kernel function, radial basis function (RBF),
and sigmoid kernel function [18]. The core of SVM is to
transform the data into high-dimensional Hilbert space
and find the optimal separation hyperplane. For the con-
venience of scientific research, Chang and Lin developed
the LIBSVM package, which can be downloaded for free
from the following location http://www.csie.ntu.edu.tw/
~cjlin/libsvm/ [19]. It has been used in computational
biology [20-22].

In this study, the LIBSVM package with RBF kernel was
used to predict antioxidant proteins. We used the grid search
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FIGURE 2: Binary accuracy density maps. (a) Based on amino acid reduced alphabets, binary precision density map of different N-peptide
combinations (N = 1,2, 3). (b) Based on amino acid reduced alphabets, Acc univariate density map of different N-peptide combinations

(N=1,2,3).

to optimize the regularization parameter C and the kernel
parameter y to improve the performance of the model. The
selection ranges of C and y are as follows:

275 < C<2b,
(1)

2P <y<2’

2.3. Reduced Amino Acid Alphabets. Researchers have shown
that the amino acid sequence can be redefined according to
the position, structure, function, and similarity of the amino
acid in the protein sequences which are called reduced amino
acid alphabets [23]. Compared to original protein sequences,
the reduced amino acid alphabets performed superior pre-
dictive ability in reducing protein complexity and extracting
conservative features hidden in noise signals [24]. Based on
RAACBook, we adopted 673 amino acid reduction schemes
to be applied to our model [25, 26].

2.4. N-Peptide Composition. Single amino acid interactions
and more detailed sequence information can be effectively
mined by N-peptide (N=1, 2, 3) composition. We did
not try longer N-peptide because of our memory limita-

tion [8, 27]. For a natural protein sequence, the dipeptide
composition can be described as follows:

P=R\RyR; -+~ Ry Ry,

F= [dl’d2>"‘ad4oo]T’ (2)
where R, represents the first amino acid in the protein
sequence, L represents the total length of the protein
sequence. d; (i=1,2,---,400) is the ith dipeptide in the
400 amino acid combination, and T means the transposi-
tion operator.

2.5. Feature Selection. Feature selection is an important step
in building a powerful model, which is of great significance
for improving the performance of the classifier [28-30].
Analysis of variance (ANOVA), which measures the variance
of features by calculating the ratio of features between and
within groups, helps us evaluate the weight of each feature
and is widely used in bioinformatics [31, 32]. Appropriate
dimensional features could save computing resources, reduce
the risk of overfitting, and improve prediction accuracy, so
we used incremental feature selection (IFS) to filter features
measured by analysis of variance to train the model [33].
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The ANOVA formula is defined as follows:

I:‘zs_i
2’
SV
1 n
2 _ o 2
SX_n—l;(xl x) >
1 m
2 —\2
=2 =7 (3)

where F is the variance value of the feature, S is the sample
variance between groups, and Si denotes the sample variance
within groups.

2.6. Performance Evaluation. The traditional metrics, sensi-
tivity (Sn), specificity (Sp), accuracy (Acc), and area under
the receiver operating characteristic curve (AUC), were used
to evaluate the performance of the models, which are defined
as follows [20-22, 34-37]:

TP
Sn= — |
TP + FN
Sp— N
P= TN+
TP+ TN
Acc= )
TP + FN + TN + FP

AUC:Z{(I—ﬁi)-AoH %[A(l—ﬁ)-Aoc}},

where
A1-B)=(1-B)-(1-By)

Aa=a;—a;,, (5)
where TP, TN, FP, and FN represent true positive, true neg-
ative, false positive, and false negative of samples, respec-
tively. «; and S, (i € N) are the false positive rate and false
negative rate obtained by different thresholds. The receiver
operating curve (ROC) was used by us to quantitatively eval-
uate the performance of the model [38]. The true positive
rate and false positive rate are the x-axis and y-axis,
respectively.

3. Results

3.1. Performance of Different Reduced Amino Acid Alphabets.
RAACBook summarizes the 673 amino acid reduced alpha-
bets and classifies them into 74 types; each type contains 2-
19 reduced sizes [25]. Based on SVM, the protein sequences
of the training dataset were reduced according to RAAC-
Book, and the N-peptide (N =1, 2, 3) composition was used
to extract feature vectors to evaluate the influence of different
feature extraction methods on the predictive performance of
the model. Figures 2(a) and 2(b) show the accuracy density
profiles of 673 reduced amino acid cluster models for predict-
ing antioxidant proteins with different N-peptide composi-
tions (K=1,2,3). Excitedly that compared with the
combination of single peptide and tripeptide, dipeptide has
achieved better accuracy performance, which meant that they
can significantly simplify complexity and reduce information
redundancy. Therefore, we further analyzed all the detailed
accuracy of the dipeptide combination and showed 22 types
with the optimal calculation results using the heatmap. It
can be seen from Figures 3(a) and 3(b) that in type 19 and
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size 10, the accuracy of fivefold cross-validation reached
87.31%, which has the optimal discriminative ability.

3.2. Determination of Optimal Features. It is well known that
the predictive power of the model does not improve linearly
with the increase of feature dimensions, so it is necessary to
examine the predictive performance of different feature sets
in dipeptide combinations (type 19, size 10). First, we used
ANOVA to score each feature by weight, then sorted them
according to the score from largest to smallest. Then, the
IFS (step size is 1) was used to determine the optimal number
of features. From Figure 3(c), when the top 93 features were
used, the model accuracy has the highest fivefold cross-
validation result of 87.53%. Finally, the optimal feature set
was used by us to construct the SVM model for antioxidant
protein prediction. The ROC curve drawn according to the
fivefold cross-validation result of the optimal feature set
was used to further objectively evaluate the performance of
ANPrAod (Figure 4(a)).

3.3. Feature Analysis. The information maximization method
of information theory was used by Solis to polymerize amino
acids into 2-19 groups (Table 1) [39]. Mutual information
was maximized based on the similarity of the paired contact
interactions of the 20 amino acids, and then, this was used as
the objective function to mimic the natural paired contact
that occurs in natural proteins [39]. Specifically, they are
assigned according to nonpolar aromatic (FWY), nonpolar
aliphatic and sulfur-containing (CILMV), acid (DE), basic
(HR), small (AT), and other polarities (NQS), which also
demonstrate that these alphabets maintain the ability to iden-
tify remote interactions.

3.4. Comparison with Previous Methods. To demonstrate the
superiority of ANPrAod in the identification of antioxidant
proteins, we compared it with published methods. As shown
in Table 2, based on the same dataset, the fivefold cross-
validation results showed that ANPrAod has the optimal per-
formance with an accuracy of 87.53%, which was better than
other methods. This is due to the motivation that SVM was
originally designed for binary classification and the theoreti-
cal bounds from generalization error [40]. The upper bound
of generalization error does not depend on the dimension of
space, and the maximum boundary is used to minimize the
error boundary to minimize the distance between the hyper-
plane of two classes and the nearest data point [41]. In addi-
tion, ANPrAod used only 93 features compared to 158
features used by AodPred, which reduced computational
complexity and the risk of overfitting. This comparison dem-
onstrated the effectiveness of the amino acid reduction alpha-
bets combined with N-peptide combination strategy and the
strong function of ANPrAod to identify antioxidant proteins.

3.5. Performance Assessment of ANPrAod on Independent
Dataset. It is not rigorous to evaluate the model only based
on the information in the training set, which may overesti-
mate the performance of the model. In order to avoid this
problem, we tested ANPrAod on an independent dataset
to evaluate its real performance. The confusion matrix
results showed that ANPrAod still achieved excellent pre-
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TaBLE 1: Amino acid alphabet reduction using the information
maximization device.

Size Cluster

2 CFILMVWY-ADEGHKNPQRST

3 CFILMVWY-DEGKNQS-AHPRT

4 FWY-CILMV-DEGKNQS-AHPRT

5 FWY-CILMV-DEGKNS-APQT-HR

6 FWY-CILMV-DE-GKNQS-APT-HR

7 FWY-CILMV-DE-K-GNPQS-AT-HR

8 FWY-ILMV-C-DE-K-GNPQS-AT-HR

9 FWY-ILMV-C-DE-K-GNQS-PT-A-HR

10 WY-F-ILMV-C-DE-K-GNQS-PT-A-HR

11 WY-F-ILMV-C-DE-K-G-PNQS-T-A-HR

12 WY-F-IL-MV-C-DE-K-G-PNQS-T-A-HR
13 WY-F-IL-MV-C-DE-K-G-P-NQS-T-A-HR
14 W-Y-F-IL-MV-C-DE-K-G-P-NQS-T-A-HR
15 W-Y-F-IL-MV-C-DE-K-G-P-NQS-T-A-H-R
16 W-Y-F-IL-M-V-C-DE-K-G-P-NQS-T-A-H-R
17 W-Y-F-I-L-M-V-C-DE-K-G-P-NQS-T-A-H-R
18 W-Y-F-I-L-M-V-C-DE-K-G-P-N-QS-T-A-H-R
19 W-Y-F-I-L-M-V-C-D-E-K-G-P-N-QS-T-A-H-R

TaBLE 2: Performance comparison with the state-of-the-art
predictor on the benchmark dataset.

Methods Sn (%) Sp (%) Acc (%) Feature number
Feng et al. 72.04 66.05 66.88 44
Bayes net 38.68 93.55 85.09 90
Random forest ~ 28.09 93.12 80.34 —
AodPred 75.09 74.48 74.79 158
ANPrAod 92.92 98.33 87.53 93

diction results, which proved the robustness and effective-
ness of the model and could be a powerful tool to assist
the study of antioxidant proteins (Figure 4(b)). In addition,
we compared the natural protein sequences with the
reduced amino acid protein sequences by using PCA, which
further confirmed the superiority of the amino acid reduc-
tion combined with the N-peptide composition strategy
(Figures 4(c) and 4(d)).

4. Conclusion

Feature extraction is extremely important for generalization
ability; it can promote the subsequent learning of the model
and has better interpretability [10, 42]. In this study, a new
feature representation scheme of amino acid reduction
alphabets combined with N-peptide combination strategy
was applied to redefine protein sequences. The new feature
vectors were used to train SVM to find the optimal scheme
for predicting antioxidant proteins. The accuracy of fivefold
cross-validation was 87.53%, and the ROC curve area was



Computational and Mathematical Methods in Medicine

0.7266, which was better than other models. PCA and inde-
pendent dataset results also indicated that the amino acid
reduction alphabets combined with N-peptide combination
strategy can effectively reduce the data complexity, and
ANPrAod has strong robustness to accurately predict antiox-
idant proteins. We anticipated that ANPrAod can accurately
and rapidly identify antioxidant proteins based on peptide
sequence and promote the development of related drug
research. In future work, we will establish an online web
server and extend the research content to other fields.

Data Availability

To facilitate the comparison of our model with previous
work, we used the same benchmark dataset collected in the
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