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G protein-coupled receptor 40 (GPR40), one of the G protein-coupled receptors that
are available to sense glucose metabolism, is an attractive target for the treatment of
type 2 diabetes mellitus (T2DM). Despite many efforts having been made to discover
small-molecule agonists, there is limited research focus on developing peptides acting
as GPR40 agonists to treat T2DM. Here, we propose a novel strategy for peptide
design to generate and determine potential peptide agonists against GPR40 efficiently.
A molecular fingerprint similarity (MFS) model combined with a deep neural network
(DNN) and convolutional neural network was applied to predict the activity of peptides
constructed by unnatural amino acids (UAAs). Site-directed mutagenesis (SDM) further
optimized the peptides to form specific favorable interactions, and subsequent flexible
docking showed the details of the binding mechanism between peptides and GPR40.
Molecular dynamics (MD) simulations further verified the stability of the peptide–protein
complex. The R-square of the machine learning model on the training set and the test set
reached 0.87 and 0.75, respectively; and the three candidate peptides showed excellent
performance. The strategy based on machine learning and SDM successfully searched
for an optimal design with desirable activity comparable with the model agonist in phase
III clinical trials.

Keywords: T2DM, GPR40, artificial intelligence, oligopeptides, molecular fingerprint, site-directed mutagenesis

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a degenerative disease caused by impairment in insulin action
and pancreatic β-cell function, characterized by the inability to maintain glucose homeostasis.
During the past two decades, T2DM has emerged as one of the most severe global healthcare
concerns (Zheng et al., 2018). The general objective of all therapeutic modalities for T2DM is
to decrease the circulating blood glucose levels. Currently, there are various types of drugs that
play important roles in glycemic control. The mechanisms of action involve (i) insulin receptor
ligands (insulin analogs), (ii) reduction of insulin resistance (biguanides and thiazolidinediones),
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(iii) stimulation of β-cells by insulin secretagogues (sulfonylureas
and meglitinides), (iv) lowering postprandial blood glucose level
via alpha-glucosidase inhibitors (acarbose and miglitol), and
(v) blocking renal glucose reabsorption via a sodium-glucose
cotransporter-2 (SGLT2) inhibitor (dapagliflozin) (Chatterjee
et al., 2017). Although most treatments can manage glucose levels
in T2DM patients, the progressive decline in β-cell function leads
to inevitable dependence on exogenous insulin supply. Therefore,
the novel mechanism and potent candidates should draw our
attention in the treatment of T2DM (Chen et al., 2016).

G protein-coupled receptors (GPCRs) are among the most
attractive membrane targets for many drugs (Sriram and Insel,
2018). In recent years, a growing number of GPCRs are being
discovered with a wide variety of ligands, including free fatty
acids, sucrose, acetate, lactate, and ketone bodies; and they are
implicated in many pathophysiological functions (Blad et al.,
2012). G protein-coupled receptor 40 (GPR40), also known as
free fatty acid receptor 1 (FFAR1), is a member of the long-
chain fatty acid GPCR family. Current studies proved that
GPR40 plays a pivotal role in the potentiation of glucose-
dependent insulin secretion from pancreatic β-cells, and it also
regulates glucagon-like peptide 1 (GLP-1) and gastric inhibitory
peptide (GIP) secretion (Li et al., 2020). The view that the
agonists of GPR40 may be beneficial for treating T2DM is
substantially studied (Nutan et al., 2017). Clinical candidates
targeting GPR40 to enhance insulin secretion have been reported
in the literature (Naik et al., 2013). Moreover, GPR40 agonists
have been described as having superior effects, including
cardioprotection, suppressing glucagon levels, and weight loss,
than other hypoglycemic drugs (Mancini and Poitout, 2015).

The current development of GPR40 agonists primarily focuses
on small molecules, whose limitations, such as low selectivity,
high toxicity, and low efficiency, can contribute to failures in
clinical trials (Naik et al., 2012; Kim et al., 2018). Therefore,
new entities should draw our attention to the development of
GPR40 agonists. In this regard, peptides show high bioactivity
associated with high specificity, and low toxicity has made them
attractive therapeutic agents. Thus, the development of synthetic
peptides is an attractive modality to active GPR40. However, little
is known on the process of discovery in peptides for targeting
GPR40, partly because the core binding pocket is inaccessible
to the natural peptides. To this end, peptidomimetic composed
of unnatural amino acids (UAAs) can significantly increase its
structural diversity and improve binding affinity and selectivity
toward GPR40. Besides, the blood circulation time is important
for the duration of action. In this context, peptide drugs can
provide tunable circulation times through extended sequence
engineering or drug delivery systems (Zorzi et al., 2017; Wang
et al., 2018, 2020). In the case of membrane protein, the binding
site of GPR40 was located in the extracellular part, so peptides
targeting GPR40 can act without membrane penetration.

In response to the rapidly growing demand for binding,
functional, and ADMET (absorption, distribution, metabolism,
and excretion) information of many drug-like bioactive
compounds, various public databases (e.g., DrugBank,
PubChem, ChEMBL, and Zinc) have been developed for
drug discovery. Quantitative structure–activity relationships

(QSAR) modeling can largely increase drug design efficiency
(Krishna and Anuradha, 2020), but how to build QSAR models
for GPR40 remains elusive. Recently, the artificial intelligence
(AI) method, deep neural network (DNN) algorithm, has been
well represented as a novel approach to build QSAR models
(Hessler and Baringhaus, 2018). The use of deep learning in
chemical discovery has received considerable attention in recent
years. For example, DNN predicted cell permeability based on
the chemical structure of organic fluorescent (Soliman et al.,
2021), and the convolution neural network (CNN) was used
to find the relationship between the chemical structure of
odor molecules and their related odors (Sharma et al., 2021).
The graph convolutional neural network (GCN) successfully
predicted the reverse synthesis reaction (Ishida et al., 2019),
and the transformer neural network directly designed potential
ligand molecules based on the sequence of the protein target
(Grechishnikova, 2021). DNN had achieved many successes
in molecular descriptor-based tasks and had the advantage
of being easy to construct (Li et al., 2018; Cai et al., 2019).
The commonly used two-dimensional (2D) CNN had made
brilliant achievements in computer vision, and the derived
one-dimensional (1D) CNN was suitable for sequence data, such
as gene sequence and natural language processing (Esteva et al.,
2021; Sun et al., 2021; Zhang et al., 2021). Molecular descriptors
could be used as input of DNN to construct QSAR models,
and quantified molecular descriptors could be regarded as a
unique sequence for 1D CNN to use. Nevertheless, there was
no perfect AI model, and performance comparison between
models on a specific task can help obtain more accurate results
(Yang et al., 2019).

Here, we describe a novel AI combining mutation scanning
approach to design new promising oligopeptide agonists for
GPR40 (Figure 1). Initially, the ChEMBL database (version 28)
was used to extract 528 compounds with known bioactivity and
structural profiles. A QSAR model was constructed based on
DNN. The molecular fingerprint search method was employed
to screen active chemical entities among the oligopeptides
generated from the library of natural amino acids (AAs)/UAAs.
The obtained candidate oligopeptides were then evaluated
for the binding affinity to GPR40 through flexible docking
procedures. The initial lead oligopeptides were further processed
by the site-directed mutagenesis (SDM) optimization to achieve
potential hits toward GPR40. The peptides were further analyzed
in molecular dynamics (MD) simulations and showed good
stability. These top candidates might be up-and-coming for the
treatment of T2DM.

MATERIALS AND METHODS

Data Set
A total of 2,084 GPR40 agonists with EC50 measurements have
been extracted from the ChEMBL database (Mendez et al., 2018).
The unit of measurement for EC50 is nmol. Fasiglifam (TAK-
875), a potent GPR40 selective agonist withdrawn from phase
III clinical trials due to drug-induced hepatotoxicity (Yabuki
et al., 2013), was used as a positive control to evaluate the
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FIGURE 1 | The overall flowchart.

efficacy profile of the obtained TAK-875 analogs. In this study,
only the compounds that interact with the same region in the
TAK-875 binding site were kept, and all duplicate entries were
removed. The final data set that consisted of 528 molecules is
listed in Supplementary Table 1. All molecular structures were
constructed in molecular operating environment (MOE) version
2019.0102 and imported into the database (Vilar et al., 2008).
Structure preparation was performed on all molecules to repair
structural errors and add hydrogen atoms. Protonate3D was used
to protonate all molecules. The temperature of Protonate3D was
set to 300K, the pH was set to 7, and the ion concentration was
set to 0.1 mol/L. Energy minimization was performed for each
molecule to obtain the optimal configuration. The root mean
square gradient of energy minimization was set to 0.1 kcal/mol/A.

Feature Calculation
A total of 153 2D molecular descriptors were calculated in
MOE. The names of all molecular descriptors and their specific

meanings are listed in Supplementary Table 2. The EC50 value
of each molecule is logarithmically processed to pEC50 (Eq. 1).

pEC50 = −logEC50 + 9 (1)

To improve the model accuracy, Morgan fingerprints with a
length of 1,024-bit strings were calculated by the RDKit toolkit
to compare the performance with the MOE 2D descriptors
Landrum (2016). All quantitative features were standardized. The
pEC50 of 528 molecules in the data set is typically in the range
between 4 and 9, and the molecular weight is roughly between
200 and 600 (Figure 2A).

The UAA Library and the Oligopeptide
Database
The AA database used in this study contains 20 natural AAs and
850 UAAs derived from 20 canonical AAs. All UAA category
information is in Supplementary Table 3. The number of peptide
residues is limited to 3–5. The molecular weight of the peptide
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FIGURE 2 | (A) Molecular weight and pEC50 distribution of the data set. Frequency increases with the color from light to dark. (B) 2D principal component analysis
(PCA) results of the data set. The red dot is the training set, and the blue dot is the test set.

is similar to the data set molecule, which helps to improve the
accuracy of peptide activity prediction and facilitates the peptide’s
entry into the GPR40 binding site. Three random-constructed
virtual peptides (tripeptides, tetrapeptides, and pentapeptides)
libraries were generated, where each peptide library consists
of 100,000 peptide entries. The generation and preservation of
peptide structures were done by MOE’s SVL script.

Model Training
Convolution neural network is a feedforward neural network that
includes convolution calculations (LeCun et al., 2015). It can
learn features from data and generalize them to specific data.
CNN has achieved great success in speech recognition, image
recognition, and other fields. The molecular features calculated
based on MOE can be expressed as a 1 × 153 vector form; hence
1D CNN can be well adapted to the task of predicting the activity
of oligopeptides based on molecular features. In contrast, the
DNN is a fully connected neural network, which is more prone
to overfitting than CNN. The hyperparameters of the neural
network are important for the training and accuracy of the model.
We repeatedly adjusted and confirmed the best hyperparameters
in the training process. A CNN with seven convolutional layers,
three max-pooling layers, and one Flatten layer is built (Figure 3).
The size of the local receptive field was 1 × 3; and the number
of feature maps of the convolutional layer was 16, 16, 64, 64, 128,
128, and 64 in order. The filter size of the pooling layer was 3. The
Flatten layer was used to expand the output of the pooling layer
and connect to the final dense layer. The batch size was set to 10.

Here, DNN contains three hidden layers (Figure 3). The
number of units contained in each hidden layer is 150, 30, and
10 in order. The first and second hidden layers applied Dropout
to prevent overfitting, and the Dropout Rate was defined as 0.9.

The rectified linear unit was used as the activation function of
CNN and DNN, mean square error (MSE) (Eq. 2) was defined as
the loss function, and the Adam optimizer was used to minimize
the loss function (Nair and Hinton, 2010; Kingma and Ba, 2014).

The initial learning rate of the Adam optimizer was set to 0.001
and 0.0008 in CNN and DNN, respectively.

Mean Square Error =
1
m

m∑
i = 1

(yi − ŷi)2 (2)

where m is the sample size, yi is the actual value of the sample’s
pEC50, and ŷi is the predicted value of the sample by the model.
The data set was divided into a training set and a test set according
to the ratio of 4:1. Principal component analysis (PCA) was
performed with all the features as input, and the features were
mapped to two principal components with 42.01 and 10.05%
variances. The data set shows high chemical diversity. 2D PCA
shows that the training set and the test set are located in the
same chemical space (Figure 2B). All input features in CNN and
DNN had undergone maximum and minimum standardization
processing. The last layer of CNN and DNN did not use the
activation function and outputs pEC50. R-square was used to
evaluate the accuracy of model fitting (Eq. 3).

R− square = 1−
∑

i (ŷi − yi)2∑
i (yi − yi)2 (3)

where ŷi is the predicted value of the sample by the model, yi is
the actual pEC50 value, and yi is the mean pEC50.

Principal Component Analysis and
LASSO Feature Selection
To improve the accuracy of the model, speed up model training,
and reduce overfitting, PCA and LASSO feature selection were
applied to reduce redundant features (Tibshirani, 2011). The
data set was reduced in dimensionality by solving the covariance
matrix. The variance accumulation threshold of PCA was set
to 0.99 to remove low variance features. LASSO regression
can compress the coefficients of the regression variables to
0 and make the parameters become sparse because it has
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FIGURE 3 | Deep learning architecture of convolution neural network (CNN) and deep neural network (DNN) used to predict peptide activity.

L1 regularization terms. Here, the alpha value of the LASSO
regression estimator was set to 0.001 to limit the L1 regular
term, and the maximum number of iterations was set to 8,000
to fit all features.

Molecular Similarity Search
The fundamental assumption in drug discovery is that
structurally similar molecules exhibit similar biological activities
(Muegge and Mukherjee, 2016). Hence, the molecular fingerprint
method allows for ligand-based virtual screening and predicts
bioactivity or other properties of candidates that have not been
tested with the fingerprint model built from the database of the
active template. In simple terms, fingerprint models transfer
the structure of active templates and candidates simultaneously
into numbers or matrices and compare them with mathematical
methods, for example, the Tanimoto coefficient (Cereto-
Massagué et al., 2015). According to the design principle of
the fingerprint system, different fingerprint schemes bring out
different molecular attributes. For instance, the description
of GpiDAPH3 is “3-point pharmacophore-based fingerprint
calculated from the 2D molecular graph. Each atom is given
one of 8 atom types computed from 3 atomic properties: ”in pi
system,” “is donor,” “is acceptor.” Anions and cations are not

represented. Then, all triplets of atoms are coded as features
using the three graph distances and three atom types of each
triangle. The resulting fingerprint is represented as a sparse
feature list.”

Nearly all common fingerprint types, like BIT_MACCS,
MACCS, TAD, TAT, and GpiDAPH3, are available in MOE,
so the most proper type should be designed first. It has been
proved that there is no generally superior fingerprint to be used
(Muegge and Mukherjee, 2016), Thus, in this study, we initially
used the GpiDAPH3 fingerprint model to determine which score
function (Must match, Maximum, Minimum, and Average and
Distance) is suitable for this condition. With the most suitable
score function, fingerprint types were then tested for the superior
fingerprint type in our database. Having a certain score function
and fingerprint type, we trained our fingerprint model to predict
the bioactivity of candidates. The data set of molecular fingerprint
model consisted of 528 molecules, which were as identical as
DNN and CNN models.

Structure Preparation and Molecular
Docking
The crystal structure of the human GPR40-TAK-875 complex
(PDB:4PHU) was obtained from Protein Data Bank to perform
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the docking study (Berman et al., 2000; Srivastava et al.,
2014). The structure preparation, Protonate3D, and energy
minimization were carried out by MOE. The structure
preparation repaired the gap in the protein structure.
Protonate3D added hydrogen atoms to the structure and
completed the protonation in the default ionization state.
The terminal amide, sulfonamide, and imidazole groups were
able to flip to optimize the hydrogen bond network. All
water molecules were removed. The atomic restraint strength
was set to 10, and the extent of the flat bottom of the flat-
bottom restraint was set to 0.25 to prevent excessive positional
deviation of the atoms. The energy minimization with a root
mean square gradient of 0.1 kcal/mol/A was performed to
optimize protein conformation. The binding site of GPR40
was created according to the TAK-875 (partial agonist) in
crystal complexes.

The molecular docking was performed by the MOE. The
same energy minimization protocol as the protein structure
was performed on the peptides. Peptides were placed at the
binding site by the method of Triangle Matcher. The 30 postures
generated by the placement method for each peptide would be
refined in the Amber10:EHT force field using the Induced Fit
method (Gerber and Müller, 1995; Case et al., 2008). Generalized
Born/volume integral/weighted surface area (GBVI/WSA) dG
Scoring is used to evaluate the binding free energy of the docking
result (Eq. 4).

4G ≈ c+α

[
2
3

(4ECoul+4Esol)+4EvdW+β4SAweighted

]
(4)

where c is the average gain and loss of rotation and translation
entropy, α; β is the constant determined during the function
training process; ECoul is the Coulomb electrostatic term; Esol
is the solvation electrostatic term calculated by GB/VI solvation
model; EvdW is van der Waals contribution; and SAweighted is
surface area weighted by exposure.

Site-Directed Mutagenesis and Re-Dock
Amino acid single-point mutations were applied in candidate
oligopeptides to improve their affinity and stability by attempting
to form the salt bridge equivalent to TAK-875. The selected
UAAs were sequentially substituted to the designated positions
following the reassessment of the interaction between the
updated peptide and GPR40. New peptides were isolated
from the complex structure created by the mutation. The
peptide conformation was preserved, and re-docking to GPR40
for refinement and for further rescoring the GPR40–peptide
interactions was performed.

Molecular Dynamics Simulations
Further analysis of stability about the GPR40–candidate
peptides complexes was conducted by MD simulations with
GROMACS 2020.5 software on Manjaro platform after
flexible docking (Abraham et al., 2015). The topology files
of candidate peptides, an indispensable component in MD,
were obtained from the Swissparam webserver (Zoete et al.,
2011). The GPR40–peptides complexes were firstly placed

in a periodic cubic box (1.2-nm edge), and then the TIP3P
water molecules and 0.145 M of NaCl ions were added. The
steepest descent minimization algorithm with 5,000 steps at
most was conducted to avoid excessive local stress. Before
the formal simulation, 1-ns NVT pre-equilibrium and 1-ns
NPT pre-equilibrium were done to stabilize the temperature
(310K) and pressure (1 bar). Formal simulation lasted 10 ns,
and the CHARMM27 was applied (Brooks et al., 2009).
The analysis of the dynamics simulations consisted of root
mean square deviation (RMSD), mean square displacement
(MSD), root mean square fluctuation (RMSF), solvent-
accessible surface areas (SASAs), radius of gyration (gyrate),
and system energy.

RESULTS AND DISCUSSION

Comparison of CNN and DNN
To obtain high-precision activity prediction results, CNN and
DNN were constructed to compare their fitness with the task.
Both neural networks were trained based on all molecules in
the data set. All molecular features were normalized with Min–
Max scaling before input into the neural network to improve
training efficiency. The CNN was trained for 100 epochs with a
batch size of 10. In the ninth epoch, the MSE of the training set
and the test set was reduced to 0.0084 and 0.0090, respectively.
Then the MSE begins to fluctuate slightly, the MSE of the
training set continues to decline, and the MSE of the test set
fluctuates within a certain range (Supplementary Figure 1).
When training to the last 10 epochs, the MSE of the training
set dropped from 0.0020 to 0.0010, and the MSE of the test
set fluctuated between 0.0089 and 0.0110. DNN traverses all
samples in each step, and 1,000 steps of training were executed.
At the 270th step, the MSE on the training set and the test set
was reduced to 0.0018 and 0.0051, respectively. The training set
MSE had been declining throughout the training process. The
MSE of the test set begin to rise slowly after the 270th step,
and it becomes stable at the end of training (Supplementary
Figure 2). During the last 100 steps, the MSE of the training
set fluctuates slightly around 0.0004, and the MSE of the test
set fluctuates around 0.0083. When compared with DNN, CNN
has a greater loss function oscillation, and the ability to reduce
the loss function is worse than DNN. Yet on the test set, the
highest R-square of DNN reaches 0.750 (Figure 4A), while
that of CNN is only 0.620 (Figure 4B). DNN was shown to
outperform CNN on the task of activity prediction. Nevertheless,
both neural networks exhibit slight overfitting; thus, the early
stopping strategy was applied to DNN.

Performance of Features
Both MOE 2D features and Morgan fingerprints features were
input to DNN for training. To ensure that the model converges,
DNN trained 2000 steps on the Morgan fingerprint data set.
At the 1,250th step, the MSE of the training set and the test
set both drop to 0.02 and stabilized thereafter (Supplementary
Figure 3). The DNN based on Morgan fingerprint training
exhibits a more gradual decline in MSE than the DNN based
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FIGURE 4 | Observed activity and predicted activity of training set and test set using (A) The deep neural network (DNN) and (B) The convolution neural network
(CNN).

on MOE 2D feature training. The test set MSE of the Morgan
fingerprint model was stable at 0.02, which was much higher
than the MSE of MOE 2D feature model, and the Morgan
fingerprint model did not achieve good accuracy. Subsequently,
based on the MOE 2D features, we attempted to optimize
the features through PCA and LASSO feature selection to
improve the accuracy of the model. Z-score standardization was
performed on the data set, the cumulative variance threshold
was set to 0.99, and the 153-dimensional features had been
reduced by PCA to generate 43 new features. The variance of
the top 10 new features is shown in Figure 5A. The fitting
accuracy of the LASSO regression estimator reaches 0.71, and
there are 83 features whose coefficients are not 0 after fitting
(Supplementary Table 4). The new features obtained by the
two methods were input to DNN for 100 pieces of training,
and each training contains 1,000 steps. The R-square of the
model training set and the test set would be checked every
10 steps, and the largest R-square that satisfied the difference
between the training set R-square and the test set R-square
less than 0.2 in 1,000 steps would be recorded. The R-square
frequency distribution curves of the training set and test set
obtained by 100 trainings on the original feature data set,
PCA dimensionality reduction feature data set, and LASSO
feature selection data set are shown in Figures 5C,D. The
performance of new features obtained by PCA dimensionality
reduction was relatively poor and produced more low-precision
models. After the removal of low-importance features via LASSO
feature selection, the model still showed good accuracy. Still,
the overall trend of model accuracy has a slight decrease
as compared with the original data (Figures 5B–D). LASSO
feature selection improved the model training speed and only
sacrificed a little model accuracy. This method could effectively
improve training efficiency when training on an extensive
data set. To obtain the highest precision model, we still used
raw data for training regardless of training speed. Finally,

the DNN model with R-squares of 0.87 and 0.75 for the
training set and test set obtained through the early stopping
strategy was retained.

Molecular Fingerprint Similarity
All the fingerprint models were built in MOE. For the most
accurate and suitable fingerprint model in this situation, the
score function and type of fingerprint model must be tested.
To evaluate different fingerprint models better, the training set
and the testing set were carefully designed. All the training set
in fingerprint models consisted of active entities (low EC50 in
ChEMBL) since the purpose of the fingerprint model is to exploit
novel potential active entities in other databases. As for the testing
set, the active entities (low EC50 in ChEMBL) were encoded
index1-50, and on the contrary, the inactive entities (high EC50 in
ChEMBL) were encoded index51-100. Since all of the fingerprint
models were built from active entities, a higher similarity score
represents more possibilities of being an active entity. Therefore,
an ideal model should be available to distinguish active entities
from inactive entities. To this end, the entities index1-50 should
be with a high similarity score, and index51-100 should be with
a low similarity score. Furthermore, the k, slope of the regression
line, which is the relationship between similarity score and index,
can reflect the quality of the model in some distance. When the
absolute value of k is high, it means that there is a tendency of the
decrease in similarity score with the increase of index, which also
matches with an ideal model.

GpiDAPH, a common and gorgeous fingerprint model, was
chosen to evaluate which score function (Average, Distance,
Maximum, Minimum, and Must match) is the most appropriate
one. The predicted similarity score and index of testing data are
shown in Supplementary Figure 4, and the values of k are shown
in Figure 6A. Comparing the value of k and the distribution of the
similarity score, the score function of maximum is chosen as the
best score function in this research (Supplementary Figure 4C).
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FIGURE 5 | (A) Top 10 principal component analysis (PCA) features and their variance ratios. (B) R-square average of 100 trainings of deep neural network (DNN)
based on PCA, LASSO, and original features on the training set and test set. (C) Train set R-square distribution of DNN based on PCA, LASSO, and original features
in 100 trainings. (D) The test set R-square distribution of DNN based on PCA, LASSO, and original features in 100 trainings.

The types of fingerprint models were then evaluated with
the same method. The result is shown in Figure 6B and
Supplementary Figure 5. The value of k shows little difference
among Bit_MACCS, GpiDAPH, and MACCS, so the suitable
type cannot be designed yet. Therefore, the entities with higher
bioactivity (EC50) were chosen to consist new training set,
and the testing set was accordingly adjusted. The new training
set and testing set are constructed to evaluate these three
fingerprint types further, and the result is shown in Figure 6C
and Supplementary Figure 6. The GpiDAPH fingerprint model
shows the best performance in distinguishing between active
and inactive molecules and is thus the chosen type in this
study (Figure 6D and Supplementary Figure 6B). Unlike other
molecular fingerprint models, in Figure 6D, the similarity values
of active entities (index1-50) are mainly located in the upper
left corner, while the inactive entities (index51-100) are in the
bottom right corner.

Activity Prediction of Peptides and AA
Preferences
Deep neural network model and molecular fingerprint similarity
(MFS) were used to evaluate the performance of oligopeptides.
All peptides were sorted by evaluation scores via two models.
The output results of the model were divided into six
groups according to the model and peptide length, namely,

DNN-Tripeptide, DNN-Tetrapeptide, DNN-Pentapeptide, MFS-
Tripeptide, MFS-Tetrapeptide, and MFS-Pentapeptide. The top-
ranked 50 oligopeptides in each group were selected as samples
for AA frequency statistics to observe the AA preference of high-
scoring peptides. AAs were classified according to the backbone
for frequency statistics, and the AA frequency (aaf ) of each
sample was calculated according to Eq. (5).

aaf =
CA
TA

(5)

where CA is the frequency of a type of AA that appears in a
sample and TA is the total number of AAs contained in a sample.
The top 5 types of AAs ranked by aaf in each sample were
selected and integrated. The favorable AAs determined by the
DNN model were cysteine and methionine derivatives (CM),
phenylalanine derivatives (F), proline derivatives, alicyclic AAs
(P), alanine derivatives (A), α-methyl AAs (AM), and lysine
and arginine derivatives (RK). The favorable AAs determined by
MFS were P, A, F, nitro, and dinitrophenyl AAs (NI), glycine
derivatives (G), and N-methyl AAs (NM). The most frequently
occurring AAs among the nine preferred AAs show the backbone
of this type of AA (Figure 7B). DNN’s most preferred AA
is CM, and CM had aaf of 0.273 in the DNN-Tripeptide
sample (Figure 7A). Similarly, CM also achieved higher aaf
(0.210 and 0.172, respectively) in DNN-Tetrapeptide and DNN-
Pentapeptide. The most preferred AA class of MFS was P. The
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FIGURE 6 | (A) The k values of the fingerprint model when using different score functions. (B) The k values of each type of fingerprint model when using the
Maximum scoring function. (C) The k values of Bit_MACCS, MACCS, and GpiDAPH on the new training set. (D) Similarity scores by GpiDAPH fingerprint model of
active (index1-50) and inactive (index51-100) molecules.

FIGURE 7 | (A) The aaf of MSF and deep neural network (DNN) on three peptides. (B) The most frequent amino acids from nine preferred amino acids. (C) The
chemical scaffold of TAK-875.

aaf of P in MFS-Pentapeptide reached 0.392, which was the
highest value among all samples. P reaches high aaf of 0.220
and 0.340 in MFS-Tripeptide and MFS-Tetrapeptide, respectively
(Figure 7A). DNN and MFS both showed a preference for P
and A, but DNN showed a lower tendency for NI, G, and

NM, which were preferred by MFS. DNN was more stable than
MFS in the aaf of three different length peptides. Most of the
molecules in the data set used to construct the model are analogs
of TAK-875, all of which contain ring structures, and many
analogs contain sulfone groups, sulfur heterocycles, or carboxyl
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groups (Figures 7B,C). The two AAs categories including P and
A that DNN and MFS commonly prefer were molecules with five-
membered heterocyclic or aromatic rings. The most preferred
CM AAs of DNN were cysteine and methionine derivatives,
both of which contained sulfur groups. Compared with MFS,
DNN successfully captured the sulfur group features of the data
set molecules. We noticed that some molecules in the data set
contained halogen elements. F22 and P44 are observed with the
highest frequency among the F and P AAs preferred by DNN,
which shows that DNN has paid attention to the halogen element
features of the molecule (Figure 7B).

Molecular Docking
Amino acid preference statistics showed that MFS paid attention
to molecular skeleton information, and DNN could pay attention
to the details of the molecule. We combined the results of
the two models to select candidate peptides for docking. The
intersection of the top 1% (1,000) of the two models of the
tripeptide, tetrapeptide, and pentapeptide ranked by MFS and
DNN was selected. The intersection of peptide samples contains
39 tripeptides, 16 tetrapeptides, and 7 pentapeptides. The GBVI
scoring function that estimates the free energy of ligand binding
according to a given posture is used to assess docking posture
(Naïm et al., 2007) (Table 1). The GBVI scores of the top
three peptides numbered 4-15, 5-1, and 4-4 reached −10.2063,
−9.62029, and −9.57896, respectively. As shown in Figure 8A,
the 4-15 carboxyl group forms a hydrogen bond with the
hydrogen on the backbone of Cys136. The three benzene rings
of 4-15 form π–H interactions with Val81, Trp174, and Leu135.
Phe87 forms a π–H interaction with the main chain hydrogen
of 4-15. The docking pose of 5-1 is shown in Figure 8B. The
benzene ring in 5-1 forms π–H interaction with Val84, Leu138,
and Trp174. The benzene ring of Phe142 forms a π–H interaction
with 5-1. The interaction between 4-4 and GPR40 is shown in
Figure 8C. The quinoline ring of 4-4 forms 3 π–H interactions
with Leu138 and Trp174. The benzene ring of Phe142 forms
a π–H interaction with 4-4. The H-bond is found between
Val84 and the carboxyl of 4-4. As a control, TAK-875 was also

TABLE 1 | GBVI (GBVI/WSA dG scoring) of the top 10 ranked peptides and
TAK-875 in the docking results.

Name Ranking GBVI Sequence

4-15 1 −10.2063 (G28)(NI42)(L18)(CM25)

5-1 2 −9.62029 (P80)(G35)(P40)(F117)(AM18)

4-4 3 −9.57896 (P131)(P107)(AM47)(A60)

4-10 4 −9.43213 (A109)(Y40)(CM28)(P103)

4-1 5 −9.38494 (P44)(G22)(L09)(F87)

5-2 6 −9.17657 (P95)(G32)(G34)(A96)(CM25)

3-12 7 −9.16672 (P93)(G28)(W026)

3-13 8 −9.04828 (P97)(A108)(P91)

5-3 9 −8.88673 (RK20)(G31)(L04)(P40)(W030)

4-5 10 −8.76586 (A109)(G19)(P52)(NM26)

TAK-875 −9.74940

GBVI/WSA, generalized Born/volume integral/weighted surface area.

evaluated by the GBVI method. The crystal structure of TAK-
875 has abnormal van der Waals interaction between atoms.
The energy minimization was performed on the crystal structure
to optimize the interaction within the structure. The repaired
structure shows that the GBVI of TAK-875 has been reduced
from −1.4554 to −9.7494. The pose of TAK-875 is shown in
Figure 8D. To be specific, the carboxyl of TAK-875 formed a
salt bridge with Arg183 and Arg258. The benzene ring in TAK-
875 interacted with Val84 by forming π–H interaction. The
binding of TAK-875 to GPR40 mainly relied on two strong salt
bridges. The fixation of the three peptides at the binding site
mainly relied on π–H interaction, hydrogen bonding, and van
der Waals force. Compared with peptides, TAK-875 had a linear
structure that allowed it to penetrate deeply into the binding
pocket to form salt bridge interactions. In addition, the peptide
exhibited higher solvent exposure than TAK-875 due to the
residues of the peptide anchored on the outer surface of GPR40.
The receptor solvent exposure of the peptide is also higher than
that of TAK-875. The solvent exposure of the GPR40 residues
after binding with the peptide is further reduced, indicating
that the peptide binding to GPR40 is primarily dependent on
hydrophobic interactions.

Site-Directed Mutagenesis Optimization
and Re-Docking Evaluation
The high affinity of TAK-875 came from the ionic and hydrogen
bonds between its carboxyl group and Arg183 and Arg258.
The carboxyl group was at the end of the TAK-875 chain,
and the chain is firmly inserted between the two α-helices
(Figure 8D). The NI42 AA of 4-15 with the lowest GBVI
enters the target site in a similar posture, but it fails to form
strong ionic or hydrogen bonds (Figure 8A). To this end, the
SDM method was carried out to optimize the performance
of candidate peptides. NI42 that successfully penetrated into
GPR40 is defined as the mutation site, and 41 AAs with a
carboxyl chain similar to that of TAK-875 are used for SDM
(Supplementary Table 5 and Figure 9). A rough mutation
evaluation without the refinement of Amber10:EHT force field
shows that Li01, DE30, DE29, and LI02 have better GBVI scores
than NI42 (Figure 10). The method of directly replacing AAs
did not use a force field to adjust the conformation, so all
the 41 mutant conformations were preserved, and the flexible
docking was performed again. The results show that the DE20
and AG02 mutants with low GBVI formed ionic and hydrogen
bonds (Table 2).

Based on Figure 11A, Arg183 and Arg258 also play a
significant role in the interaction between DE20 mutant and
GPR40 by forming the salt bridge or ionic interaction. The
H-bonds were found between Leu135, Val84, and DE20 mutant.
The benzene ring of the DE20 mutant forms a π–H interaction
with Val84. In Figure 11B, the interaction between AG02 mutant
and GPR40 is shown. Interestingly, the carboxyl moiety of AG02
mutant formed a salt bridge with Arg183 comparable with
TAK-875. In addition, the AG02 mutant formed a strong ionic
interaction with Arg258. The Ala88 and Leu138 interacted with
AG02 mutant by H-bond. Less solvent exposure was observed on
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FIGURE 8 | The top three poses generated by flexible docking and the pose of TAK-875 in the crystal structure after energy minimization. In 3D pose diagrams, the
red dash lines represent ionic bonds, magenta dash lines represent π–H interaction, and blue dash lines represent H-bonds. (A) 4-15, (B) 5-1, (C) 4-4, and
(D) TAK-875.

FIGURE 9 | The NI42 amino acid of 4-15 was defined as the mutation site, and 41 mutations were performed.

DE20 mutant and AG02 mutant similar to TAK-875. LI01 with
the carboxyl group attached to the long alkyl chain showed the
best performance in SDM but poor performance after re-docking.

The re-docking pose of LI01 mutant in GPR40 is illustrated in
Figure 11C. The side chain of LI01 mutant formed π–H and
H-bond interaction with GPR40, which fixed LI01 mutant in
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FIGURE 10 | Site-directed mutagenesis result.

TABLE 2 | The results of re-dock and energy minimization of AG02, DE20,
and LI01 mutants.

Mutated amino acid GBVI Hydrogen/Ionic
bond

AG02 −8.8651 Yes

DE20 −8.8189 Yes

LI01 −8.4173 No

AG02 (energy minimization) −10.043 Yes

DE20 (energy minimization) −10.404 Yes

LI01 (energy minimization) −9.1861 Yes

GBVI, generalized Born/volume integral.

GPR40. However, the carboxyl group of LI01 did not form ionic
or hydrogen bond interactions with ARG residues as expected.
The AG02 and DE20 mutants successfully formed ionic and
hydrogen bonds by increasing the GBVI score from −10.2063
to −8.8651 and −8.8189, respectively. The absence of ionic or
hydrogen bonds in the GPR40–LI01 mutant complex results
in a lower GBVI score at −8.4173 (Table 2). Standard energy
minimization of the TAK-875 crystal structure was performed
on three mutants to compare their performance. When energy
minimization was done, the GBVI scores of the AG02 mutant
and DE20 mutant were attained to −10.043 and −10.404,
respectively. Both mutants showed expected performance. The
carboxyl end of the LI01 mutant successfully contacted the
ARG residues and formed ionic and hydrogen bonds, but the
pockets might not be gathered to this extent, and it was difficult
for the LI01 mutant to form ionic and hydrogen bonds. One
solution worth considering was to simplify the side chain of
the peptide outside the pocket and further extend the fatty
chain where the carboxyl group was located. Finally, 4-15, 5-
1, 4-4, DE20 mutant, and AG02 mutant are considered as
potential active peptides that are analyzed in MD simulations
(Supplementary Figure 7).

Molecular Dynamics Simulations of Five
Peptides and Control
A 10-ns MD simulation was run on five peptides and the
control. The structure at 10 ns shows that 5-1 and 4-4 are
separated from the binding site (Supplementary Figures 8D,E),

which indicated that the binding stability of the two under
simulated physiological conditions was insufficient. The GBVI
of the structure at 10 ns was calculated. The 5-1 and 4-4
that were separated from the binding site showed poor GBVI.
The GBVI values of 4-15, AG02 mutant, DE20 mutant, and
the control that remained at the binding site are −9.196,
−8.564, −7.335, and −8.542, respectively (Supplementary
Figures 8A–C,F and Table 3). The GBVI of all peptides
increased, but the increase of the GBVI of the peptides
remaining in the binding site was smaller, among which 4-15
showed the best GBVI maintenance ability. The two peptides
leaving the binding site were excluded due to insufficient
stability, and the remaining three peptides and the control were
further analyzed.

The AG02 is selected as a representative example for MD
analysis (Figure 12). RMSD measured the average positional
change of all atoms between two structures. Based on the
initial structure, the RMSD of all ligands and complexes was
calculated. The RMSD calculated based on the protein and
the complex was almost the same, so only the RMSD data of
the complex were retained. AG02 mutant, DE20 mutant, and
the control as ligands maintain relatively stable RMSD values
throughout the simulation process (Supplementary Figures 9B–
D). As a ligand, 4-15 showed a large increase in RMSD at
about 3 ns then decreased and stabilized after 6 ns. When
the RMSD of the 4-15 ligand is stable, the value is the
largest among the four ligands, which indicates that the largest
posture change occurred during the simulation (Supplementary
Figure 9A). However, 4-15 retained the best GBVI at the end
of the simulation, which might indicate that it was adjusted
to a stable and high-affinity conformation. After the RMSD
of the four simulated complexes was compared, the control
complex and the DE20 complex show a stable trend at the
end of the simulation (Supplementary Figure 9). The RMSD
fluctuation of the AG02 complex in the later stage was larger
than the former two. The 4-15 complex with the best affinity
had a RMSD mutation in the late simulation stage, which
might indicate that the conformation of the 4-15 complex
will continue to change. MSD, the mean of the squared
displacements of all atoms, was used to analyze the changes in
the positions of proteins and ligands. The MSD values of the
proteins and ligands in the control complex are the most stable
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FIGURE 11 | Poses are generated by the flexible docking of mutants. In 3D pose diagrams, the red dash lines represent ionic bonds, magenta dash lines represent
π–H interaction, and blue dash lines represent H-bonds. (A) DE20 mutant, (B) AG02 mutant, and (C) LI01 mutant.

(Supplementary Figure 10). The MSD changes of the proteins
and ligands of the AG02 complex and the DE20 complex have
similar trends, while the MSDs of the two components of the
4-15 complex are quite different (Supplementary Figure 10A).
The protein and ligand of the 4-15 complex might have greater
relative displacements resulting in low stability. Gyrate reflects
the volume and shape of the molecule, and an increase in
gyrate indicates that the system have expanded. The gyrate
of DE20 mutant and the control is more stable than the
other two molecules (Supplementary Figure 11). The X-axis
component of the control was lower than the Y- and Z-axes,
and its gyrate mainly derived from the plane where the Y-
and Z-axes were located, which was related to the linear
structure of the control. The gyrate of 4-15 entered a period
of stability when the simulation was approaching the late stage
but changed at the end of the simulation. The gyrate of the
AG02 mutant was maintained in a relatively large interval during
the entire simulation process, and the changes in the three-axis
components of the AG02 mutant were also maintained in a
range (Supplementary Figure 11B). The gyrates of the protein
components of the three complexes other than 4-15 show a
stable trend throughout the simulation process (Supplementary
Figure 12). The protein component of the 4-15 complex

TABLE 3 | Comparison of peptide and control at the beginning and end of
molecular dynamics simulation.

Name GBVI at the
beginning of MD

GBVI at the
end of MD

Depart from
GPR40

4-15 −10.206 −9.196 No

5-1 −9.620 −5.913 Yes

4-4 −9.579 −5.765 Yes

AG02 −10.043 −8.564 No

DE20 −10.404 −7.335 No

Control −9.749 −8.542 No

GBVI, generalized Born/volume integral.

expanded in volume at about 7 ns and then shrank. This might
be due to the process of 4-15 adjusting its conformation to a
higher affinity.

Similarly, the SASA of 4-15 is different from that of the other
three ligands in the whole simulation process (Supplementary
Figure 13). After 6 ns, the SASA of 4-15 dropped sharply,
indicating that its conformation became tighter. At the end
of the simulation, the 4-15 SASA returned to the level before
6 ns. 4-15 had undergone a large degree of conformation
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FIGURE 12 | (A) Root mean square deviation (RMSD) of the AG02 mutant and the complex. (B) Mean square displacement (MSD) of the AG02 mutant and GPR40
in the complex. (C) Gyrate of the AG02 mutant in the complex. (D) Gyrate of the GPR40 in the AG02 mutant complex. (E) Solvent-accessible surface area (SASA) of
the AG02 mutant in the complex. (F) SASA of the GPR40 in the AG02 mutant complex. (G) Root mean square fluctuation (RMSF) of the GPR40 in the AG02 mutant
complex. (H) The total energy of the AG02 mutant complex. (I) The AG02 mutant complex structures at 10 ns.

adjustment between 6 and 10 ns and maintained a high affinity
at the end of the simulation. The SASA calculated based on
the protein composition shows that 4-15 had the most stable
trend (Supplementary Figure 14). This might be due to AG02,
DE20, and the control mainly relying on the combination of salt
bridge and GPR40, while 4-15 mainly relies on van der Waals
interaction. 4-15 had the most stable hydrophobic interaction.
RMSF reflected the average position change amplitude of the
residue atoms in 10 ns. The protein residues of the four
complexes all have similar RMSF distributions (Supplementary
Figure 15). The residues numbered 75-85 and 130-140 showed
lower RMSF. This region was where the binding cleft was
located, which indicated that the residues at this location had
higher stability due to binding with the ligand. The residues
numbered 183 and 258 are arginine acids that form a salt bridge,
and the RMSF recessed appears adjacent to these two residues
(Supplementary Figure 15). The degree of depression of 4-15
near residues 183 and 258 was lower than that of the other
three ligands, which might be due to 4-15 relying on van der

Waals interaction instead of forming a salt bridge with arginine.
The 4-15 complex has a total energy similar to that of the
control, and the other two peptide complexes have a total energy
lower than that of the control (Supplementary Figure 16). In
addition, the total energy fluctuation of the peptide complex was
similar to that of the control. 4-15, AG02 mutant, and DE20
mutant showed good performance similar to TAK-875 in MD
simulations, and the three peptides were considered as potential
GPR-40 agonists.

DISCUSSION

In this study, CNN can effectively extract local features by local
receptive fields. CNN reduces complexity by sharing weights.
It is a topological structure that uses spatial relationships to
reduce the number of parameters, thereby improving the training
efficiency of feedforward neural networks. Therefore, CNN can
successfully realize the deep structure and effectively control the
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occurrence of overfitting. To be able to perform the CNN, the
153 molecular features were converted to 1D sequences. We
attempted to maximize the use of feature information through
the deep structure of 1D CNN. However, the performance of
CNN on the GPR40 agonist data set was less efficient than
that of the three-layer DNN with a fully connected structure.
A total of 153 features are independent according to their
specific meanings (Supplementary Table 2). Local features were
very important for sound signal, vibration signal, and text
processing. Compared with global information extraction, local
detail extraction could be used for model training more efficiently
on signals like sound. But for the quantitative physical and
chemical properties and composition information of molecules,
the significance of the transformation and extraction of multiple
features by the convolutional layer was not as great as the
former. The molecular feature sequence lacked overall spatial
information because 153 features had no spatial correlation. This
would cause the local receptive field to extract the meaningless
characteristics of neighboring spatial information. Although it
had a deeper network structure, the partial failure of the local
receptive field and the simplification of the connection structure
might be the reason for the performance degradation of CNN.
CNN was an excellent feature extractor, but the processing and
optimization of 2D features with high independence and low
noise and no adjacent spatial information would not get positive
feedback. The feedback of PCA feature dimensionality reduction
and LASSO feature selection on DNN also supported this
view, and both methods led to variable degrees of performance
degradation. The MSE shock of CNN at the end of the training
was stronger than that of DNN; this is possibly because the
data set is too small and the batch size of CNN is smaller
than that of DNN.

For small data sets, the performance of MOE 2D molecular
features was better than that of Morgan fingerprint features. The
information content of a single MOE 2D descriptor was more
complex than Morgan fingerprints, and the highly integrated
features reduced the difficulty of convergence for the model.
The 1,024-bit Morgan fingerprint was more suitable for large
data sets. Although the data set had undergone the necessary
preprocessing, the noise of EC50 labels measured by different
laboratories could not be ignored. The instruments, methods, and
materials used by the researcher during the label determination
process would all affect the label. The error of the label and the
size of the data set were the main reasons that restrict the accuracy
of the DNN. How to obtain high-quality data sets was still an
important issue in the development of AI.

Compared with that by non-processing, the number of new
PCA features obtained by orthogonal projection is significantly
reduced. Still, the apparent decline of DNN performance
indicated that important information was lost in the PCA
processing. The LASSO regression estimator retained 83 features
with nonzero coefficients, and DNN showed a slight loss of
accuracy. The model was not optimized for accuracy after the
preprocessing of the features was completed, which might be due
to less noise in the features.

For all the scoring functions, there was a noticeable feature
from the result that the order of the value from each scoring

function is Max > Dis/Ave > Min, which was consistent with
their definition. The “Must match” function was so strict that
none of the entities in the testing set match the fingerprint model.
In some distance, a high standard of the scoring function is not
always appropriate for the fingerprint method. For finding the
novel compounds as GPR40 agonists, a high standard might lead
one to miss potent candidates in screening. In the “Min” function,
the scores were low and close to each other, which were not
identical to the “Max” function. The model that could distinguish
active entities from inactive entities is our goal. Therefore, the
“Max” function was chosen to be the scoring function in this
study. For the fingerprint type, the high absolute value of k is a
key characteristic to evaluate the quality of each fingerprint type,
and the GpiDAPH3 showed gorgeous output in this study.

The inputs of DNN are some quantitative molecular features,
and different weights are assigned to the features after training.
Compared with DNN, MFS recognizes the common features of
data sets. Most molecules in the data set have similar main body
skeletons, so the active molecules exported by MFS have skeleton
similarity. DNN can have different tendencies in the main body
skeleton and detailed features through weight distribution. Here,
DNN tended to feature details, but access to the GPR40 binding
site required certain linearity of the molecule. Therefore, the two
models were combined to limit the linear and affinity groups of
the peptides. In addition, DNN combined with MFS to predict
peptides reduced the influence of label noise in the data set
to a certain extent. For large data sets, it may be difficult for
the MFS to extract a sufficient number of common features,
while the DNN will have better performance due to its complex
network structure.

The docking results show that the peptides are difficult to
form an ion–hydrogen bond interaction similar to that of TAK-
875, which might be due to the steric hindrance given by the
peptide backbone and the peptide side chain. In contrast, the
molecular structure of TAK-875 was roughly linear with almost
no branches. The linear structure helped TAK-875 penetrate
deep into GPR40 and formed ionic and hydrogen bonds with
ARG183 and ARG258. As little steric hindrance as possible
was necessary to pass through the narrow binding cleft. The
data sets used for DNN and MFS contained a large number
of TAK-875 analogs. DNN and MFS extracted high-frequency
features, such as benzene ring, heterocyclic ring, carboxyl group,
halogen, and sulfur element. Linear peptides contained at least
one carboxyl group, which was the advantage of peptides to
form ionic or hydrogen bonds. The main chain of the peptide
was composed of repeating units of carbon-amide bonds, which
meant that the groups preferred by the model could only exist
in the side chain. The preference groups that exist only in the
side chain led to the fact that the peptides selected by DNN and
MFS were simple linear structures and much more complicated
than TAK-875. The complex side-chain structure of peptides
causes it proneness to molecular–residue spatial conflicts when
passing through the binding cleft, which was not conducive
to the deepening of the carboxyl-terminal or side chain ionic
groups of the peptide.

It is worth noting that the single-point mutation of the AA
within the binding cleft is an effective strategy to form ionic
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bonds or hydrogen bonds. Moreover, a sufficiently long chain
with a carboxyl terminus is necessary, which is essential for the
peptide to reach ARG183 and ARG258. However, the long-chain
carboxyl AAs of the LI01 mutant failed to reach the residues
of ARG183 and ARG258. This is because the complex moiety
outside the alpha helix of the LI01 mutant prevented the mutant
from approaching GPR40. Interestingly, the mutant AAs of the
AG02 mutant and the DE20 mutant did not form ionic bonds
or hydrogen bonds with ARG residues as expected. Instead, the
mutant binds to GPR40 in another position, and the mutant’s
G28 passes through the alpha helix to form ionic and hydrogen
bonds (Figures 11A,B).

The five peptides after flexible docking were all inserted into
the binding cleft by one residue, and the remaining peptide
residues on the outer surface had different effects on the affinity
of peptides. The two main interactions of 4-15 were formed
by CM25 and G28 on the outer surface. The affinity of 5-1
was mainly derived from two interactions: the π–H interaction
formed by the G35 residue on the outer surface. The peptide
residues on the outer surface of 4-4 contributed little to the
affinity; and P107 and P131, respectively, formed only weak
hydrogen bonds and π–H interactions. Most of the affinity was
derived from the salt bridge formed by the G28 residue and the
GPR40 residue entering the binding cleft for the two candidate
mutants. The binding modes of peptides can be divided into
two types: the binding mode is dominated by external surface
residues; the other is the mode where a single residue penetrates
the binding cleft. The mode of a single residue entering the
binding pocket profoundly depends on the strong salt bridge.
The mode dominated by residues on the outer surface is more
dependent on van der Waals interactions. The two models
may have different specificities and affinities, which can provide
references for advanced peptide design.

4-4 and 5-1 broke away from the binding site in MD; even they
obtain low GBVI upon the flexible docking. The GBVI of other
ligands increases to varying degrees in MD (Table 3). This might
be caused by conditions similar to those of the environment in
the human body used by MD. The temperature of 310K increased
the instability of the system. MD showed that the stability of
peptides that relied on van der Waals interaction was lower
than that of peptides that relied on salt bridges. Peptides that
relied on salt bridges needed to enter the binding site as deep as
possible to contact the arginine residues, which might be the main
reason for their high stability. The peptides of the two binding
modes (4-15 and mutants) showed different characteristics in
many aspects of the MD analysis results. Although peptides that
relied on salt bridges showed higher stability, peptides that relied
on van der Waals interactions could achieve higher affinity by
complex interactions.

CONCLUSION

In summary, we developed a novel protocol to rationally design
peptides and to identify a peptide database that may show
potency for the activation of GPR40. Machine learning combined
with MFS could efficiently distinguish between active and inactive

molecules. The comparison results of the two machine learning
methods showed that the DNN had better performance than
the 1D CNN on the peptide activity prediction task based on
small data sets. We found that the MFS model focused on the
main skeleton of the chemical structure, and the DNN was able
to pay attention to more structural details, so the combination
of the two strategies could comprehensively scan the chemical
structures. Besides, the SDM approach successfully optimized
the interaction between the lead peptides and GPR40 to make
the peptide more comparable with the active compound. Then,
flexible docking, a credible method to evaluate the affinity, was
performed to confirm the candidates; and five peptides were
finally selected for MD simulations. Three peptides showing good
stability in MD simulations were selected as promising leads
against T2DM. The strategy concept described here can efficiently
discover new active peptides and require only a small amount of
computing resources, cost-effective for scale-up assessments in
peptide drug development.
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