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ABSTRACT
Background. Low temperature is a type of abiotic stress that threatens the growth and
yield of asparagus bean. However, the key genes and regulatory pathways involved in
low temperature response in this legume are still poorly understood. Methodology.
The present study analyzed the transcriptome of seedlings from two asparagus bean
cultivars—Dubai bean and Ningjiang 3—using Illumina RNA sequencing (RNA-seq).
Correlations between samples were determined by calculating Pearson correlation coef-
ficients (PCC) and principal component analysis (PCA). Differentially expressed genes
(DEGs) between two samples were identified using the DESeq package. Transcription
factors (TF) prediction, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis of DEGs were also performed.
Results. Phenotypes and physiological indices indicated that Ningjiang 3 seedlings
tolerated cold better than Dubai bean seedlings, in contrast to adult stage. The
transcriptome dynamics of the two cultivars were closely compared using Illumina
RNA-seq following 0, 3, 12, and 24 h of cold stress at 5 ◦C and recovery for 3 h at 25 ◦C
room temperature. Global gene expression patterns displayed relatively high correlation
between the two cultivars (>0.88), decreasing to 0.79 and 0.81, respectively, at 12 and
24 h of recovery, consistent with the results of principal component analysis. The major
transcription factor families identified from differentially expressed genes between
the two cultivars included bHLH, NAC, C2H2, MYB, WRKY, and AP2/ERF. The
representative GO enrichment terms were protein phosphorylation, photosynthesis,
oxidation-reduction process, and cellular glucan metabolic process. Moreover, KEGG
analysis of DEGs within each cultivar revealed 36 transcription factors enriched in
Dubai bean and Ningjiang 3 seedlings under cold stress.
Conclusions. These results reveal new information thatwill improve our understanding
of themolecular mechanisms underlying the cold stress response of asparagus bean and
provide genetic resources for breeding cold-tolerant asparagus bean cultivars.
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INTRODUCTION
Low temperature is an essential environmental factor that limits plant distribution,
growth, development, and yield (Yang et al., 2020). According to temperature ranges and
corresponding physiological changes in plants, low-temperature stress comprises chilling
(0 ◦C–15 ◦C) and freezing (<0 ◦C) (Megha, Basu & Kav, 2014). Plants originating from
tropical and subtropical climatic zones are often threatened by chilling stress, which
challenges the yield and quality of economically important crops (Suh et al., 2010; Xu et al.,
2008). Chilling stress causes changes inmembrane fluidity and cytoskeleton rearrangement,
followed by an influx of calcium through calcium channels into the cytoplasm, triggering
downstream responses, including changes in ion transport, metabolism, post-translational
protein modifications, and gene expression (Guo, Liu & Chong, 2018).

The transcriptome is the complete set of transcripts in a cell, both in terms of type and
quantity, for a specific developmental stage or physiological condition (Wang, Gerstein &
Snyder, 2009). To characterize and investigate the transcriptome, many technologies have
been developed, including hybridization-based microarrays and Sanger sequencing-based
methods (Yamada et al., 2003; Cheung et al., 2008; Fu, Chen & Hsiao, 2011). With the
advent of next generation sequencing (NGS), RNA sequencing (RNA-seq) has become
a novel technology for transcriptome analysis and is a powerful and effective tool for
identifying differentially expressed genes (DEGs) and probable molecular mechanisms
(Vogel et al., 2016; Wei et al., 2017; Yang et al., 2019; Liu et al., 2019). RNA-seq is mainly
based on a next generation sequencing (NGS platform) with new and complete library
building, sequencing, and analysis systems (Meyers et al., 2004). The transcriptomes of
cold-tolerant and cold-sensitive plants under low-temperature stress have been compared
using RNA-seq over the past decade (Liu et al., 2012; Liu et al., 2019; Yang et al., 2020).

Cowpea (Vigna unguiculata L. Walp.) is one of the most important grain legumes
worldwide and is cultivated in the warm to hot regions of Africa, Asia, and the Americas
(Ehlers & Hall, 1997). As a warm-season legume crop, cowpea can adapt to drought and
heat, but it is sensitive to chilled temperatures (Hall, 2004;Agbicodo et al., 2009; Ismail, Hall
& Close, 1999). Asparagus bean (Vigna unguiculata subsp. sesquipedalis) is a subspecies of
cowpea that is mainly grown in eastern and southern Asia to produce immature green pods
(Xu et al., 2011a; Xu et al., 2011b). Low temperatures during early spring and late autumn
negatively affect the normal growth of these plants at the seedling and pod set stages, and
eventually lead to a significant loss in yield and quality.

Current investigations into the low-temperature tolerance of cowpea are still mainly
physiological, whereas knowledge of related molecular mechanisms is scant. Ismail et al.
found that the specific dehydrin (DHN) 1 in the seeds of cowpea (subsp. unguiculata)
conferred cold tolerance during germination (Ismail, Hall & Close, 1999; Ismail, Hall &
Close, 1997). Zuo et al. (2018) combined RNA- and sRNA-seq to analyze the miRNA
and mRNA expression profiles and regulatory networks of cowpea pods under chilling
stress. Tan et al. (2016) explored differences in gene expression between the asparagus
bean cultivars, Dubai bean and Ningjiang 3 with different degrees of cold tolerance using
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RNA-seq under 0 and 24 h of chilling stress. However, the experimental design was
relatively simple, having only two time points.

The aim of this study was to determine the transcriptome dynamics of Dubai bean and
Ningjiang 3 during cold stress and recovery at room temperature (seven time points in total)
using Illumina RNA-seq and uncover the genes and mechanisms of different asparagus
bean genotypes associated with cold stress. Our results provide updated information and
genetic resources for improving the low-temperature tolerance of asparagus bean.

MATERIALS & METHODS
Plant material
We selected the asparagus bean cultivars Dubai bean and Ningjiang 3 that are respectively
cold-tolerant and -sensitive to chilling temperatures when adults (Huang et al., 2018).
Seeds were soaked at 25 ◦C for 4 h and then sown in watered plugs containing vermiculite
and perlite (V:V = 1:1). The plugs were placed in a growth chamber at 25 ◦C under 14
h light/10 h dark cycles with light intensity of 30,000 lx and watered every two days after
seedling emergence. After 2 weeks, growth chamber temperature was reduced to 5 ◦ C, and
light intensity was set to 6,000 lx. Seedling leaves were harvested 0, 3, 12, and 24 h later.
Growth conditions were returned to 25 ◦C and 30,000 lx and seedling leaves were harvested
at 3, 12, and 24 h later. Three biological replicates of each cultivar were sampled at each of
seven time points.

Cultivar phenotyping
Half of the leaf samples were frozen in liquid nitrogen and stored at −80 ◦C. Fresh leaves
were weighed; proline and superoxide dismutase (SOD) contents in the remaining samples
were evaluated using respective assay kits (Cat. Nos. A107-1-1 and A101-1-1; Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) as described by the manufacturer.

Extraction of RNA and library construction
Total RNA was extracted using the RNAiso Plus kit (Takara Bio Inc., Kusatsu, Japan)
as described by the manufacturer. The integrity and quality of the RNA was confirmed
by 1.5% agarose gel electrophoresis and using a NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA).

Since 21 RNA samples were extracted from each cultivar, we constructed a total of 42
sequencing libraries using NEBNext R© UltraTM RNA Library Prep Kit for Illumina (New
England Biolabs Inc., Ipswich, MA, USA) as described by the manufacturer. Libraries
were sequenced on an Illumina Hiseq X platform, and 125–150 bp paired-end reads were
generated.

Data analysis
Raw sequencing reads were filtered by trimming adapters and removing low quality reads.
Clean reads were mapped to the cowpea genome using HISAT2 software (Kim, Langmead
& Salzberg, 2015; Lonardi et al., 2019), and reads mapped to each gene were counted using
HTSeq v. 0.6.1. The fragments per kilobase of transcript per million mapped reads (FPKM)
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of each gene was calculated according to their length and the number of reads mapped
to them (Anders, Theodor & Huber, 2015). Correlations between samples were determined
using Pearson correlation coefficients (PCC). Principal component analysis (PCA) was
performed using Factoextra and FactoMineR package in R software.

Differentially expressed genes (DEGs) between Dubai bean and Ningjiang 3 under cold
stress and recovery were analyzed using the DESeq package in R (ver. 1.18.0). Resulting P
values were adjusted using the Benjamini andHochberg approach to control false discovery
rates (FDRs). Genes with adjusted P < 0.05, and log2 fold change ≥ 2 were considered
differentially expressed.

Gene Ontology (GO) enrichment of DEG sets was analyzed using the BiNGO plugin of
Cytoscape (Maere, Heymens & Kuiper, 2005). Transcription factors (TF) were identified in
DEGs using iTAK (Zheng et al., 2016). Pathways of gene sets were analyzed using MapMan
v. 3.6.0RC1 tool. Enriched Kyoto Encyclopedia of Genes andGenomes (KEGG) enrichment
was analyzed using TBtools (Chen et al., 2020).

Quantitative RT-PCR analysis
We validated the RNA-seq results using 15 cold-responsive genes, including 10 AP2/ERF
transcription factors, four circadian rhythm-related genes, and ICE1. Table S1 shows
the primers that were designed using Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/) and
synthesized (Invitrogen; Thermo Fisher Scientific Inc.). Quantitative RT-PCR was
performed using three technical replicates and SYBR Premix Ex Taq TM II (Takara Bio
Inc.) on a Bio-Rad CFX96 Real-Time PCR system (Bio-Rad Laboratories Inc., Hercules,
CA, USA). The PCR amplification conditions were 95 ◦C for 3 min, followed by 40 cycles
of 95 ◦C for 10 s and 60 ◦C for 30 s. The relative expression of the selected genes was
normalized to that of the cowpea actin gene (GenBank ID: LOC114185033) and calculated
using the 2−11CT method.

RESULTS
Cultivar phenotyping under chilling stress and recovery
One symptom of chilling injury is a water deficit in shoots due to imbalanced water
transport and transpiration (Kang & Saltveit, 2001). Under cold stress at 5 ◦C, the leaves
of both Dubai bean and Ningjiang 3 gradually drooped and wilted (Fig. 1). After 3 h
of recovery at 25 ◦C, the leaves of both varieties continued to droop. At 12 and 24 h of
recovery, the leaves of Dubai bean remained drooped and crinkled, whereas most Ningjiang
3 leaves not only stopped wilting, but also showed signs of resumed growth.

Changes in leaf fresh weight and proline and SOD contents
The fresh weight of Dubai bean and Ningjiang 3 leaves progressively decreased under cold
stress at 5 ◦C (Fig. 2). After 3 h of recovery at 25 ◦C, the leaf fresh weight of Dubai bean
and Ningjiang 3 was unchanged and slightly decreased, respectively. At recovery for 12 and
24 h, the fresh weight of Dubai bean leaves continued to decline, whereas that of Ningjiang
3 increased and was only 10% lower than in cold stress for 0 h (Table S2).

Antioxidant enzymes, such as SOD, catalase (CAT), and ascorbate peroxidase (APX),
help plants clear excessive reactive oxygen species (ROS) produced at low temperatures
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Figure 1 Phenotypes of Dubai bean and Ningjiang 3 seedlings under cold stress and recovery. C0, C3,
C12, C24, cold stress at 5 ◦ C for 0, 3, 12, 24 h, respectively. R3, R12, R24, recovery at 25 ◦ C for 3, 12, 24 h.

Full-size DOI: 10.7717/peerj.13167/fig-1

Figure 2 Leaf fresh weight and proline and SOD contents of leaf samples fromDubai bean and
Ningjiang 3 under cold stress and recovery stages. * P < 0.05 and ** p< 0.01 (one-way ANOVA).

Full-size DOI: 10.7717/peerj.13167/fig-2
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(Yu et al., 2006). In addition, compatible solutes, such as proline and carbohydrates, play
important roles in cell osmotic adjustment and maintaining membrane integrity under
cold stress (Liu et al., 2012). We examined proline and SOD contents after cold stress
at 5 ◦C and after recovery for 3 h at 25 ◦C (Fig. 2). We found a gradual increase in the
proline and SOD content of leaves from both plants, but these values declined or remained
unchanged after recovery for 12 and 24 h (Tables S3 and S4). However, proline content at
C3, R12 and R24 time points and SOD content at C3, C12, C24 and R3 time points were
significantly higher in Ningjiang 3 than in Dubai bean (P < 0.01).

Taken together, we initially inferred that cold tolerance is better for Ningjiang 3 than
Dubai bean at the seedling stage based on the phenotype, leaf fresh weight and proline and
SOD contents.

Global transcriptome results for Dubai bean and Ningjiang 3
We used Illumina RNA-seq to investigate transcriptome dynamics at seven time points
during cold stress and recovery using total RNA isolated from leaves of Dubai bean and
Ningjiang 3. Three independent biological replicates of leaves at each time point were
analyzed (21 samples each in total).

Over 2 billion high-quality reads (average∼49 million reads per sample) were generated
from each plant at different time points (Table S5) and mapped to the cowpea genome
(Lonardi et al., 2019) at a mean rate of 93.72% (range: 89.41%–96.06%). The R package
RNASeqPower (Hart et al., 2013) was used to calculate the statistical power of this
experiment. A power of 0.65 was found for genes that presented fold-change greater
than 2 with a sample size of three (the number of biological replicates used in this study).

The reads mapped to each gene were counted using HTSeq v. 0.6.1, and the FPKM of
each gene was calculated (Anders, Theodor & Huber, 2015). Genes with FPKM >1 were
considered to be expressed. At seven time points of cold stress and recovery, 16,211–17,961
and 16,174–17,297 genes were respectively expressed in Dubai bean and Ningjiang 3
(Fig. 3A). The expression of 10%–12% of genes was very high (FPKM ≥ 50) at different
time points (Fig. 3B). The expression of genes with high (FPKM 10 to ≥ 50), moderate
(FPKM 2 to ≤ 10), and low (FPKM 0.1 to ≤ 2), respectively was 27%–34%, 25%–29%,
and 28%–34%. For genes showing high/very high expression, more genes were expressed
in Dubai bean during cold stress and in Ningjiang 3 during recovery.

Comparison of global transcriptome between two cultivars
We investigated global differences in the Dubai bean and Ningjiang 3 transcriptomes
during cold stress and recovery. We calculated Pearson correlation coefficients (PCC) of
all samples from seven time points based on the mean FPKM of three biological repeats for
all expressed genes (Fig. 4A). The PCC values between the two cultivars under cold stress at
5 ◦C for 0, 3, 12, and 24 h, were 0.93, 0.96, 0.97, and 0.88, respectively, and 0.94, 0.79, and
0.81 at 25 ◦C recovery for 3, 12, and 24 h, respectively. The correlation between samples of
the two cultivars under 5 ◦C and recovery at 25 ◦C for 3 h was close (PCC >0.88) but not
at 12 h of recovery at 25 ◦C (PCC = 0.79).

We conducted PCA using the factoextra and FactoMineR packages in R (Fig. 4B).
Samples with closer distances suggested more similar transcriptional programs. Samples
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Figure 3 Genes expressed in Dubai bean and Ningjiang 3 during cold stress and recovery. (A) All genes
expressed in two varieties over seven time-points under cold stress and during recovery. (B) Fraction of
genes with differential expression in two varieties over seven time-points under cold stress and during re-
covery. D, Duban bean; N, Ningjiang 3.

Full-size DOI: 10.7717/peerj.13167/fig-3

Figure 4 Correlations between the transcriptomes of different stages of cold stress and recovery in
Dubai bean and Ningjiang 3 cultivars. (A) Pearson correlation coefficient (PCC) analysis of RNA-seq
data from seven stages of cold stress and recovery in Dubai bean and Ningjiang 3. (B) Principal compo-
nent analysis (PCA) of samples at different stages of cold stress and recovery in two asparagus bean vari-
eties. Blue triangles, Ningjiang 3; red dots, Dubai bean; ellipses, 95% confidence intervals.

Full-size DOI: 10.7717/peerj.13167/fig-4

under cold stress at 5 ◦C were distributed on the left side of the plot, while samples
under recovery at 25 ◦C were distributed on the right, indicating that the low-temperature
response and recovery at room temperature are different processes. The cultivars under
cold stress 5 ◦C and after 3 h of recovery at 25 ◦C were closely grouped, but more distanced
at 12 h of recovery at 25 ◦C (Fig. 4A). The results indicated that the two cultivars are
more likely to have similar transcriptomes and functions/activities under cold stress at
5 ◦C and recovery for 3 h at 25 ◦C. In contrast, transcriptional activity at 12 h of recovery
was somewhat distinct and might explain the difference in cold tolerance between the two
asparagus bean cultivars.
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Figure 5 Differential gene expression between Dubai bean and Ningjiang 3 at various stages of cold
stress and recovery. (A) Differentially expressed genes in Dubai bean vs. Ningjiang 3 at all stages. Blue,
green and purple indicate upregulated genes, downregulated genes, and transcription factors (TFs), re-
spectively. (B) Ratios of upregulated and downregulated genes expressing different TFs in Dubai bean dur-
ing cold stress and recovery.

Full-size DOI: 10.7717/peerj.13167/fig-5

Comparison of DEGs between Dubai bean and Ningjiang 3
Figure 5A shows the upregulated expression of 18,257 genes (including 745 TF-encoding
genes) and the downregulated expression of 15,142 genes (including 572 TF-encoding
genes) at different stages of cold stress and recovery in Dubai bean compared with
Ningjiang 3. Most (8,954 and 7,455) genes were differentially expressed after recovery for
12 (R12), and 24 (R24) hours, whereas the minimum (1,947) was differentially expressed
after cold stress for 3 h (C3).

Transcription factor prediction of DEGs between Dubai bean and
Ningjiang 3
Transcription factors (TFs) play a vital role in regulating biotic and abiotic stress
response networks (Liu et al., 2019). We investigated differentially expressed TFs to
better understand the molecular mechanisms of the low-temperature responses in the
two varieties (Fig. 5B). The number of DEGs in some families differed between the two
cultivars (Table S6). For instance, more TFs (including bHLH, NAC, WRKY, bZIP, and
AP2/ERF) were upregulated in Dubai bean, whereas most downregulated TFs in Dubai
bean were in the C2H2, Aux/IAA, TCP, HB-KNOX, and DDT families. Transcription
factors in the zf-HD and FAR1 families were upregulated in Dubai bean and Ningjiang 3,
respectively.

GO enrichment of DEGs between Dubai bean and Ningjiang 3
We investigated the potential functions of DEGs by analyzing GO enrichment (Fig. 6). A
few GO terms were enriched under cold stress, such as responses to auxin andmicrotubule-
based movement. However, more terms, such as protein phosphorylation, photosynthesis,
oxidation–reduction process, and cellular glucan metabolic process were enriched during
recovery, suggesting their functional participation in cold tolerance of asparagus bean.
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Figure 6 Gene Ontology (GO) terms enriched with downregulated and upregulated differentially
expressed genes (biological process) at various stages of cold stress in Dubai bean compared with
Ningjiang 3. Colored scale, corrected P values.

Full-size DOI: 10.7717/peerj.13167/fig-6

Comparison of DEG pathways between Dubai bean compared with
Ningjiang 3
We classified the functions of the DEGs using Mercator4 v. 3.0 to further determine
functional groups (Lohse et al., 2014). The log2 fold changes of DEGs between Dubai
bean and Ningjiang 3 at each stage were loaded into the Overview pathway using the
MapMan tool, and the functions of DEGs were classified (Fig. 7A). The top five groups
with most DEGs were RNA biosynthesis, protein modification, solute transport, cell cycle
organization, and cell wall organization. The ratios of upregulated genes in Dubai bean
were essentially stable in the first three groups, fluctuated in cell wall organization, and
gradually declined in cell cycle organization.

The ratios of upregulated genes associated with photosynthesis in Dubai bean under
cold stress cold stress were >65% at 0, 3, 12 h and 7% at 24 h, 83% within 3 h of recovery,
then respectively decreased to 20% and 5% at 12 and 24 h of recovery. The trend was the
same for coenzyme metabolism. Some other pathways including chromatin organization,
RNA processing, DNA damage response, protein biosynthesis, and protein homeostasis,
gradually declined, indicating that these functions were adversely affected in Dubai bean
at low temperatures.
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Figure 7 Functional classifications and DEG pathways in Dubai bean compared with Ningjiang 3. (A)
Functional groups of DEGs at seven cold stress and recovery stages and their expression. Dot sizes and col-
ors indicate number and ratios of upregulated genes, respectively, in Dubai bean compared with Ningjiang
3. (B) Metabolic pathways with differential expression in Dubai bean vs. Ningjiang 3 after recovery for
12 h. Red and blue indicate upregulated and downregulated genes, respectively, in Dubai bean. DEG, dif-
ferentially expressed gene.

Full-size DOI: 10.7717/peerj.13167/fig-7

We investigated the metabolic pathways responsible for the differences in cold tolerance
between Dubai bean and Ningjiang 3 at 12 h of recovery. We loaded the log2 fold changes
in DEGs onto the X4.1 Metabolism overview R1.0 pathway using MapMan (Fig. 7B),
because the correlation between the two varieties was the lowest (PCC= 0.79) at this stage.
The differential activity of metabolic pathways at 12 h of recovery was consistent with
the PCA results. Most of the genes involved in photosynthesis, including those associated
with photophosphorylation and the Calvin cycle, were downregulated in Dubai bean,
indicating impaired photosynthetic function. In addition, most genes involved in cell wall
synthesis and modification, amino acid synthesis, and nucleotide metabolism were also
downregulated in Dubai bean. These results indicated that the disrupted cell functions
of Dubai bean had not yet returned to normal despite 12 h of recovery under normal
temperatures.

Identification of DEGs in Dubai bean and Ningjiang 3
We analyzed DEGs in each cultivar at different stages of cold stress and recovery by plotting
Venn diagrams using Venny2.1 (Fig. 8). Compared with 0 h, 3773, 6286, and 7362 genes
in Dubai bean were differentially expressed after cold exposure for 3, 12, 24 h, respectively.
We identified 2,026 DEGs that were common to all three stages. Furthermore, 2,374, 2,894,
and 5,527 DEGs were identified in Ningjiang 3 exposed to 5 ◦C for 3, 12, 24 h, respectively,
and 1,636 genes were common to all three stages. We identified 7,005 and 5,994 DEGs that
were common to Dubai bean and Ningjiang 3, respectively, under all three recovery stages.

KEGG analysis of DEG enrichment in Dubai bean and Ningjiang 3
We blasted common DEGs into the KEGG database to identify the primary biological
pathways in which these common DEGs were involved (Fig. 9). Enriched pathways unique
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Figure 8 Venn diagrams of differentially expressed genes in Dubai bean and Ningjiang 3 during cold
exposure and recovery.D, Dubai bean; N, Ningjiang 3. C0, C3, C12 and C24, cold exposure for 0, 3, 12
and 24 h, respectively. R3, R12 and R24, recovery at room temperature for 3, 12 and 24 h, respectively.

Full-size DOI: 10.7717/peerj.13167/fig-8

to Dubai bean during cold exposure included chromosome and associated proteins,
enzymes with EC numbers, and glycosylphosphatidylinositol (GPI)-anchored proteins.
Those in Ningjiang 3 included plant hormone signal transduction, pentose and glucuronate
interconversions, and porphyrin metabolism. Enriched KEGG pathways common to
both cultivars included the MAPK signaling pathway, plant-pathogen interaction, and
transcription factors. Ribosome biogenesis, photosynthesis, chaperones and folding
catalysts, and glyoxylate and dicarboxylate metabolism were enriched KEGG pathways
in both cultivars during recovery. These annotations provide a basis for understanding the
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Figure 9 KEGG pathway enrichment findings of common differentially expressed genes (DEGs)
in Dubai bean and Ningjiang 3 under cold stress and recovery.DEGs common to Dubai bean and
Ningjiang 3 under cold stress (CDC and CNC, respectively) and recovery at room temperature (CDR and
CNR, respectively). Colored scale, P values.

Full-size DOI: 10.7717/peerj.13167/fig-9

common and different biological pathways involved in the two asparagus bean cultivars
under cold stress and recovery.

Enriched transcription factors in Dubai bean and Ningjiang 3
The results of the KEGG pathway enrichment analysis revealed TFs that were enriched in
DEGs that were common of both cultivars under cold stress, indicating their involvement
in the low-temperature responses of asparagus bean. We identified 36 differentially
expressed TFs in this pathway (Table 1); 28 and 25 were in Dubai bean and Ningjiang 3,
respectively. These TFs belonged to the MYB (12), AP2/ERF (11), WRKY (6), HSF (3),
HD-ZIP (2), E2F/DP (1), and NF-YB (1) families. Homologous genes of TFs, comprising
ERF (LOC114194502), MYB (LOC114169018 and LOC114168556), and three WRKY
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Table 1 Enriched transcription factors by KEGG enrichment analysis in Dubai bean and Ningjiang 3.

Gene ID TF family Hits in
Arabidopsis

NC24/NC0 NR24/NC24 DC24/DC0 DR24/DC24

LOC114176637 AP2 AT3G20840.1 0.52 6.68 −1.4 4.93
LOC114193917 AP2 AT1G16060.1 −1.38 −0.81 −1.34 −0.48
LOC114176859 E2F/DP AT3G48160.2 0.04 4.91 −1.43 0.18
LOC114194502 ERF AT1G78080.1 2.95 −2.6 2.08 −1.14
LOC114177032 ERF AT5G25810.1 0.86 −1.22 1.09 −3.18
LOC114191951 ERF AT3G16770.1 2.71 −2.96 5.43 −4.18
LOC114190586 ERF AT3G23240.1 5.61 −1.83 4.72 −3.7
LOC114167378 ERF AT4G17500.1 4.64 −2.58 4.46 −2.49
LOC114177898 ERF AT2G31230.1 2.7 0.17 1.74 −1.52
LOC114173447 ERF AT4G17490.1 3.22 −2.56 3.69 -5
LOC114168274 ERF AT5G44210.1 4.23 −3.06 3.26 −2.35
LOC114186996 ERF AT1G50640.1 −2.37 1.16 −2.69 1.44
LOC114168763 HD-ZIP AT1G05230.4 −0.44 0.7 −1.74 −0.17
LOC114184235 HD-ZIP AT3G60390.1 −1.18 −0.62 1.41 −3.11
LOC114193441 HSF AT1G46264.1 −4.19 4.57 −1.33 1.66
LOC114193339 HSF AT2G26150.1 −3.62 3.66 −2.64 3.33
LOC114192670 HSF AT3G22830.1 −3.58 2.44 −3.97 0.88
LOC114162527 MYB AT1G17950.1 0.17 −0.73 1.98 −0.13
LOC114190831 MYB AT2G47460.1 −1.16 0.46 −1.21 −1.99
LOC114163641 MYB AT5G49330.1 −2.17 −0.52 −1.67 −1.94
LOC114173857 MYB AT5G57620.1 1.99 1.72 1.42 −1.04
LOC114183416 MYB AT2G37630.1 −0.83 0.35 −1.44 −0.81
LOC114169018 MYB AT3G23250.1 6.13 −1.08 4.48 −4.59
LOC114181503 MYB AT3G28910.1 2.21 −2.54 2.54 −4.04
LOC114181399 MYB AT5G15310.1 −1.38 0.14 −1.95 −0.47
LOC114194518 MYB AT4G37260.1 2.84 −2.11 2.86 −1.11
LOC114168556 MYB AT3G23250.1 10.71 −7.8 13.87 −7.05
LOC114189637 MYB AT1G09540.1 2.02 −4.37 0.54 −3.08
LOC114170581 MYB AT3G46130.1 −2.66 1.08 −1.53 0.97
LOC114193521 NF-YB AT4G14540.1 −1.81 0.46 −1.86 −0.57
LOC114167396 WRKY AT2G03340.1 6.23 −3.99 5.31 −6.42
LOC114194094 WRKY AT2G38470.1 4.55 −1.83 3.5 −1.75
LOC114184078 WRKY AT2G38470.1 4.89 −2.59 4.32 −4.65
LOC114177110 WRKY AT4G23550.1 2.86 3.49 2.28 1.66
LOC114190737 WRKY AT5G52830.1 −1.41 −0.02 1.54 −2.8
LOC114188798 WRKY AT2G30250.1 3.88 0.23 3.03 0.32

Notes.
Numbers in last four columns mean Log2FoldChange of FPKM value.

(LOC114194094, LOC114184078 and LOC114188798) are involved in the cold response of
Arabidopsis, according to annotations in The Arabidopsis Information Resource (TAIR)
database.
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Validation by qRT-PCR
We validated the accuracy and reliability of RNA-seq data using 15 cold-responsive genes
comprising 10 AP2/ERF genes encoding TFs, four associated with the circadian clock, and
ICE1 (Xu et al., 2011a; Xu et al., 2011b; Dong, Farré & Thomashow, 2011; Chinnusamy et
al., 2003). The expression of these genes determined by qRT-PCR was similar to those
determined using RNA-seq (Fig. S1). The mean correlation coefficient between the
RNA-seq and real-time PCR results was 0.83 (0.66–0.97), indicating that the RNA-seq data
accurately reflected the abundance of transcripts (Tables S7 and S8).

DISCUSSION
Asparagus bean is a warm-season legume that can tolerate heat, but not cold. The low-
temperature response of asparagus bean at the physiological level has been investigated
(Ismail & Hall, 2002; Li et al., 2005; Chen, Wang & Ding, 2005). However, the ultimate
effects of low-temperature stress on plant growth depend not only on degrees of damage,
but also on the capacity for recovery thereafter (Zhang & Scheller, 2004). Chilling stress
and recovery in asparagus bean has not been systematically investigated as far as we can
ascertain. Therefore, this study analyzed responses of the asparagus bean cultivars Dubai
bean and Ningjiang 3 with different degrees of tolerance to low temperature stress and
recovery at room temperature. The phenotype and physiological indices showed that
Ningjiang 3 tolerated cold better than Dubai bean at the seedling stage. In contrast, adult
Dubai bean tolerates cold stress better than adult Ningjiang 3 (Huang et al., 2018). These
findings indicated that the molecular mechanisms at the seedling and adult stages may
differ between the two cultivars. Whether genes that confer chilling tolerance at one
developmental stage affect that at other developmental stages has remained unknown
(El-kholy, Hall & Mohsen, 1997). Tomato cultivars that function well under chilling stress
during germination do not always function well at fruit set (Kemp, 1968). The chilling
tolerance of two cucumber genotypes did not differ between the fruit and germination
stages (Jennings & Saltveit, 1994). Ye et al. (2009) evaluated the low-temperature response
of 17 rice cultivars at various growth stages. They found that the same cold tolerance at
all four growth stages in seven cultivars, and slight differences among growth stages in
six. The cold tolerance of the other four cultivars considerably differed during growth
stages, especially particularly the Amaroo and Azucena cultivars that are cold tolerant as
seedlings but cold sensitive at the flowering stage. Our results were similar to these findings.
Therefore, some cultivars even within in the same species might have different degrees of
cold tolerance at specific growth stages. This might be due to growth conditions in the place
of origin, as well as breeding history (Ye et al., 2009). Although cold tolerance is easier to
rate at the seedling stage than at the adult stage, tolerance at these stages might be irrelevant
or even contradictory. Hence, to assume that a cold-tolerant cultivar at the seedling stage
is also resistant to low temperatures at the adult stage and can be cultivated during the late
autumn may be unreasonable.

We calculated PCC between the Dubai bean and Ningjiang 3 at different stages based on
the average FPKM of three biological replicates. The results revealed a closer correlation
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between samples of the two cultivars exposed to cold stress at 5 ◦C and recovery for 3 h at
25 ◦C (PCC >0.88). The correlation was lower at 12 and 24 h of recovery (PCC 0.79 and
0.81, respectively). The results of a subsequent PCA analysis were consistent, indicating
that the two cultivars have similar physiological and molecular responses to stress at 5 ◦C.
However, at 12 and 24 h of recovery at 25 ◦C, the phenotypes and transcriptomes of the
two cultivars considerably differed, indicating that the difference in cold tolerance between
them was mainly reflected during recovery. Both cold-tolerant and cold-sensitive rice and
maize varieties are impaired under low temperature, but cold-tolerant varieties recover
better (Saruyama & Tanida, 1995; Ribas-Carbo et al., 2000; Yu et al., 2006). A temperature
of 5 ◦C might be below the threshold for both Dubai bean and Ningjiang 3 to withstand
cold stress. Hence, the phenotypes of these cultivars were similar. However, Ningjiang 3
contained more SOD and proline than Dubai bean. The results of other crops are similar
(Guo et al., 2006; Jahnke, Hull & Long, 1991; Khan et al., 2019; Tian et al., 2021; Taïbi et al.,
2018).

High activities of ROS-scavenging enzymes are associated with resistance to low-
temperature stress (Yu et al., 2006; Apel & Hirt, 2004). Superoxide dismutase acts as the
first line of defense against ROS by dismutating superoxide to H2O2 and reducing the risk
of hydroxyl radical formation from superoxide (Zhang et al., 2011). Proline accumulation
can help to maintain the osmotic balance of cells, reduce water loss, and improve the
adaptability of crops to low-temperature environments (Taïbi et al., 2018). Ningjiang 3
seemed to gradually resume growth during recovery, but not Dubai bean. This might be
because Ningjiang 3 has a higher osmolyte content and more powerful antioxidant enzyme
activity, thus reducing the damage caused by low-temperature stress on its growth.

The representative TF families identified from DEGs during cold stress and recovery
between two asparagus been varieties included bHLH, NAC, C2H2, MYB, WRKY and
AP2/ERF, which was similar to previous findings (Yang et al., 2020; Tan et al., 2016; Liu et
al., 2019). These TF families are also associated with cold tolerance in other plants (Xu et al.,
2011a; Xu et al., 2011b; Chinnusamy et al., 2003; Zhai et al., 2010; Shao, Wang & Tang,
2015; Tripathi, Rabara & Rushton, 2014; Kim et al., 2001). Therefore, these TF families
might also participate in the cold tolerance of asparagus bean. Our KEGG enrichment
findings of DEGs within each variety showed that TFs in the MYB, AP2/ERF, and WRKY
families were enriched (Table 1). Homologous genes of six TFs, including one ERF
(LOC114194502), two MYB (LOC114169018 and LOC114168556), and three WRKY
(LOC114194094, LOC114184078, and LOC114188798) in Arabidopsis, are involved in the
cold response. LOC114194502 (AT1G78080.1) encodesRAP2.4, which belongs to theDREB
subfamily A-6 of the AP2/ERF TF family. Levels of RAP2.4 mRNA are obviously elevated
upon exposure to cold and high salinity (Rae, Lao & Kavanagh, 2011). Both LOC114169018
and LOC114168556 (AT3G23250.1) encode AtMYB15, an R2R3 type MYB transcription
factor that participates in the cold regulation of CBF genes and the development of cold
tolerance. The expression of MYB15 is upregulated under cold stress, and MYB15 protein
interacts with ICE1 and binds to MYB recognition sequences in CBF gene promoters (Hao
et al., 2006). Both LOC114194094 and LOC114184078 (AT2G38470.1) encode AtWRKY33,
and LOC114188798 (AT2G30250.1) encodes AtWRKY25. The abundance of transcripts of
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these genes increases after exposure to cold stress for 24 h (Jiang & Deyholos, 2009). The
present study also found upregulated expression of the six genes encoding TFs under cold
stress described above. However, this decreased after recovery for 24 h at room temperature.
The results showed that these TFs are involved in the common responses of two asparagus
bean cultivars to cold temperatures.

Chilled temperatures significantly impact plant photosynthesis. All major components
of photosynthesis, including thylakoid electron transport, the carbon reduction cycle,
and control of stomatal conductance, can be disrupted (Allen & Ort, 2001). Exposing
Arabidopsis to cold stress at 5 ◦C for 3 days inhibited light-saturation rates of CO2

assimilation and decreased the yield of PSII electron transport and PSI activity (Savitch et
al., 2001). The photosynthetic traits of tomato plants, including net photosynthetic rate,
stomatal conductance, internal CO2 concentration, and transpiration rate, significantly
decrease upon exposure to low temperature stress (Khan et al., 2019). The photosynthetic
rates of soybean seedlings are also substantially reduced after cold stress for 12 h at
5 ◦C (Tian et al., 2015). The gross photosynthesis of Vigna species, including cowpea, is
susceptible to chilling (Briiggemann, 1992). Our KEGG findings of DEGs revealed that
photosynthesis-related pathways were commonly enriched in Dubai bean and Ningjiang
3 during recovery at room temperature. These results indicated that the photosynthesis
processes of both varieties were affected during recovery. The GO findings of DEGs showed
that genes related to photosynthesis were downregulated after 24 h at 5 ◦C as well as after
12 and 24 h of recovery at room temperature in Dubai bean compared with Ningjiang
3; These results were consistent with the findings determined using MapMan (Fig. 7A).
In addition, the metabolic pathways of DEGs analyzed at 12 h of recovery showed that
most of the photosynthesis-related genes in Dubai bean, including photophosphorylation
and the Calvin cycle, were downregulated compared with Ningjiang 3. These results were
consistent with those of other studies. Liu et al. (2019) investigated the differences in
physiology and global gene expression between cold-tolerant and cold-sensitive tomato
genotypes under cold stress. All tomato genotypes showed a time-dependent decline in
Fv/Fm and 8PSII, but the decrease was greater in the sensitive genotype. Analysis of
DEGs enriched in GO terms showed that cold stress significantly inhibited photosynthesis,
and that more downregulated genes in the cold-sensitive genotype were involved in all
aspects of photosynthesis, including light reactions, the Calvin cycle, and photorespiration.
These results suggest that photosynthesis is more suppressed in the cold-sensitive, than
the cold-tolerant genotype under cold stress. Moreover, although low temperatures inhibit
photosynthesis in cold-sensitive and cold-tolerant genotypes in some crops such as Musa
sp., Zea mays, and Miscanthus, the cold tolerant genotype functioned better (Zhang et al.,
2011; Ting, Owens & Wolfe, 1991; Friesen & Sage, 2016). These results indicated that the
photosynthesis functions were more damaged in Dubai bean than Ningjiang 3 during cold
stress and recovery.

CONCLUSIONS
We analyzed transcriptomes of the asparagus bean cultivars, Dubai bean and Ningjiang
3, with different degrees of cold tolerance after exposure to stress at 5 ◦C for 0, 3, 12,
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and 24 h followed by recovery at 3, 12, and 24 h under room temperature using Illumina
RNA-seq. We also measured the physiological indices of leaf fresh weight, proline levels,
and SOD contents. Ningjiang 3 was more cold-tolerant than Dubai bean at the seedling
stage, which was opposite to the adult stage. This might be due to a higher osmolyte
content, more powerful antioxidant enzyme activity, more rapid photosynthetic rate, and
better restoration of the water balance. These results provide a systematic understanding of
the mechanism underlying low temperature responses and recovery in asparagus bean and
lay a foundation for the genetic improvement of cold-sensitive asparagus bean germplasm
in the future.
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