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PPAR-d Agonist With Mesenchymal Stem
Cells Induces Type II Collagen-Producing
Chondrocytes in Human Arthritic
Synovial Fluid

Bruce E. Heck1,2, Joshua J. Park3, Vishruti Makani3,
Eun-Cheol Kim4, and Dong Hyun Kim1,2,5

Abstract
Osteoarthritis (OA) is an inflammatory joint disease characterized by degeneration of articular cartilage within synovial joints.
An estimated 27 million Americans suffer from OA, and the population is expected to reach 67 million in the United States by
2030. Thus, it is urgent to find an effective treatment for OA. Traditional OA treatments have no disease-modifying effect,
while regenerative OA therapies such as autologous chondrocyte implantation show some promise. Nonetheless, current
regenerative therapies do not overcome synovial inflammation that suppresses the differentiation of mesenchymal stem cells
(MSCs) to chondrocytes and the expression of type II collagen, the major constituent of functional cartilage. We discovered a
synergistic combination that overcame synovial inflammation to form type II collagen-producing chondrocytes. The combi-
nation consists of peroxisome proliferator–activated receptor (PPAR) d agonist, human bone marrow (hBM)-derived MSCs,
and hyaluronic acid (HA) gel. Interestingly, those individual components showed their own strong enhancing effects on
chondrogenesis. GW0742, a PPAR-d agonist, greatly enhanced MSC chondrogenesis and the expression of type II collagen and
glycosaminoglycan (GAG) in hBM-MSC-derived chondrocytes. GW0742 also increased the expression of transforming
growth factor b that enhances chondrogenesis and suppresses cartilage fibrillation, ossification, and inflammation. HA gel also
increased MSC chondrogenesis and GAG production. However, neither GW0742 nor HA gel could enhance the formation of
type II collagen-producing chondrocytes from hBM-MSCs within human OA synovial fluid. Our data demonstrated that the
combination of hBM-MSCs, PPAR-d agonist, and HA gel significantly enhanced the formation of type II collagen-producing
chondrocytes within OA synovial fluid from 3 different donors. In other words, the novel combination of PPAR-d agonist,
hBM-MSCs, and HA gel can overcome synovial inflammation to form type II collagen cartilage within human OA synovial fluid.
This novel articularly injectable formula could improve OA treatment in the future clinical application.
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Introduction

Osteoarthritis (OA) currently affects 12% of the US popu-

lation (21 million Americans aged 25 and older), but there

is no disease-modifying agent for OA treatment. OA is

manifested by gradual loss of cartilage extracellular matrix

(ECM) by inflammatory degradation, resulting in joint dys-

function. There have been various approaches to treat OA,

for example, autologous chondrocyte implantation (ACI)

and use of nonsteroidal anti-inflammatory drugs (NSAIDs),

but none of those yield satisfactory outcomes. Moreover,

those treatments are followed by unwanted results. For

example, ACI leads to the morbidity of the donor site and
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the formation of nonfunctional fibrocartilage.1-3 Conver-

sely, chronic treatment with NSAIDs causes serious side

effects such as gastrointestinal bleeding and cardiovascular

diseases.4,5 Thus, it is of high urgency to find a better treat-

ment for OA.

Recently, mesenchymal stem cells (MSCs) have arisen as

a better treatment option for OA6 due to their ability to

differentiate into chondrocytes and release growth factors

that regulate the immune response through paracrine

effects.7,8 Intra-articular MSC injection has shown some

promise in OA treatment.9 Nonetheless, it appears that

MSCs alone are not sufficient to satisfy the desired proper-

ties of an OA treatment agent.10 An agent with such proper-

ties for an OA therapeutic is not yet available.

Current MSC-based OA therapy is limited by the absence

of a strong chondrogenic inducer and a stable scaffold. The

other major problem that decreases the efficacy of MSC-

based OA therapies is synovial inflammation,11-13 which

blocks MSC chondrogenesis14-17 and type II collagen

expression.18,19 Thus, if MSC therapy is strengthened with

a strong chondrogenic inducer, a stable scaffold, and the

ability to overcome inflammation, it is expected to improve

the outcome of OA.

OA is an inflammatory joint disease characterized by

degeneration of articular cartilage within synovial joints,

which is accompanied by synovitis, subchondral bone remo-

deling, and osteophyte formation.20,21 An estimated 27 mil-

lion Americans, especially aged people,22 are diagnosed

with OA,23 and the affected population is expected to

increase to 67 million in the United States by 2030.24 Unfor-

tunately, traditional OA treatments including physical ther-

apy, NSAIDs, hyaluronic acid (HA) gel injections, and

arthroscopic surgery have no disease-modifying effect.25,26

Thus, finding more effective treatment is of utmost urgency.

Healthy cartilage in the joint is maintained by nonproli-

ferating chondrocytes that generate ECM consisting of type

II collagen and glycosaminoglycan (GAG)27 within hypoxic

synovial environment that facilitates chondrogenesis.28-30

Transforming growth factor b (TGF-b),31 bone morphoge-

netic proteins (BMPs) such as BMP-232 and BMP-4,33 and

fibroblast growth factor 2 (FGF2)34,35 drive the differentia-

tion of MSCs to type II collagen chondrocytes. Sometimes,

chondrocytes dedifferentiate into type I collagen-generating

chondrocytes in monolayer culture and make fibrous cartilage36

which is often observed after ACI and microfracture.37,38

Chondrocytes also undergo terminal differentiation into

hypertrophic chondrocytes that calcify cartilage by increas-

ing alkaline phosphatase (ALP) and runt-related transcrip-

tional factor 2 (Runx2) and undergo apoptosis, resulting in

cartilage ossification and vascularization.39,40 TGF-b and

parathyroid hormone–related peptide block the hypertrophic

differentiation.41-43

Mechanical damage and/or age-related wear and tear are

thought to trigger systematic inflammatory responses in all

tissues surrounding the joint including articular cartilage,

synovial membrane, subchondral bone, and ligaments.44,45

Cartilage debris generated by cartilage degradation

increases synovial inflammation by activating synovial

macrophages.46,47 Synovial inflammation then accelerates

cartilage degradation by increasing matrix metallopro-

teases (MMPs) and aggrecanases47-49 and reduces cartilage

generation by blocking the formation of chondrocytes14-17

and the production of type II collagen and GAG.18,19

Thus, to modify OA, synovial inflammation should be

controlled.50

The strong immunomodulatory properties of MSCs have

been used for anti-inflammatory treatment51-57 and regen-

erative therapy.58-61 OA is one of the major clinical targets

for MSC therapy.62-68 We believe that MSC-based OA

therapies have not shown clear success yet69 because of the

following problems: (1) the absence of a strong chondrogen-

esis inducer, (2) the absence of a stable scaffold that

increases the efficiency of chondrocyte differentiation, and

(3) the inability of MSCs to overcome inflammation.15-18

To solve the first problem, several chondrogenic factors

have been tested in clinical trials by co-injecting agents such

as BMP-7 or sprifermin with MSCs into human OA

joints70,71; however, the outcome was not satisfactory. We

tested the peroxisome proliferator–activated receptor

(PPAR) d agonist, GW0742, regarding its chondrogenic

effect on human bone marrow (hBM) MSCs during our

study since this PPAR-d agonist is reported to induce the

expression of TGF-b,72 which is known to facilitate the for-

mation of functional cartilage consisting of type II collagen

in early chondrogenesis.31 In later chondrogenesis, TGF-b is

required for the maintenance of functional cartilage by sup-

pressing the terminal differentiation of chondrocytes.43,73

GW0742 is a highly selective PPAR-d agonist; the half max-

imal effective concentration (EC50) of GW0742 for PPAR-d
is *1 nM with 1,000-fold selectivity over PPAR-a in

human.74,75 Thus, if a PPAR-d agonist is able to increase

TGF-b as expected, it should be a good chondrogenic factor

for MSCs.

We examined HA gel8,76 regarding its efficacy as a scaf-

fold for MSC chondrogenesis. Various scaffolding polymers

have been tested in combination with MSCs or chondrocytes

for articular injection,63,77-83 and some showed positive

outcomes.79,81-87 Compared to other scaffolds, HA gel88 has

several advantages: (1) HA gel provides cushion to joints

for pain relief and functional improvement89; (2) HA gel

facilitates the infiltration, migration, and repopulation of

MSCs and chondrocytes90-92; and (3) HA gel protects carti-

lage ECM from oxidative degradation93 and MMPs.94

Therefore, HA gel should provide those advantages for MSC

chondrogenesis in addition to its chondroprotective effect.

Current MSC-based therapy has no solution for the third

problem caused by synovial inflammation.14-19 Given that

both MSCs7,8 and PPAR-d agonists95-98 have anti-

inflammatory effects, the combination of those should have

additive anti-inflammatory effects on OA joints.

In this study, we demonstrate how the combination of a

PPAR-d agonist, hBM-MSCs, and HA gel overcomes OA
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synovial inflammation to generate type II collagen-

producing chondrocytes.

Materials and Methods

Isolation of hBM-MSCs

Frozen hBM-derived mononuclear cells were purchased

from AllCells (Alameda, CA, USA) and used for isolation

of hBM-derived MSCs.99 After thawing the cells, mononuc-

lear cells were resuspended in a-minimum essential medium

(MEM; Life Technologies, Thermo Fisher Scientific, Grand

Island, NY, USA) plus 20% fetal bovine serum (FBS;

Sigma-Aldrich, St Louis, MO, USA) and 1% antibiotic–anti-

mycotic solution (Invitrogen, Carlsbad, CA, USA), plated at

a density of 1 � 106 cells/75 cm2 flask, and incubated in the

same media. Nucleated cells were plated at a density of 1 to 5

� 106 cells per 75 cm2 flask and cultured at 37 �C in a 5%
CO2 incubator. The medium over hBM-MSCs was exchanged

with fresh medium after 48 h and every 3 to 4 d for 14 d.

Chondrogenesis

Chondrogenic differentiation was performed by high-density

micromass culturing. hBM-MSCs (passages 2–3) were pla-

ted in a 75 cm2 flask at a density of 1.5 � 106 cells/cm2 and

cultured in a-MEM with 20% FBS for 1 d at 37 �C. On the

next day, hBM-MSCs were harvested, and 80,000 cells were

seeded on 70 mL HA gel/well (Euflexxa, 1% sodium hyalur-

onate; Ferring Pharmaceuticals Inc., Parsippany, NJ, USA)

in a 96-well plate for 2 h at 37 �C and incubated in 50 mL

chondrogenesis medium (STEMPRO chondrogenesis differ-

entiation kit; Life Technologies, Thermo Fisher Scientific).

Medium was changed every 2 d. Clinical HA gels used for

3-dimensional (3-D) culture included Euflexxa (Ferring

Pharmaceuticals Inc.), Synvisc (Genzyme Biosurgery,

Ridgefield, NJ, USA), Orthovisc (Anika Therapeutics, Inc.,

Bedford, MA, USA), or Supartz (Seikagaku Co., Tokyo,

Japan). After chondrocytes formed spheroids, the medium

over the spheroids was replaced with fresh chondrogenesis

medium every 2 d and incubated for 14 d for chondrogenesis.

In order to identify the effective dose of GW0742 (Cayman

Chemical, Ann Arbor, MI, USA) for chondrogenesis,

0.0001, 0.001, 0.01, 0.1, or 1 mM GW0742 was added to

hBM-MSCs in chondrogenic media. In addition, to examine

whether the mixture of hBM-MSCs, GW0742, and/or HA

gel forms type II collagen-generating chondrocytes in the

synovial fluids of OA patients, the mixture of 0.3� 106 hBM-

MSCs, 1 mM GW0742, and/or 70 mL Euflexxa was incubated

in chondrogenic medium with 50% human OA synovial fluid

for 14 d. For a control, 50% phosphate-buffered saline

(PBS) was added instead of human OA synovial fluid. To

eliminate donor-to-donor variability, we used synovial

fluid from 3 different OA patients and used BM-MSCs

from 3 donors (AllCells) to measure the GAG content. The

use of human synovial fluid for our study was approved by

the institutional review board of the University of Toledo.

Discarded synovial fluids were obtained from two 65-year-

old patients and one 57-year-old patient after obtaining

their informed consent.

Quantification of GAG Production

The extent of GAG production was examined by labeling

GAG with Alcian blue (Sigma-Aldrich). The chondrocyte

pellet in each well was washed once with PBS (Sigma-

Aldrich), fixed with 4% formaldehyde in PBS for 30 min,

and stained with 1% Alcian blue in 0.1 N HCl (Sigma-

Aldrich) for 30 min. Cell pellets were washed 3 times with

0.1 N HCl and then with distilled water for pH neutraliza-

tion. The images of GAG staining of cell pellets were taken

using a light microscope. The number, size, and blue color

intensity of cell pellets were quantified using Metamorph

software (Molecular Devices, Inc., Downingtown, PA,

USA). In addition, the content of total sulfated GAG in

chondrocyte spheroids was quantified by modified

dimethyl-methylene (DMM) blue method. Briefly, chondro-

cyte spheroids were digested in papain buffer (55 mM

sodium citrate [Sigma-Aldrich], 5 mM ethylenediaminete-

traacetic acid [EDTA; Sigma-Aldrich], 150 mM NaCl

[Sigma-Aldrich], 0.56 U/mL papain [Sigma-Aldrich], pH

6.8) at 60 �C overnight. Forty microliter aliquot of the diges-

tion was mixed with 200 mL of DMM blue dye solution

(Sigma-Aldrich). Then, the absorbance at 595 nm of each

well was measured using a SpectraMax M5 plate reader

(Molecular Devices, Sunnyvale, CA, USA) equipped with

the software, SoftMax Pro 5.2 (Molecular Probes, Eugene,

OR, USA). The amounts of GAG were extrapolated from a

standard curve using shark chondroitin sulfate (Sigma-

Aldrich). Quantification was normalized by DNA content

that was measured by spectrophotometry.

Quantification of Protein Expression

Chondrocyte pellets were stored at �80 �C until assayed.

Frozen samples were pulverized under liquid nitrogen and

placed in a homogenization buffer (10 mM phosphate buffer,

250 mM sucrose, 1 mM EDTA, 0.1 mM phenylmethanesul-

fonyl fluoride or phenylmethylsulfonyl fluoride, and 0.1%
[v/v] Tergitol, pH 7.5). Homogenates were centrifuged at

27,000g for 10 min at 4 �C to harvest supernatant for immu-

noblotting with antibodies. Immunoblotting was performed

using primary monoclonal antibodies against PPAR-d
(1:2,000 dilution; Abcam, Cambridge, MA, USA), type II

collagen (1:1,000 dilution; EMD Millipore, Billerica, MA,

USA), TGF-b (1:1,000 mg/mL; Santa Cruz Biotechnology,

Inc., Dallas, TX, USA), and b-actin (1:10,000 dilution;

Abcam) and secondary antibodies tagged horseradish perox-

idase (HRP) (rabbit for PPAR-d and TGF-b, 1:20,000 dilu-

tion, mouse for type II collagen and b-actin, 1:5,000

dilution). Cell pellets were processed for NuPAGE gel (Invi-

trogen). Proteins separated in the gel were transferred to

nitrocellulose membrane (GE Healthcare Life Sciences,

Heck et al 1407



Pittsburgh, PA, USA) using TE77XP semidry blotter with 10

V for 3 h (Hoefer, Inc., Holliston, MA, USA). Protein band

signals on blots were detected on Amersham Hyperfilm

enhanced chemiluminescence (GE Healthcare Life

Sciences) using SuperSignal West Pico Chemiluminescent

Substrate kit (Thermo Fisher Scientific, Rockford, IL, USA).

Staining Chondrocytes

On day 14, spheroids in 96 wells were transferred to 1.5 micro-

tubes and stained as follows. Briefly, 1 mg/mL DiO (Dye Aye;

Invitrogen) cell-labeling solutions and anticollagen II antibody

(1:5,000 dilution, EMD Millipore) were added directly to the

tube with normal culture media to label. Cell suspensions were

incubated for 5 min at 37 �C. After incubation, the cells were

spun down, rinsed, and resuspended in fresh medium. Second-

ary antigoat fluorescein isothiocyanate (1:1,000 dilution,

mouse for type II collagen; Abcam) was added. Images were

taken with Cytation 5 (BioTek Instruments, Inc., Winooski,

VT, USA) and confocal images were obtained with CellVoya-

ger CV1000 (Olympus, Center Valley, PA, USA).

Statistical Analysis

All cell culture experiments were replicated multiple times

with different batches of cell cultures. Microscopic analysis

was performed blindly by students. Statistical significance

between 2 groups was calculated using unpaired Student

t tests and 2-way analysis of variance (ANOVA). Tukey’s post

hoc test was performed. A value of P < 0.05 was considered

statistically significant. All statistical analysis was performed

with GraphPad Prism 5 (GraphPad, San Diego, CA, USA).

Results

Culturing in HA Gel Enhances Chondrocyte Spheroid
Formation and GAG Production

MSCs are aggregated and condensed for chondrogenesis,100

forming “chondrocyte spheroids” in vitro (Fig. 1A). Given

that culturing within HA gel provides more contacts between

ECM and chondrogenic receptors on MSCs,101,102 it should

enhance MSC chondrogenesis to a higher extent than those

on plastic walls. To examine this possibility, hBM-MSCs

were seeded either on CC2-treated plastic walls (2-D cul-

ture) or in 70 mL of the clinical HA gel (Euflexxa, 3-D

culture) in the wells of a 96-well plate and incubated in

STEMPRO chondrogenesis differentiation medium for 15

d. Chondrocytes in HA gel formed larger spheroids than

those on plastic walls (Fig. 1). We then quantified the

amount of produced GAG by DMM blue assay. Chondro-

cytes and their surrounding ECM were harvested and pro-

cessed to quantify GAG. The amount of GAG was

extrapolated from a standard curve using shark chondroitin

sulfate and normalized by DNA content. There was a signif-

icant elevation in GAG production in the chondrocytes in

HA gel compared to those on plastic walls (Fig. 1B). These

results suggest that 3-D culturing in HA gel is better for MSC

chondrogenesis and GAG production than 2-D culturing on

plastic walls.

In addition, we examined whether different types of

clinically used HA gels enhance chondrogenesis to differ-

ent extents (Fig. 2). After 5 d of chondrogenesis, chondro-

cytes in Orthovisc and Supartz formed the spheroids of

medium sizes (diameters [F] ¼ 20–30 mm), while those

in Euflexxa and Synvisc formed small spheroids ([F] <

20 mm). We also performed DMM blue assays to measure

GAG production in different HA gels. There was no signif-

icant difference in the amounts of GAG production among

different HA gels (Fig. 2B). Nonetheless, 3-D culturing of

MSCs in any type of HA gel produced more GAG than

those on plastic walls. Together, Euflexxa appears to be

slightly better at inducing spheroid formation than the other

HA gels, but not in GAG production.

Treatment with PPAR-d Agonist Increases the
Production of Type II Collagen, TGF-b, and GAG

Given that the PPAR-d agonist induces the expression of

TGF-b,72 a good chonodrogenesis enhancer,31 we exam-

ined whether PPAR-d agonist can function as chondrogenic

agent for MSCs. First, we examined the extent to which

incubation of hBM-MSCs with GW0742, a PPAR-d ago-

nist, increases TGF-b production. We treated hBM-MSCs

in HA gel (Euflexxa) every second day with 0, 1, 10, 100

nM, or 1 mM of GW0742 in chondrogenic media for 15 d.

Then, chondrocytes were processed for immunoblotting

using the antibodies to type II collagen and TGF-b (b-actin:

loading control). GW0742 increased the protein level of

TGF-b in a dose-dependent manner with a peak at 0.1 to

1 mM (Fig. 3A, B), suggesting that the PPAR-d agonist,

GW0742, is a strong inducer of TGF-b. Then, we examined

Figure 1. Culturing in hyaluronic acid (HA) gel plus peroxisome
proliferator–activated receptor (PPAR) d agonist enhances chon-
drogenesis and the formation of type II collagen and transforming
growth factor (TGF) b. (A) Human bone marrow–derived mesench-
ymal stem cells (hBM-MSCs) were cultured either on a plastic wall
or in 70 mL of HA gel during chondrogenesis. Cell pictures (100�)
were taken after 0- and 15-d chondrogenesis. (B) The amount of
glycosaminoglycan (GAG) produced by chondrocytes was quanti-
fied by modified dimethyl-methylene (DMM) method and normal-
ized by DNA content. *P < 0.01 versus control. The image is the
representative of 3 independent experiments. Data presented is the
result of 3 independent experiments. Scale bar: 80 mm.
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whether GW0742 enhances the expression of type II col-

lagen as it did for TGF-b. GW0742 indeed increased the

protein level of type II collagen in a dose-dependent man-

ner with a peak at 0.1 to 1 mM (Fig. 3C, D). These results

suggest that the PPAR-d agonist is a strong inducer of

TGF-b and type II collagen.

Then, we examined the effect of GW0742 on GAG pro-

duction by Alcian blue staining (Fig. 4). Since Alcian blue

also stains HA gel, we did not use HA gel for this experi-

ment. hBM-MSCs on plastic walls in chondrogenic medium

were treated with 0.1 mM GW0742 for 14 d. Chondrocytes

formed without GW0742 generated only a small amount of

Figure 3. Human bone marrow–derived mesenchymal stem cells (hBM-MSCs) were cultured in 70 mL of Euflexxa during chondrogenesis in
96-well plates. On day 7, the expression of type II collagen and transforming growth factor (TGF) b in chondrocytes was detected by
immunoblotting using antibodies to type II collagen (A) and TGF-b (B; anti-b-actin antibody as control). The relative levels of type II collagen
(C) and TGF-b (D) to b-actin were quantified by densitometry (ImageJ [from the National Institutes of Health in Bethesda, MD, USA https://
imagej.nih.gov/ij/]) and presented in bar graphs (n¼ 3). *P < 0.05 versus control. yP < 0.005 versus control. zP < 0.001 versus control. Image
is the representative of 3 independent experiments. Data presented are the result of 3 independent experiments.

Figure 2. (A) Human bone marrow–derived mesenchymal stem cells (hBM-MSCs) were cultured in 70 mL of clinical hyaluronic acid (HA)
gel during chondrogenesis in 96-well plates. Cell pictures (100�) were taken at 0 and 2 h and on 5, 10, and 15 d on the gels. (B) hBM-MSCs
were cultured in 70 mL of different HA gels during chondrogenesis in 96-well plates. On day 15, the content of glycosaminoglycan (GAG) of
chondrocytes was measured with modified dimethyl-methylene (DMM) blue assay at 525 nm. The amount of GAG was extrapolated from a
standard curve using shark chondroitin sulfate. n ¼ 3. *P < 0.05 versus control. Image is the representation of 3 independent experiments.
Data presented are the result of 3 independent experiments. Scale bar: 80 mm.
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GAG, while those with GW0742 produced a significant

amount of GAG (Fig. 4B, C). We quantified the extent of

GAG production around spheroid by measuring the blue-

stained area occupied by ECM and the intensity of GAG

staining using Metamorph software. The area occupied by

GAG produced by GW0742-treated chondrocytes was *2-

fold bigger than that by untreated chondrocytes (Fig. 4C).

Thus, it is clear that the PPAR-d agonist, GW0742, exerts

a strong chondrogenic effect by enhancing the formation of

functional chondrocytes that generate a significant amount

of type II collagen, TGF-b, and GAG.

The Combination of GW0742, hBM-MSCs, and HA
Gel Forms Chondrocytes That Express High Levels
of Type II Collagen and TGF-b within Human OA
Synovial Fluid

Based on the strong chondrogenic effect of the PPAR-d
agonist and HA gel and the innate immunosuppressive effect

of MSCs and PPAR-d agonist, we speculated that the com-

bination of hBM-MSCs with either GW0742 or HA gel

might overcome synovial inflammation to form functional

type II collagen-producing chondrocytes. Thus, we exam-

ined whether those combinations could generate type II

collagen-producing chondrocytes within human OA syno-

vial fluid. We incubated 0.3 � 106 hBM-MSCs on 70 mL

Euflexxa for 2 h. When cells aggregated, we added 1 mM

GW0742 to chondrogenic medium þ 50% human OA syno-

vial fluid and incubated the combinations for 14 d. Fifty

percent chondrogenic media was added as control and 50%
PBS as vehicles. Then, we examined the extent of chondro-

genesis by counting the number of chondrocyte spheroids

and quantifying the expression levels of type II collagen and

TGF-b. hBM-MSCs alone on plastic walls formed *1 chon-

drocyte spheroid after 14-d chondrogenesis in the absence of

human OA synovial fluid (Fig. 5A). Spheroids were stained

with anti-type II collagen antibody to confirm cells were

chondrocytes, and the expression of type II collagen was

confirmed using confocal and fluorescent microplates (Fig.

5B).

However, the group treated with 50% chondrogenic

media and synovial fluid only could not form a noticeable

spheroid within OA synovial fluid, suggesting that hBM-

MSCs alone on plastic walls are not sufficient enough to

form chondrocyte spheroids. Next, we added either

GW0742 or HA gel to hBM-MSCs grown on plastic walls

and incubated them in human OA synovial fluid. Addition

of GW0742 alone could not cause the formation of a large

spheroid on plastic walls within OA synovial fluid

(Fig. 5A). Conversely, incubation of MSCs within HA gel

and OA synovial fluid could form *1 large spheroid sim-

ilar to MSCs alone on plastic wall in the absence of the

fluid, while it did not show the enhancement of chondro-

genesis by Euflexxa in the absence of the fluid (Fig. 5A).

Therefore, neither the PPAR-d agonist nor HA gel alone is

sufficient to enhance MSC chondrogenesis within OA

synovial fluid.

Then, we mixed GW0742, hBM-MSCs, and HA gel

together prior to incubation in human OA synovial fluid.

We named the mixture Chondrogenic Hyaluronic Acid-

Mesenchymal Stem Cells-PPAR-d agonist (CHAMP). Strik-

ingly, the combination of hBM-MSCs, GW0742, and HA gel

formed multiple large chondrocyte spheroids (Fig. 5A), sug-

gesting that CHAMP can overcome OA synovial inflamma-

tion to form multiple chondrocyte spheroids.

In addition to spheroid counting, we quantified the pro-

tein expression levels of type II collagen, PPAR-d, TGF-b,

and b-actin (b-actin was loading control for normalization)

in chondrocytes formed in different conditions (Fig. 5C–F).

MSCs alone on plastic walls did not express noticeable

amounts of type II collagen, PPAR-d, or TGF-b after 14-d

chondrogenesis. Within synovial fluid, hBM-MSCs on plas-

tic walls expressed PPAR-d and TGF-b but not type II col-

lagen. Addition of either GW0742 or HA gel to hBM-MSCs

slightly increased the expression levels of PPAR-d, TGF-b,

and type II collagen. In contrast, the complete combination

of hBM-MSCs, GW0742, and HA gel (CHAMP) signifi-

cantly increased the protein expression of PPAR-d, TGF-b,

and type II collagen within human OA synovial fluid (Fig.

5C–F). Addition of either GW0742 or CHAMP to hBM-

MSCs slightly decreased the expression levels of type I col-

lagen (Fig. 5G). Type X collagen within human OA synovial

fluid was decreased in CHAMP (Fig. 5I).

Figure 4. GW0742 enhances glycosaminoglycan (GAG) produc-
tion. Human bone marrow–derived mesenchymal stem cells (hBM-
MSCs) in chondrogenic medium were treated with vehicle
(dimethyl sulfoxide [DMSO]) or GW0742 (0.1 mM) every 2 d in a
24-well plate. On day 14, GAGs were stained with 1% Alcian blue.
The images of Alcian blue staining of the whole well or individual
spheroids were taken by a light microscope. (C) The amount of
GAG produced by chondrocytes was quantified by modified
dimethyl-methylene (DMM) method and normalized by DNA con-
tent. *P < 0.005 versus control. Image is the representative of
3 independent experiments. Data presented are the result of
3 independent experiments.

1410 Cell Transplantation 26(8)



Figure 5. Human bone marrow–derived mesenchymal stem cells (hBM-MSCs) were incubated in chondrogenic medium without (control)
and with GW0742, hyaluronic acid (HA), or Chondrogenic Hyaluronic Acid–Mesenchymal Stem Cells–PPAR-d agonist (CHAMP) in 50% of
human osteoarthritis (OA) synovial fluid for 14 d. The numbers of chondrocyte spheroid (>40 mm) were counted for bar graphs (A). The
spheroids were stained with fluorescent agent (DiO) and collagen II were stained with fluorescein isothiocyanate (FITC) to confirm
chondrocytes. The magnified image was taken using confocal microscope (B). On day 14, chondrocytes were processed for immunoblotting
using antibodies to type II collagen, peroxisome proliferator–activated receptor (PPAR) d, transforming growth factor (TGF) b (C–F), type I
collagen, type X collagen, and b-actin (G–I). Protein band densities were measured to obtain bar graphs (C–I). Mean + standard error,
n¼ 3. *P < 0.05 versus control. **P < 0.01 versus control. Image is the representative of 3 independent experiments. Data presented are the
result of 3 independent experiments. Scale bar: 80 mm.
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GAG Content in CHAMP

GAG content was elevated in CHAMP within 3 different

human OA synovial fluids (Fig. 6). Taken together, our

results clearly demonstrate that the combination of hBM-

MSCs, GW0742, and HA gel (CHAMP) is capable of form-

ing chondrocytes that express type II collagen and TGF-b
within human OA synovial fluid.

Discussion

Current MSC-based OA therapy is limited by the absence of

strong chondrogenic inducers and stable scaffolds for chondro-

genesis. The other major problem that decreases the efficacy

of MSC-based OA therapies is synovial inflammation11-13

that blocks MSC chondrogenesis14-17 and type II collagen

expression.18,19 Thus, if MSC therapy is strengthened with

strong chondrogenic inducers, stable scaffolds, and an

ability to overcome inflammation, it is expected to improve

the outcome of MSC-based OA therapy.

We found that the highly selective PPAR-d agonist,

GW0742, has strong chondrogenesis-enhancing properties.

It significantly increased the production of type II collagen

and GAG, two main components of functional cartilage, in

hBM-MSC-derived chondrocytes. It also increased the

expression of TGF-b, the key regulator that enhances

chondrogenesis and suppresses the formation of fibrous and

ossified cartilage.43,73 In addition, we found that the 3-D

environment inside of the HA gel scaffold enhanced MSC

chondrogenesis. The 3-D environment appears to provide

more hypoxic conditions for chondrogenesis.103 Moreover,

the 3-D environment appears to facilitate the condensation of

chondrocytes,104 thus forming chondrocyte spheroids that

simulate the cellular condensation required for embryonic

mesenchymal chondrogenesis by providing the physical and

biochemical cues conducive to cartilage formation.100 Thus,

both the PPAR-d agonist and HA gel have great advanta-

geous properties to enhance chondrogenesis.

Spheroids are well formed when BM-MSCs are grown on

HA and produce GAG, but it may be controversial as to

whether these spheroids are chondrocytes. Therefore, we

isolated these spheroids and stained them with anti-type II

collagen antibody, confirming that type II collagen, a marker

of articular cartilage,105 was highly expressed (Fig. 5B).

In spite of those individual advantageous properties,

the combination of hBM-MSCs with either GW0742 or

HA gel could not form type II collagen-producing chon-

drocytes efficiently within human OA synovial fluid. The

anti-inflammatory properties of MSCs106-108 and

GW074295-98,109,110 were not enough to overcome syno-

vial inflammation. On the other hand, when GW0742,

hBM-MSCs, and HA gel were mixed together, the mix-

ture greatly enhanced the chondrogenesis of hBM-MSCs,

thus forming type II collagen-producing chondrocytes

within human OA synovial fluid. It appears that the com-

bination in CHAMP generates a strong synergism to over-

come the inflammatory environment, thus forming type II

collagen-producing chondrocytes.

Type II collagen expression is associated with early con-

densation when MSCs differentiate into chondrocytes that

express BMPs.111 Type X collagen is expressed in the hyper-

trophic zone and is expressed in the calcification of the

interstitial matrix during endochondral ossification (which

means terminal differentiation).112 Thus, the reduction of

type I and X collagens by GW0742, HA, or CHAMP found

in this study was significant. While GW0742, HA, or

CHAMP inhibited terminal differentiation or degeneration

of chondrocytes (Fig. 5G–I), CHAMP increased type II col-

lagen or GAG content at the same time (Figs. 5C and 6).

These findings imply that CHAMP could be a potential ther-

apy for OA.

Based on previous findings and findings from the current

study regarding CHAMP components, we built a model to

ascertain how those components work together, thus forming

type II collagen-producing chondrocytes inside inflamed

joints (Fig. 7). PPAR-d agonist increases TGF-b that, in turn,

facilitates MSC chondrogenesis with the assistance of HA

gel, resulting in formation of type II collagen-producing

chondrocytes. Later on, the PPAR-d agonist, TGF-b, and

HA gel suppress inflammation and degradation of cartilage.

In our opinion, all of these actions together were expected to

exert an OA-modifying effect.

Transplantation of MSCs þ HA gel as a treatment for

OA has been demonstrated in preclinical and clinical

studies.8,76,90,92 Thus, our articularly injectable formula with

the addition of a PPAR-d agonist to MSCs þ HA gel should

be easily transplantable into the joint. Moreover, since HA

gel has properties that make it a good drug carrier for con-

trolled release,113-117 GW0742 was expected to be slowly

released from HA gel during its priming of MSCs for chon-

drogenesis after it is injected along with MSCs þ HA gel

into the joint. That is, one can easily reproduce the efficiency

of CHAMP transplantation in animal models that we demon-

strated in vitro. Therefore, this study is of extreme impor-

tance as it showed a signaling molecule, that is, PPAR-d
agonist, that enhanced functional cartilage formation in an

Figure 6. The amount of glycosaminoglycan (GAG) produced by
chondrocytes was quantified by modified dimethyl-methylene
(DMM) method and normalized by DNA content with 3 different
synovial fluids from patients. *P < 0.01 versus control.
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inflammatory environment of OA if it is injected with MSCs

þ HA gel into OA-affected synivial fluid.

Conclusions

First, we found a new property of PPAR-d agonist to enhance

chondrogenesis. Second, we discovered a novel combination

of PPAR-d agonist, HA gel, and hBM-MSCs (CHAMP) that

could form type II collagen-producing chondrocytes within

human OA synovial fluid. The combination is actually

designed for articular injection into the synovial cavity such

that it is easily applicable in clinics if use is approved for

clinical trials in the future. Fortunately, all 3 components of

CHAMP are in clinical trials or already available in clinics so

the regulatory process for their entry into clinics is expected to

be short. Our future studies will focus on the efficacy of

CHAMP in treating OA in animal models, which may be

consistent with the clinical outcome in the future.
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