
Citation: Qu, Y.; Yang, Y.; Wu, J.;

Zhang, Y.; Jia, L.; El Dirani, H.;

Crochemore, R.; Sciancalepore, C.;

Demongodin, P.; Grillet, C.; et al.

Photo-Thermal Tuning of Graphene

Oxide Coated Integrated Optical

Waveguides. Micromachines 2022, 13,

1194. https://doi.org/10.3390/

mi13081194

Academic Editor: Maurizio Casalino

Received: 24 June 2022

Accepted: 26 July 2022

Published: 28 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Photo-Thermal Tuning of Graphene Oxide Coated Integrated
Optical Waveguides
Yang Qu 1, Yunyi Yang 2 , Jiayang Wu 1,* , Yuning Zhang 1, Linnan Jia 1, Houssein El Dirani 3,
Romain Crochemore 4, Corrado Sciancalepore 5, Pierre Demongodin 6 , Christian Grillet 6, Christelle Monat 6,
Baohua Jia 2,7,* and David J. Moss 1,*

1 Optical Sciences Center, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
yqu@swin.edu.au (Y.Q.); yuningzhang@swin.edu.au (Y.Z.); ljia@swin.edu.au (L.J.)

2 Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
yunyiyang@swin.edu.au

3 STMicroelectronics, CEDEX, 38926 Crolles, France; houssein.eldirani@st.com
4 Minatec, Optics and Photonics Division, CEA-LETI, 38054 Grenoble, France; romain.crochemore@cae.fr
5 Soitec SA, 38190 Bernin, France; corrado.sciancalepore@soitec.com
6 Institut des Nanotechnologies de Lyon, UMR CNRS 5270, Ecole Centrale Lyon, 69130 Ecully, France;

pierre.demongodin@ec-lyon.fr (P.D.); christian.grillet@ec-lyon.fr (C.G.); christelle.monat@ec-lyon.fr (C.M.)
7 School of Science, RMIT University, Melbourne, VIC 3001, Australia
* Correspondence: jiayangwu@swin.edu.au (J.W.); bjia@swin.edu.au (B.J.); dmoss@swin.edu.au (D.J.M.)

Abstract: We experimentally investigate power-sensitive photo-thermal tuning (PTT) of two-dimensional
(2D) graphene oxide (GO) films coated on integrated optical waveguides. We measure the light power
thresholds for reversible and permanent GO reduction in silicon nitride (SiN) waveguides integrated
with one and two layers of GO. For the device with one layer of GO, the power threshold for reversible
and permanent GO reduction are ~20 and ~22 dBm, respectively. For the device with two layers of
GO, the corresponding results are ~13 and ~18 dBm, respectively. Raman spectra at different positions
of a hybrid waveguide with permanently reduced GO are characterized, verifying the inhomogeneous
GO reduction along the direction of light propagation through the waveguide. The differences between
the PTT induced by a continuous-wave laser and a pulsed laser are also compared, confirming that the
PTT mainly depend on the average input power. These results reveal interesting features for 2D GO
films coated on integrated optical waveguides, which are of fundamental importance for the control and
engineering of GO’s properties in hybrid integrated photonic devices.

Keywords: 2D materials; integrated optics; photo-thermal changes; graphene oxide

1. Introduction

Graphene oxide (GO) is a two-dimensional (2D) material that has attracted significant interest
because of its many attractive properties such as broadband photoluminescence [1–3], high optical
nonlinearity [4–6], strong material anisotropy [7–9], broadband light absorption [10–12], and
tunable material properties in wide ranges [13–15]. In addition, with its facile fabrication processes,
GO has a strong capability for large-scale and manufacturable on-chip integration [8,16].

The incorporation of GO into integrated photonic devices has led to the birth of GO-based
integrated photonics, which has become a very active and fast-growing field [17]. Integrated
photonic devices incorporating GO films have been demonstrated for a range of applications,
such as light absorbers [10,11,18], optical lenses and imaging devices [16,19,20], polarization-
selective devices [8,9], sensors [21–23], and nonlinear optical devices [24–28].

Since GO can be converted to a reduced form with graphene-like properties under
strong light irradiation, high temperature, or microwave treatment [29–33], it has long
been used as a precursor for the preparation of graphene [17,34,35]. Given the difference
between the material properties of GO and reduced GO (rGO) [4,16,36], investigating the
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mechanisms and conditions for GO reduction in hybrid integrated photonic devices is of
fundamental importance for applying this functional 2D material to integrated photonic
devices [17,37].

Previously, we observed power-sensitive photo-thermal changes in GO films coated
onto integrated photonic waveguides [24] and ring resonators [38] in connection with
nonlinear four-wave mixing experiments. The contribution from the photo-thermal changes
to the measurement results is not insignificant. However, so far there has not been an
investigation to quantify such an impact. In this paper, we provide a more detailed
characterization for such changes arising from a range of effects such as photo-thermal
reduction, thermal dissipation, and self-heating in GO layers. We experimentally investigate
photo-thermal tuning (PTT) of 2D GO films coated on integrated optical waveguides. We
measure the light power thresholds for reversible and permanent GO reduction in silicon
nitride (SiN) waveguides integrated with one and two layers of GO. We identify three
reduction stages according to whether the changes are reversible or permanent reductions.
Raman spectra at different positions of a hybrid waveguide with a permanently reduced
GO film are also characterized, showing the inhomogeneous nature of GO reduction in the
direction of light propagation through the waveguide. Finally, we compare the PTT induced
by a continuous-wave (CW) laser and a pulsed laser with the same average power, and
observe negligible difference between them. This confirms that the PTT mainly depends
on the average power rather than the peak power of input light. These results reveal
interesting features for the reduction of GO induced by photo-thermal changes, which
are useful for controlling and engineering GO’s material properties in hybrid integrated
photonic devices.

2. Device Design and Fabrication

Figure 1a shows a schematic illustration of a GO-coated SiN waveguide with a mono-
layer GO film. The bare SiN waveguide has a cross-section of 1.70 × 0.72 µm. A com-
plementary metal-oxide-semiconductor (CMOS) compatible crack-free method [39] was
utilized to fabricate the uncoated SiN waveguides. First, a two-step deposition of SiN films
was achieved via low-pressure chemical vapor deposition (LPCVD) for strain management
and crack prevention. Next, 248-nm deep ultraviolet lithography and dry etching based on
CF4/CH2F2/O2 fluorine were used for waveguide patterning. After that, a silica cladding
layer was deposited, followed by window opening on it down to the waveguide top surface
via lithography and dry etching processes. The window was located near the waveguide
input to enable a relatively high optical power injected into the GO coated segment [40].
The length of the opened window was Lw = 1.4 mm, and the total length of the SiN waveg-
uide was L = 2 cm. Finally, 2D layered GO films were coated onto the SiN waveguide by
using a solution-based method (first proposed in [16]) that enabled transfer-free and layer-
by-layer film coating. This method, which is based on film self-assembly via electrostatic
forces, has been employed in many previous reports [8,10,11,24,25,38]. As evidenced by
the substantial experimental results in the previous papers, the GO films fabricated using
this method show a high reproducibility in terms of film properties (e.g., thickness, con-
ductivity, refractive index, light absorption, and third-order optical nonlinearity), together
with good morphology and high uniformity across large coated areas. Compared to the
cumbersome film transfer processes employed for on-chip integration of 2D materials such
as graphene and TMDCs [41–45], this GO coating method is highly scalable, enabling the
precise control of the GO layer number (i.e., film thickness), the ability to coat large-area
films, and good film attachment onto integrated chips [16,17,46]. A detailed characteri-
zation of the thicknesses (i.e., layer numbers) of the as-prepared GO films was reported
in [8,16,24,25,38] using atomic force microscopy (AFM), confirming the good morphology
and high uniformity of film coating over large areas (e.g., 4-inch silicon wafer). Here,
we only took microscope images for the fabricated devices to check whether there was
waveguide damage or dust particles. A micrograph of the fabricated device corresponding
to Figure 1a is shown in Figure 1b. The GO film coated on the chip surface exhibited good
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morphology, high transmittance, and high uniformity. Figure 1c shows a schematic for the
cross section of the GO-SiN waveguide in Figure 1a, the corresponding TE mode profile is
shown in Figure 1d. The light-matter interaction between the waveguide evanescent field
and the GO film can induce power-sensitive photo-thermal changes in the GO film, which
has been observed previously [24,37,38]. In this paper, we only investigate PTT induced
by the TE polarized light since TE polarization supports the in-plane interaction between
the waveguide evanescent field and the 2D GO film, which is much stronger compared to
the out-of-plane interaction given the significant anisotropy of 2D GO films [8,41,42,47,48],
thus allowing for the excitation of higher levels of photo thermal changes.

Figure 1. (a) Schematic illustration of a SiN waveguide coated with 1 layer of GO. (b) A micro-
graph showing the area around the opened window of the fabricated device corresponding to (a).
(c) Schematic illustration of the cross-section of the hybrid waveguide. (d) TE mode profile corre-
sponding to (c).

3. Experimental Results

Figure 2 shows the experimental setup for characterizing PTT of GO films coated
on integrated optical waveguides. Two CW light sources having different powers were
employed. The low power one was used to measure the loss at low powers without
measurable photo-thermal changes in the GO films, whereas the high-power one was
achieved by amplification with an erbium-doped fiber amplifier (EDFA) to excite the PTT.
A pulsed laser source (repetition rate: 60 MHz, pulse width: 3.7 ps) was also employed
to compare the level of photo-thermal changes with that induced by the CW light. The
wavelengths of both the CW sources and the center wavelength of the picosecond optical
pulses were near 1550 nm. Polarization controllers (PCs) were employed to ensure the TE
polarization of the input light. An optical isolator was inserted in the high-power light
path to prevent the reflected light from damaging the light source. The input laser was
split into two beams via a 50:50 beam splitter, with one injecting into the device under test
(DUT) and the other sent to an optical power meter (OPM) for monitoring the input power.
Lensed fibers were used to butt couple light into and out of the DUT with a coupling loss of
~2 dB/facet. A charged-coupled device (CCD) camera was placed above the waveguide to
monitor the adjusting of the coupling. Another OPM was employed to measure the output
power after passing through the DUT.
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Figure 2. Experimental setup for characterization of PTT of GO-coated integrated waveguides.
EDFA: erbium-doped fiber amplifier. PC: polarization controller. DUT: device under test. CCD:
charged-coupled device. VOA: variable optical attenuator. OPM: optical power meter.

Figure 3a depicts the measured insertion loss of the integrated waveguide coated with
1 layer of GO versus input CW power. Unless otherwise specified, the input power of
CW light or optical pulses in this paper represents the power coupled into the waveguide
after subtracting the fiber-to-chip coupling loss. In order to characterize both the reversible
and permanent changes of the material properties, after each measurement at a specific
input power, we turned off the high-power CW light and remeasured the insertion loss
with low-power CW light at 0 dBm. The insertion loss was measured after applying the
CW power for about 30 s, which was long enough for the waveguide to reach a steady
thermal equilibrium state. The results measured using the high-power and the low-power
CW light sources are shown by the red and blue dots, respectively. As can be seen, the
evolution of the PTT of the GO film can be divided into three reduction stages. At Stage I,
when the input power was below 20 dBm, the insertion loss of the waveguide remained
constant despite the increase in input power, reflecting that there was negligible change
in the absorption of the GO film and that the light power was not high enough to induce
obvious photo-thermal changes. At Stage II starting from 20 dBm, the insertion loss showed
a slight but observable increase with the input power, indicating the occurrence of the
photo-thermal changes in the GO film. The results measured using low-power CW light
after turning off the high-power CW light remained constant. This reflects the fact that
there were no permanent changes in the GO films, and the photo-thermal changes at this
stage were reversible. These features of the photo-thermal changes in the GO films are
consistent with previous reports [24,37,40,42]. For Stage III, when the input power was
further increased to above 22 dBm, the results measured using low-power CW light also
showed an obvious increase with input power. Since permanently reduced GO films did
not show any obvious power dependence [10,11], this reflects the fact that there were
permanent changes in the GO films. In addition, the difference between the red dots and
their corresponding blue dots indicates that there was still reversibly reduced GO and only
part of the GO film was permanently reduced. We infer that there would be a new stage
after Stage III at even higher powers, where the difference between the red and blue dots
at the same power would vanish due to the full reduction of all the GO films [49,50]. We
could not observe this stage in our experiments since we had already applied the maximum
experimentally available power to the DUT.
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Figure 3. Experimental results for characterizing PTT of the hybrid waveguide coated with 1 layer
of GO. (a) Insertion loss of the hybrid waveguide versus the input power of the high-power light
source. The red dots show the loss of the high-power CW light source, and the blue dots show the
loss measured with a low-power CW light source after exposure at the power level indicated on
the X-axis. (b) GO-induced excess propagation loss (EPL) versus input power of the high-power
light source. The red and blue dots show the results corresponding to the red and blue dots in (a),
respectively. (c) ∆EPL extracted from (b) showing the difference between the red and blue dots. In
(a–c), I–III show the three reduction stages during the PTT process.

Figure 3b depicts the GO-induced excess propagation loss (EPL) extracted from
Figure 3a. The EPL (dB/cm) is defined as

EPL = (IL − IL0)/Lw (1)

where IL is the measured insertion loss of the hybrid waveguide in Figure 3a, IL0 is the
insertion loss of the bare waveguide, and Lw is the GO film length. Figure 3c shows the
∆EPL extracted from Figure 3b, which is defined as the difference between the red and
blue dots after exposure by the high-power CW source at the input power indicated on the
x-axis. As can be seen, the ∆EPL remained zero at Stage I, and started to increase at Stage
II. In Stage III, the ∆EPL first slightly increased and then decreased when the input power
was above 24 dBm. This can be attributed to the hybrid nature of GO films at this stage
involving the co-existence of permanently and reversibly reduced GO.

The corresponding experimental results for the hybrid waveguide coated with 2 layers
of GO are shown in Figure 4. Figure 4a shows the measured insertion loss versus input
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CW power. Similar to the results for the device with 1 layer of GO, the evolution of the
PTT of the device with 2 layers of GO can also be divided into three reduction stages with
increasing input power. Compared to the results in Figure 3a, the power thresholds for
Stage II and Stage III were lower, with Stage II starting at 13 dBm and Stage III starting at
18 dBm. This reflects the fact that the power endurance of the film with 2 layers of GO was
lower than the film with 1 layer of GO.

Figure 4. Experimental results for characterizing PTT of the hybrid waveguide coated with 2 layers
of GO. (a) Insertion loss of the hybrid waveguide versus the input power of the high-power light
source. The red dots show the loss of the high-power CW light source, and the blue dots show the
loss measured with a low-power CW light source after exposure at the power level indicated on
the X-axis. (b) GO-induced excess propagation loss (EPL) versus input power of the high-power
light source. The red and blue dots show the results corresponding to the red and blue dots in (a),
respectively. (c) ∆EPL extracted from (b) showing the difference between the red and blue dots. In
(a–c), I–III shows the three reduction stages during the PTT process.

Figure 4b shows the GO induced EPL extracted from Figure 4a. Compared to the
results in Figure 3b, the EPL here increased more slowly with input power. At Stage I, the
excess propagation loss induced in the film with 2 layers of GO is about twice that induced
in films with a single layer of GO. However, at Stage II and Stage III, the difference between
the EPL induced in 1 and 2 layers of GO became smaller, particularly at higher powers
above 20 dBm. This is because the EPL defined in Equation (1) is a parameter averaged
over the GO film length, whereas the reduction of GO in practical hybrid waveguides
induced by the photo thermal changes is nonuniform, i.e., the GO film at the beginning of



Micromachines 2022, 13, 1194 7 of 11

the waveguide is more easily reduced, which absorbs more light power and so protects
the GO film following it from being reduced. The film with 2 layers of GO absorbed more
light than the film with 1 layer of GO, and so the light transmission was more attenuated
over a shorter distance, resulting in a higher proportion of unreduced GO. The loss of the
non-reduced 2 layers of GO was lower than the single layer of rGO, thus resulting in a
lower EPL.

Figure 4c shows the ∆EPL extracted from Figure 4b. Unlike the trend in Figure 3c,
the ∆EPL here increases with input power in Stages II and III without showing obvious
decrease. This is because for the hybrid waveguide with 2 layers of GO, only a small length
of the GO film near the waveguide input was permanently reduced, leaving significant
lengths of GO films that were either non-reduced or only reversibly reduced. Although the
∆EPL increased to above zero at relatively low input power for the device with 2 layers
of GO, it increased more slowly with input power, with the values at high input powers
being smaller than those for the device with 1 layer of GO. This is because for the film
with 2 layers of GO, the reversibly reduced GO experienced relatively lower power (14–18
dBm), while the film exposed to higher power was permanently reduced and no longer
exhibited ∆EPL. On the other hand, for the single layer GO film, the reversibly reduced GO
experienced relatively higher powers (20–22 dBm), thus yielding a higher ∆EPL.

4. Discussion

In Section 3, the inhomogeneous GO reduction along the hybrid waveguides was used
to explain several experimental phenomena. To verify the inhomogeneous nature of the
GO reduction induced by the photo-thermal changes, we characterized the Raman spectra
of two layers of GO coated on an integrated waveguide after applying a maximum input
power of 24 dBm. Micro-Raman spectroscopy (inVia Raman microspectrometer, which
consisted of a Raman spectrometer integrated with a 100× objective to focus the light beam)
with a spot diameter on the order of 10−6 m (close to the width of the integrated waveguide)
was employed. The laser wavelength was ~514 nm. The irradiance laser intensity was on
the order of 10−1 GW/cm2, which was kept the same for all measurements. The results
are shown in Figure 5, where representative D and G peaks of GO can be clearly identified.
Near the waveguide input, the D and G peaks of the detected Raman signals are relatively
small, with a D/G ratio being larger than 1. This is similar to that of rGO [16,51,52],
indicating that the GO film here was reduced. In contrast, for positions further away from
the waveguide input, the D/G ratio decreased to less than 1, together with an increased
intensity for the detected Raman signal. These characteristics show agreement with Raman
spectra of GO having fewer defects [13,53,54] and reflect the fact that the GO away from
the waveguide input was reduced less. According to our previous measurements [16], only
fully reduced GO (with its material properties close to graphene) shows an obvious 2D peak
in the Raman spectrum, whereas GO and partially reduced GO do not show obvious 2D
peaks. For the Raman spectra in Figure 5, no obvious 2D peaks were observed. Therefore,
we infer that the GO film coated on the integrated waveguide was not fully reduced despite
the fact that there were permanent changes in its properties.

Figure 5. Raman spectra of 2 layers of GO coated on an integrated waveguide after applying an input
CW power of 24 dBm.
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To compare the PTT induced by CW light versus optical pulses, we measured the
EPLs of the hybrid waveguides with a single GO layer for both CW light and optical pulses
having the same average power. The results are shown in Figure 6. The optical pulses had
a repetition rate of ~60 MHz and a pulse width of ~3.7 ps, which corresponded to a peak
power 4 × 103 times higher than the CW light with the same average power. As can be seen,
both the CW light and the optical pulses induced measurable EPLs at high average input
powers. The small difference between them indicates that the EPL was mainly a function
of the average power rather than peak power. This is in agreement with observations in
GO films arising from photo-thermal processes in previous works [24,37,38], and further
confirms the existence of the photo thermal changes. In contrast, the changes induced by
ultrafast nonlinear optical processes such as four-wave mixing, two-photon absorption, and
saturable absorption are dependent on the peak input light power [40,55–59]. The slightly
lower EPL induced by optical pulses compared to CW light can be attributed to saturable
absorption in the GO films caused by the high peak powers, which was also observed in
previous works [25,28,39]. We also measured permanent EPLs at low-power CW light (0
dBm) after turning off the high-power CW light and optical pulses. The permanent EPLs
induced by the CW and optical pulses showed negligible difference, reflecting the fact that
the permanent reduction of GO was mainly induced by the photo-thermal changes. Since
the pulsed laser source used in our measurements only had fixed pulse width and period,
we did not investigate the photo-thermal changes induced by optical pulses with different
widths and periods, which is interesting and could be the subject of future work.

Figure 6. Experimental results of the total and permanent EPL induced by a CW light and optical
pulses versus average input power for the hybrid waveguides coated with 1 layer of GO.

5. Conclusions

We present detailed investigations of the PTT of GO films coated on integrated optical
waveguides. Reversible and permanent GO reduction is observed by applying different
CW laser powers to the devices with one and two layers of GO. The corresponding power
thresholds are measured, with three reduction stages being identified. For the device with
one layer of GO, the power threshold for reversible and permanent GO reduction are ~20
and ~22 dBm, respectively. For the device with two layers of GO, the corresponding results
are ~13 and ~18 dBm, respectively. The Raman spectra at different positions of a hybrid
waveguide with a permanently reduced GO film are characterized, which verifies the
inhomogeneity of GO reduction. The photo-thermal changes induced by CW light and
optical pulses with the same average power are also compared, which show negligible
difference and confirms that the PTT mainly depends on the average input power. These
results are useful for controlling and engineering the material properties of GO in hybrid
integrated photonic devices.
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