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The tumor microenvironment (TME) plays a critical role in tumorigenesis and is
composed of different cellular components, including immune cells and mesenchymal
stromal cells (MSCs). In this review, we will discuss MSCs in the TME setting and
more specifically their interactions with immune cells and how they can both inhibit
(immunosurveillance) and favor (immunoediting) tumor growth. We will also discuss
how MSCs are used as a therapeutic strategy in cancer. Due to their unique
immunomodulatory properties, MSCs isolated from perinatal tissues are intensely
explored as therapeutic interventions in various inflammatory-based disorders with
promising results. However, their therapeutic applications in cancer remain for the most
part controversial and, importantly, the interactions between administered perinatal MSC
and immune cells in the TME remain to be clearly defined.

Keywords: perinatal, placenta, mesenchymal stromal cells, cancer, tumor microenvironment, inflammation,
immunosurveillance, immunoediting

INTRODUCTION

It is now clear that the tumor microenvironment (TME) is essential in tumorigenesis (Mantovani
et al., 2008). Different immune players are found in the TME, such as those pertaining to innate
immunity [i.e., macrophages, neutrophils, mast cells, myeloid-derived suppressor cells (MSDCs),
dendritic cells (DCs), and natural killer (NK) cells] and those of adaptive immunity (T and B
lymphocytes) (Turley et al., 2015). Immune cells within the TME give rise to an inflammatory
response, which plays a fundamental role in all stages of tumor growth (Mantovani et al., 2008),
where on one hand it can stimulate an anti-tumor immune reaction (immunosurveillance), and
on the other hand it can be exploited to promote cancer progression (immunoediting) (O’Donnell
et al., 2019). In addition, the TME is also composed of tumor stroma cells that have multifaceted
interactions with immune cells [mesenchymal stromal cells (MSCs), fibroblasts, endothelial cells,
and pericytes] (de Visser et al., 2006). The heterotypic interactions that occur between these
different players are highly complex and involve the exchange of molecules such as cytokines,
chemokines, and mitogens, which are crucial in determining a pro- or anti-tumor outcome.

MSCs isolated from bone marrow, adipose tissue, and fetal tissues are also intensely explored as
therapeutic interventions in various inflammatory-based disorders, including cancer. The rationale
behind their use lies within their remarkable migration ability, which can be employed for
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therapeutic strategies, such as the delivery and local secretion
of bioactive factors and/or for the tumor-specific delivery
of chemotherapeutic agents. The challenges that lie ahead
of the transition from bench to bedside involve a superior
understanding of the interplay between the tumor, its
microenvironment, and administered/exogenous MSC. Indeed,
once caught in the tumor net, MSCs can be hijacked by the
malignant cells and manipulated for the tumor’s own advantage.
Nonetheless, many studies have also ascertained that exogenous
MSCs restrain tumor progression.

In this review, we will discuss MSCs in the context of the TME
and more specifically immune cells, and the interactions between
MSCs and immune cells within the TME that can either inhibit
or favor tumor growth. We also discuss how MSCs can be used
as a therapeutic strategy in cancer, with a particular focus on
perinatal MSCs, the latter of which has been our research interest
for over 15 years.

THE IMMUNE SYSTEM IN CANCER

Tumor Suppression: Immunosurveillance
The importance of immune cells (and inflammation) in
controlling and contributing to tumor progression has been
acknowledged for decades. Both innate and adaptive immune
components actively patrol the body to identify and eradicate
incipient tumor cells, and the description of tumor-infiltrating
lymphocytes with effector and memory functions within primary
tumors and their metastases have been largely described (Motz
and Coukos, 2013). The presence of an immune infiltrate
is generally associated to good prognosis; however, this is
largely dependent on the tumor type, location of the cells, and
their state of activation (Barnes and Amir, 2018). Tumor cells
express mutated neo-antigens, non-mutated antigens encoded
by genes overexpressed by cancer cells, or antigens encoded by
differentiation genes related to the cancer’s tissue of origin. DCs
process tumor antigens and promote their presentation to T
cells, generating an anti-tumor response. Within T cells, CD8+
cytotoxic T cells remain the most potent mediators of anti-tumor
immunity, and a response directed by either CD4+ T helper 1
(Th1) cells or Th17 cells promote CD8+ effector T cell responses
(Martin-Orozco et al., 2009). Their efficacy is suggested by the
fact that a large infiltration of CD8+ cytotoxic T cells is linked to
a favorable prognosis in different types of tumors, such as breast,
ovarian, lung, and colorectal cancer (Barnes and Amir, 2018).

Several studies have underlined the critical and distinct
roles for γδ T cells, and αβ T cells (Girardi et al., 2003),
as well as NK and NKT cells, in immunosurveillance against
cancer (Smyth et al., 2000; Dunn et al., 2004) in which
interferon-γ (IFN-γ), perforin, and IFN-α/β represent key
factors involved in triggering cancer cell death (Smyth et al.,
2000; Dunn et al., 2004). B lymphocytes can also promote
anti-tumor immunity, as shown by the detection of antibodies
against tumor antigens in the serum of cancer patients
(Yuen et al., 2016). Antibodies have multifaceted functions
in the TME. They can activate the complement cascade,
alter the function of their targets on cancer cells, opsonize

tumor cells for antigen presentation by DC, or contribute
to NK cell-mediated tumor killing via antibody-dependent
cell-mediated cytotoxicity (Yuen et al., 2016). Classically, T-cell
priming occurs in tumor-draining secondary lymph nodes;
however, spontaneously organized tertiary lymphoid organ
structures can be encountered in tumors, suggesting a local
anti-tumor defense, with a T-cell education that can occur within
the tumor stroma, thus suggesting a local T-cell education and
anti-tumor defense. Again, their presence is associated with
favorable prognosis in most solid malignancies (Allen et al., 2017;
Sautes-Fridman et al., 2019).

Tumor Promotion: Immunoediting
The surveillance of immune cells seems to be achieved only at
the earliest stages of tumorigenesis. In the majority of established
tumors, the presence of lymphocytes is not sufficient for curbing
tumor growth. In addition, whereas controlled inflammation may
be involved in the eradication of tumors, excessive inflammation
may facilitate the transformation process. These considerations
have given rise to the concept referred to as immunoediting
(Dunn et al., 2004) whereby tumor cells constantly edit and
modulate the host antitumor immune response, thus shaping
tumor immunogenicity and clonal selection and ultimately
shifting the balance in favor of tumor growth. Furthermore,
in the initial phases of tumor expansion and progression,
tumor cells contribute to creating an inflammatory milieu
(Coussens and Werb, 2002) by producing and releasing high
amount of molecules that either directly or indirectly induce
cell proliferation, recruit inflammatory cells that further support
tumor growth (Ren et al., 2012; Greten and Grivennikov, 2019),
and increase production of reactive oxygen species (Coussens and
Werb, 2002; Landskron et al., 2014).

However, within the TME, there are different cells, such as
MSCs, that can impact the immune response (Figure 1), the latter
of which has a profound impact on tumor progression.

MSCs IN THE TME

Regardless of the biological setting, MSCs perform supportive
and regenerative functions, thus nourishing the surrounding
environment, and MSCs located in the same tissue but exposed
to different stimuli may adjust their behavior accordingly,
as demonstrated by three-dimensional models that study the
interactions between MSCs, tumor cells, and immune cells
(Poggi et al., 2018). Indeed, stromal cell heterogeneity has been
attributed to stage of development, tissue of origin, and tissue
microenvironment (Lynch and Watt, 2018).

Generally, MSCs constitute an important component of the
tumor stroma (herein referred to as tumor-associated MSC,
TA-MSC). Faithful to their intrinsic role as supportive cells
(Caplan and Dennis, 2006), MSCs have been shown to act in
a multi-modal fashion and to directly or indirectly contribute
to tumor survival and progression, although evolving data also
argue for a role in tumor regression (Oloyo et al., 2018).

Before digging into MSC functions within the TME, it
is important to clearly define MSCs, their origin, and what
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FIGURE 1 | The role of MSC in the tumor microenvironment. Mutations occurring in cells can trigger tumor initiation. During the initial steps, tumor cells proliferate,
produce, and release antigens that can be recognized by the immune system. At this point, a subtle balance between the action of immunosurveillance performed
by both innate and adaptive immunity counteracts the actions of tumor cells giving rise to a complex network of interactions within the surrounding tumor
microenvironment (TME). Indeed, MSCs in contact with the tumor cells, referred to as tumor-associated MSC (TA-MSC), could be considered a crucial axis of these
interactions by altering tumor cell phenotype and the release of cytokines and other molecules that can in turn trigger the education of immune cells and of other
progenitor cells present in the TME. These interactions give rise to MSC involvement in immunosurveillance (A) or immune-editing (B), whereby MSCs can stimulate
an anti-tumor immune reaction or skew immune cells toward an immune suppressive phenotype thus favoring immune evasion. T eff, T effector; DC, dendritic cells;
Treg, T regulatory cell; MDSC, myeloid derived suppressor cell; MSC, mesenchymal stromal cell; TA-MSC, tumor associated MSC; M1, macrophage type M1; TAM,
tumor associated macrophage.

attracts them to malignancy; in the following sections, we will
discuss these aspects.

MSC Phenotype and Origin
MSCs are primordial multi-potent fibroblast-like cells first
described in the bone marrow by Friedenstein et al. (1968,
1974), with the capacity to regenerate bone marrow stroma at
heterotypic sites (Sacchetti et al., 2007). These cells are now
believed to reside in almost all fetal and post-natal organs
(da Silva Meirelles et al., 2006; Crisan et al., 2008; Marrazzo et al.,
2016), bearing tissue-specific transcriptional profiles and lineage
capabilities (Sacchetti et al., 2016).

Owing to the lack of unequivocal markers of endogenous
MSC, our knowledge of the properties of these cells has its
roots in in vitro studies. Indeed, the difficulties encountered

in discriminating naïve MSCs from other cell populations
in vivo, such as fibroblasts (Soundararajan and Kannan, 2018)
and pericytes (Cano et al., 2017), persist also in cancer. As
a matter of fact, cancer-associated fibroblasts (CAFs) coexist
as heterogeneous population comprising cells with overlapping
phenotypes, whose proportion may vary according to the tumor,
and of which MSCs constitute only a fraction, thus often
generating inconsistency and confusion within the field.

As bone marrow-derived cells constitute the earliest and the
best characterized MSC (BM-MSC), most of the studies exploited
their phenotypic pattern to isolate mesenchymal stromal-like
cells from various sources, including cancer. In 2006, a position
paper by the International Society for Cellular Therapy (ISCT)
(Dominici et al., 2006) delineated a set of minimal criteria to
identify human BM-MSC in vitro, such as (a) plastic adherence;
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(b) positive expression of CD105, CD73, and CD90, and
absence of the hematopoietic antigens CD45, CD34, CD14 or
CD11b, CD79α or CD19, and HLA-DR; and (c) multi-lineage
differentiation. The BM-MSC phenotype has often been used as a
reference for the TA-MSC phenotype.

MSCs have been isolated from different types of
human malignancies, including head and neck (Kansy
et al., 2014), glioma (Behnan et al., 2014; Hossain et al.,
2015; Shahar et al., 2017; Svensson et al., 2017), breast
metastasis (Gonzalez et al., 2017), cervical (Avila-Ibarra
et al., 2019), ovarian (McLean et al., 2011; Coffman et al.,
2019; Naour et al., 2019), lung (Galland et al., 2017),
prostate (Hughes et al., 2019), neuroblastoma (Pelizzo
et al., 2018), and colorectal (Zhang et al., 2018) cancer.
Even if the MSCs in these studies adhered to the ISCT
phenotype (Dominici et al., 2006), it is important to bear in
mind that tumor cells can also exhibit a mesenchymal-like
phenotype, making it difficult, or even impossible, to
discriminate them from MSCs.

MSCs have often divided the scientific community concerning
many aspects of their biology. In cancer, one of the questions
that is still a matter of debate is whether TA-MSCs originate
from the local microenvironment or are recruited from remote
locations of the body. Several studies have indeed shown that
CAFs may arise from local fibroblasts and MSCs (Udagawa et al.,
2006; Erez et al., 2010; Kojima et al., 2010; Sharon et al., 2015;
Arina et al., 2016), from adipocytes and adipocyte-associated
stromal cells (Zhang et al., 2009, 2012; Dirat et al., 2011;
Bochet et al., 2013), from the recruitment of BM-MSCs into
the tumor tissue (Direkze et al., 2003, 2004; Mishra et al.,
2008; Spaeth et al., 2009; Quante et al., 2011; Kidd et al.,
2012; Kalluri, 2016; Borriello et al., 2017; Raz et al., 2018;
Bhagat et al., 2019), from endothelial-to-mesenchymal transition
(EndMT) of tumor-associated endothelial cells (Zeisberg et al.,
2007), and from epithelial-to-mesenchymal transition (EMT) of
non-malignant or malignant epithelial cells (Radisky et al., 2007).
Several pathways have been reported to drive the transition of
MSCs into CAFs, such as epigenomic reprogramming via lactate
in pancreatic cancer (Bhagat et al., 2019), exposure to oxidative
stress in breast cancer (Toullec et al., 2010), C-X-C chemokine
receptor type 6 (CXCR6) (Jung et al., 2013), and transforming
growth factor (TGF)β1 (Barcellos-de-Souza et al., 2016) signaling
in prostate cancer, and a supportive role for CD44 in preserving
a functional phenotype of CAF has been described (Spaeth
et al., 2013). Once within the tumor, BM-MSCs become activated
fibroblasts, express markers typical of myofibroblasts such as
alpha smooth muscle actin (α-SMA), vimentin, or fibroblast
specific protein (FSP) (Quante et al., 2011) and contribute to
extracellular matrix remodeling (Dumont et al., 2013), eventually
fine-tuning their activation state according to the clues they
perceive (Augsten, 2014). Activated fibroblasts further display
enhanced proliferative and migratory capacity as a consequence
of TGFβ1 (Lohr et al., 2001) and platelet-derived growth factor
(PDGF) (Vignaud et al., 1994; Cheng et al., 2013) stimulation,
among others. To sustain this new highly energetic and extremely
expensive “lifestyle,” CAF undergo a metabolic reprogramming,
thus relying upon aerobic glycolysis, often in a cooperative

interaction with tumor cells (Fiaschi et al., 2012; Lyssiotis and
Kimmelman, 2017).

Endowed with the capacity to promote or restrain tumor
growth, stromal cells exert their action by manipulating several
components of the TME, and in particular immune cells.

MSC Crosstalk With Immune
Components of the Inflammatory Niche
in Solid Cancer
Several studies have underlined the relevance of MSC in
supporting tumorigenesis targeting several components and
pathways of the TME. Much evidence supports MSCs action
on tumor immune cells through their paracrine actions and
the ability to modify the microenvironment and consequently
the activity of the other cells (Wang et al., 2014; Shi et al.,
2017). MSCs indeed can be induced by cytokines such as
IFNγ, tumor necrosis factor alpha (TNFα), and interleukin
(IL)-1 to release molecules that are involved in regulation of
the innate and adaptive response of the immune system, such
as prostaglandin E2 (PGE2) and indoleamine 2,3-dioxygenase
(IDO), and chemokines, such as C-X-C chemokine motif ligand
(CXCL)-9, CXCL10, and CXLC11, inducible nitric oxide synthase
(iNOS) and other catabolites, such as adenosine (Ren et al., 2008).

Furthermore, TA-MSCs release mitogens such as epithelial
growth factor (EGF), hepatocyte growth factor (HGF), EGF
family members, insulin-like growth factor-1 (IGF-1), and
different members of the fibroblast growth factor (FGF) family,
which are able to directly stimulate cancer cell proliferation, and
they release chemokines, such as stromal cell-derived factor-1
(SDF-1/CXCL12) able to trigger the recruitment of progenitor
cells or the proliferation of stem cells (Franco et al., 2010;
Rasanen and Vaheri, 2010). As a matter of fact, a role for
the stromal compartment in chemo-resistance either through
cell–cell contact or in a paracrine fashion has been proposed
(Castells et al., 2012), and has also been shown to sustain cancer
stemness (Su et al., 2018).

Moreover, TA-MSCs can promote EMT favoring tumor
spread and the extracellular matrix remodeling (Ghosh et al.,
2020). Increased invasiveness has been reported in 3D in vitro
models based on heterotypic cell culture systems where TA-MSCs
modulate ECM stiffness via matrix synthesis and remodeling,
thus supporting tumor cell mobility and invasion (Akerfelt et al.,
2015; Chung et al., 2017; Lee et al., 2018).

A pro-metastatic phenotype for TA-MSCs has been reported
to be dependent on a variety factors, such as CXCL12, shown
to favor EMT in prostate cancer (Jung et al., 2013) and,
together with IGF-1, to select for clones with bone-metastatic
ability in breast cancer (Zhang et al., 2013). In addition, a
tumor–MSC–tumor feedback loop involving CCL5 signaling
(Karnoub et al., 2007) and enhanced collagen deposition via
discoidin domain receptor (DDR)-2 on TA-MSCs (Gonzalez
et al., 2017) has been shown to stimulate breast cancer motility,
invasion, and fibronectin alignment (Erdogan et al., 2017);
enhance TA-MSC engulfment by breast cancer cells linked to
enhanced metastatic potential (Chen et al., 2019); and enhance
TA-MSC-derived exosomes by cancer stem cell thus boosting
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glioma aggressiveness (Figueroa et al., 2017). Exosomes, the
smallest (30–150 nm) member of the extracellular vesicle family,
represent a carrier for miRNA and other paracrine signals
or factors capable of modulating the response of cancer cells
and the immune system in the TME (Figueroa et al., 2017;
Biswas et al., 2019).

The following sections of this review will focus on the ability
of MSCs to affect tumorigenesis through their interplay and
modulation of immune cells within the TME.

MSCs and Cells of the Innate Immune System
MSCs in the TME play a relevant role in favoring the
recruitment and differentiation of different subsets of innate
immune cells. In vitro and in vivo studies have shown that
MSCs isolated from different sources are able to affect monocyte
differentiation toward antigen-presenting cells, skewing them
from the canonical inflammatory phenotype to acquire features
typical of tolerogenic cells (Spaggiari et al., 2009; Magatti
et al., 2015; Chiossone et al., 2016). Furthermore, MSCs skew
the differentiation of monocyte-derived dendritic cells toward
MDSCs through the action of the secreted growth-regulated
oncogene (GRO-y) chemokine (Chen et al., 2013). Moreover,
MSCs can also trigger the expansion of MDSCs through the
release of high amounts of HGFs, demonstrating that the
mechanism of function of the MSCs was not strictly associated
to the release of immunomodulatory cytokines or chemokines,
but was also related to the release of mitogens.

Others have highlighted the relevant role that cancer cells
have in educating the stromal component associated to the
tumor (TA-MSCs or CAFs), consequently influencing their
properties. For example, lymphoma-associated MSCs can trigger
the recruitment of neutrophils, monocytes, and macrophages to
the TME through the release of high amounts of chemokine
(C-C motif) ligand-2 (CCL2), CCL7, and CCL12, all of which
are ligands of the CCR2 receptor that mediates chemotaxis
and migration processes. The same effect was not observed
when the experiments were performed using “non-tumor
educated” bone marrow MSCs (Ren et al., 2012). The increased
expression of the CCR2 ligand on BM-MSC was reported to
be strictly related to the exposure to the inflammatory cytokine
TNFα (Ren et al., 2012). In line with these observations,
“tumor-educated” MSCs, and more specifically MSCs isolated
from squamous cell lung carcinoma, became more strongly
immunosuppressive in comparison to MSCs isolated from
healthy tissues. Indeed, TA-MSCs were able to not only affect
the phenotype but also decrease the cytotoxic activity of NK
cells dampening their immune function (Galland et al., 2017).
The immunosuppressive mechanisms, as illustrated by the
type and quantity of immunosuppressive cytokines produced
and the level of NK cell receptor ligands expressed, may
differ between healthy and TA-MSCs, possibly as a function
of the type of stimulatory microenvironment to which the
cells are exposed (Galland et al., 2017). In addition, human
and mouse TA-MSC exosomes were shown to accelerate
breast cancer progression by inducing differentiation of MDSC
into highly immunosuppressive M2-polarized macrophages
(Biswas et al., 2019).

In quiescent tissues and in the absence of inflammatory
stimuli, MSCs decrease or even temporarily lose their
immunosuppressive features. Instead, in a TME that mimics
tissue repair and contains a vast array of inflammatory cytokines
derived from tumor cells, MSCs can be stimulated to release
immunosuppressive molecules.

MSCs and Cells of the Adaptive Immune System
Adaptive immunity plays a fundamental role in controlling
tumor progression. After tumor-associated macrophages, T
and B lymphocytes are the second most frequent type of
immune cell found within the tumor (Speiser et al., 2016;
Donadon et al., 2017).

In fact, during tumor progression, the loss of immunogenicity
by the tumor cells, together with the induction of peripheral
tolerance, causes the tumor to evade the action of the cytotoxic
component of the immune system (Palucka and Coussens, 2016).

The mechanism of induction of a peripheral tolerance is
considered to be part of the normal control mechanisms of
the inflammatory response; MSCs and the tumor stroma play a
pivotal role in this regard. For example, bone marrow stromal
cells have been shown to skew T lymphocyte toward Treg
(Patel et al., 2014). Treg induction has been shown to occur
through the release of TGFβ1, ultimately protecting breast cancer
cells from an immune attack. Indeed, in vitro experiments
confirmed the capacity of MSCs to affect the TME, creating
an immune suppressive microenvironment, whereby BM-MSCs
were able to protect T47D breast cancer cells from the cytotoxic
activity of CD8 and NK cells by inducing Treg polarization
(Patel et al., 2010).

In addition, BM-MSCs have been shown to reduce
the expression of the chemokine CXCL12 by reducing
the recruitment of peripheral blood mononuclear cells
(PBMCs) to the tumor and by promoting the polarization
of lymphocytes toward a Th2 subset with expansion of Treg
cells (Patel et al., 2010). The suppressive effect of MSCs
was demonstrated also in a murine melanoma model where
subcutaneous injection of B16 melanoma cells with MSCs
led to tumor growth in allogeneic mice. This effect was
related to the capacity of MSCs to inhibit melanoma rejection,
putatively through the induction of regulatory CD8+ T cells
(Djouad et al., 2003).

On the other hand, the mesenchymal component was
shown to inhibit the cytotoxic activity of CD8 lymphocytes
in co-culture with BM-MSC by downregulation of HLA-I
expressed by CaSki cervical carcinoma cells and downregulation
of IL-10 expression (Montesinos et al., 2013). Interestingly, the
elimination of CAFs using a FAP-targeting DNA vaccine in
the 4T1 murine model of metastatic breast cancer switched
the immune microenvironment of the tumor from a Th2
(anti-inflammatory) to a Th1 (pro-inflammatory) phenotype,
indicating a key role for CAFs in polarizing the immune response
to a pro-tumor type (Liao et al., 2009). Similar results were also
obtained in a mouse model of breast cancer in which transplanted
human MSCs significantly reduced CD3+ NKp46 NKT-like cells,
increased CD4+ Foxp3 T cells and IL-10 expressing CD4+
cells, increased serum Th2 cytokines, and decreased serum
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Th1 cytokines (Ljujic et al., 2013). These results demonstrate
that MSCs promote an immunosuppressive environment that
ultimately favors breast tumor growth and metastasis in mice.

These studies provide evidence that MSC- and CAF-mediated
suppression of adaptive immune cells enhance tumor growth.

MSC Crosstalk With Immune Cells Depends on
Tumor Inflammatory Environment
Despite what has been highlighted so far about the role played by
MSCs in the TME, MSCs can also exert an immunostimulatory
effect triggering the immune response when the inflammatory
conditions are suboptimal. An in vitro study demonstrated the
capacity of antigen pulsed MSCs primed with low levels of
IFN-γ to trigger the cytotoxic activity of CD8 T lymphocytes
(Chan et al., 2006). Similarly, mouse BM-MSCs with reduced
or genetically ablated iNOS production, treated with low
concentrations of IFNγ and TNF, were found to enhance
the proliferation of activated T cells (Li et al., 2012). Similar
results were obtained also by another study showing that the
development of B16 murine melanoma was accelerated when
the melanoma cells were co-injected with MSCs pre-incubated
with IFN-γ and TNF-α compared with controls. This effect was
reverted when B16 cells were co-injected with iNOS-silenced
MSCs (Han et al., 2011).

Importantly, iNOS−/− MSCs significantly inhibited
melanoma growth only in wild type, and not in immunodeficient
mice, strongly suggesting the involvement of immune cells in the
MSC-mediated anti-tumor effect (Li et al., 2012). The observed
effects were related to the reduction of IDO and iNOS released
by the primed MSCs (Li et al., 2012).

In addition, MSCs can respond to stimuli from the
microenvironment by polarizing and acquiring peculiar
properties. Initially, two different MSC phenotypes were
identified: the proinflammatory MSC1 phenotype originated
in response to the toll like receptor 4 (TLR4) priming and
the anti-inflammatory MSC2 phenotype derived from the
TLR3 priming (Patel et al., 2010). Nowadays, this vision is
constantly evolving considering MSC plasticity and their
ability to serve as “rheostat” cells capable of responding to
the environmental stimulus by modifying the factors released.
Indeed, low-dose and short-term TLR4 priming of MSCs
provides the pro-inflammatory signature, characterized by a
higher IL-6 and IL-8 secretion compared to the unstimulated
MSC (Romieu-Mourez et al., 2009), and the TLR4-primed MSCs
were unable to inhibit the proliferation of PBMCs (Waterman
et al., 2010). This therapeutic approach, although fascinating and
promising, requires further investigation.

PERINATAL MSC AS THERAPEUTIC
STRATEGY IN CANCER

In this section, we focus our attention on perinatal MSCs
as exogenous MSCs that could be applied in anti-cancer
therapy. Perinatal MSCs can be isolated from different placental
regions, such as amniotic membrane (hAMSC), umbilical

cord/Wharton’s jelly (UC-MSC/WJ-MSC), chorionic villi
(CV-MSC), and maternal decidua (DMSC) (Silini et al., 2017a).

The benefits of using perinatal tissue include both technical
and biological features, making this material a more valuable
choice when compared to others. Technically, perinatal
tissues present advantages in terms of tissue accessibility and
MSC abundance with respect to adipose tissue and bone
marrow. Normally considered medical waste, perinatal tissues
(e.g., placenta) can be collected after normal delivery by
non-invasive procedures.

Among the unique biological features that make perinatal
MSCs valuable as anti-tumor therapeutic approach is their tumor
tropism. For example, human amniotic fluid MSCs were shown
able to migrate in vivo toward ovarian cancer (Chinnadurai et al.,
2015) and bladder cancer, rat UC-MSCs were shown to home to
mammary adenocarcinoma (Ganta et al., 2009) and Lewis lung
carcinoma (Maurya et al., 2010), and human UC-MSCs were
detected within or in close proximity to breast tumors in mice
(Ayuzawa et al., 2009).

In addition, perinatal MSCs possess widely recognized
intrinsic immune-regulatory properties and indeed they suppress
T and B lymphocyte proliferation; inhibit the inflammatory
cytokine production and functions of antigen-presenting cells
(monocytes, dendritic cells, and macrophages), neutrophils,
and NK cells; and enhance the formation of cells with
regulatory activity such as Treg and M2 macrophages. Mainly
due to these immunomodulatory properties, perinatal MSCs
have been successfully exploited in the pre-clinical treatment
of inflammatory and immune-based disorders and have been
investigated in several clinical trials, such as in peripheral arterial
disease and Crohn’s disease1.

On the other hand, similarly to BM-MSCs for which some
immunogenic and immune-stimulatory activity has also been
described (Magatti et al., 2018), low concentrations of both
fetal (hAMSC, UC-MSC) and maternal (decidual) placental
MSCs have been shown to stimulate the proliferation of PBMCs
(Wolbank et al., 2007; Karlsson et al., 2012; Li et al., 2012;
Papait et al., 2020). Therefore, in diseases such as cancer,
where the stimulation of immune system has been proposed as
an efficient therapeutic strategy (Ichim, 2005), understanding
the mechanisms that underline the immune stimulation of
perinatal MSCs is fundamental in order to exploit these
properties for an anti-cancer therapy. Another important factor
that requires investigation is the safety concern regarding the
potential tumorigenicity of MSCs. Several studies have shown
that placental MSCs do not form tumors when injected either
subcutaneously or intravenously in mice (Rachakatla et al., 2007;
Vulcano et al., 2016). In addition, MSCs from the amniotic
membrane (Bonomi et al., 2015) and other tissues (Pessina et al.,
2011; Bonomi et al., 2013) do not proliferate when loaded with
the chemotherapeutic drug paclitaxel, which is relevant to suggest
their lack of tumorigenesis and potentially safe application.
Moreover, the identity of the bioactive factors that contribute to
the anti- and pro-tumor actions (those produced by the MSC
themselves or induced as bystander effects in the TME) remains

1https://clinicaltrials.gov/
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another important aspect to be determined before clinical use of
perinatal MSCs can be foreseen in the oncology field.

The rationale for the application of perinatal MSCs as
anti-tumor therapy relies on features such as (a) their ability
to home to tumor sites, (b) their anti-proliferative action on
various tumor cell lines in vitro, and (c) their ability to shape the
inflammatory niche through their intrinsic immune regulatory or
stimulatory abilities (Figure 2).

Perinatal MSCs have been reported to perform both
tumor-supportive and tumor-restraining actions; however,
whether this contrasting outcome delineates the versatile
immune regulatory ability of MSCs has not been clarified yet.

To date, several in vitro and in vivo studies have highlighted
the anti-tumor potential of perinatal MSCs and of their
derivatives, such as conditioned medium (CM) generated from
in vitro cell culture and extracellular vesicles (EVs) obtained from
CM (Silini et al., 2017b).

UC-MSC/WJ-MSCs represent the most exploited perinatal
MSCs in cancer. Many studies evaluated the effects of UC-MSCs,
and their secreted factors, on breast cancer cells such as MDA-
MB-231 and MCF-7, but with contrasting results. For example,
UC-MSCs (Ayuzawa et al., 2009; Ganta et al., 2009; Chao et al.,
2012; Ma et al., 2012) and their CM (Ayuzawa et al., 2009; Ganta
et al., 2009; Gauthaman et al., 2012) have been shown to inhibit

the in vitro proliferation of breast cancer cells such as MDA-
MB-231 and MCF-7, while others reported that CM (Li et al.,
2015) and EV from UC-MSCs (Zhou et al., 2019) promote the
proliferation and migration of the same cells.

The anti-tumor actions of UC-MSC/WJ-MSCs have also
been explored on cancer cell lines other than breast carcinoma.
They have indeed been shown to exert in vitro anti-proliferative
action on ovarian carcinomas (Gauthaman et al., 2012; Khalil
et al., 2019) and osteosarcoma (MG-63) (Gauthaman et al.,
2012). CM from UC-MSC/WJ-MSCs was found to be effective
in inhibiting the growth of human glioma (U251) (Yang
et al., 2014) and leukemia (K562) (Hendijani et al., 2015),
and micro-vesicles from UC-MSC/WJ-MSC were reported to
attenuate the proliferation of bladder tumor cells (T24) (Wu
et al., 2013). Controversial actions have been reported for
lung carcinoma; indeed, rat UC-MSCs reduced the growth of
Lewis lung carcinoma (Maurya et al., 2010); however, CM from
human WJ-MSCs did not affect the proliferation of both A549
lung cancer cells (Hendijani et al., 2015) and SPC-A-1 lung
adenocarcinoma cells (Meng et al., 2019). In addition, EVs
from human UC-MSCs increased proliferation and decreased
apoptosis in lung adenocarcinoma cells (Dong et al., 2018) and
those from human WJ-MSCs fostered the aggressiveness human
renal cell carcinoma (786-0) cells (Du et al., 2014).

FIGURE 2 | Perinatal MSCs and their anti-tumor actions. Despite controversial results obtained in investigating the action and the role of MSC in the TME, perinatal
MSCs have been reported to exert antitumor actions. More specifically, once perinatal MSCs are injected in a cancer patient, they could home to the tumor and
inflammatory site and re-educate the tumor microenvironment through three different actions: (A) induction of apoptosis of cancer cells, (B) inhibition of cancer cell
proliferation, and (C) fostering the recruitment of CD4, CD8, and NK cells in the tumor mass, thus activating an anti-tumor response. TA-MSC, tumor associated
mesenchymal stromal cell; Treg, T regulatory cell; TAM, tumor associated macrophage; MDSC, myeloid-derived suppressor cell; NK, natural killer cell.
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Pre-clinical tumor models have also been employed to assess
the effect of perinatal MSCs on tumor growth and progression.
Consistently with in vitro results, UC-MSC/WJ-MSCs and their
derivatives were able to reduce tumor volume (Ganta et al., 2009;
Maurya et al., 2010; Chao et al., 2012; Ma et al., 2012; Wu et al.,
2013) and counteract lung metastatic growth of breast cancer
lines (Ayuzawa et al., 2009; Ganta et al., 2009; Chao et al., 2012).
Interestingly, Wu et al. (2013) observed that hWJ-MSC-derived
micro-vesicles mixed with T24 tumor cells were more effective
than hWJ-MSCs per se at reducing tumor volume and tumor
incidence in a xenograft model of bladder cancer.

In agreement with the pro-tumor activity observed in vitro,
UC-MSC/WJ-MSCs and derivatives did not reduce tumor
volume (Meng et al., 2019) and even promoted the growth of lung
adenocarcinoma (Dong et al., 2018) and of renal cell carcinoma
(Du et al., 2014).

Controversial findings were also reported when perinatal
cells different from UC-MSC/WJ-MSCs were used as anti-tumor
therapy. For example, our group has demonstrated that MSCs
derived from amniotic membrane (hAMSCs) inhibited the
proliferation in vitro of various tumor cell lines, such as
hematopoietic [lymphoid (KG1a, Jurkat), myeloid (KG1, U937)]
and non-hematopoietic Girardi heart, Hela, and Saos tumor
cells, both in contact and when cultured in a transwell system,
indicating the involvement of secreted factors (Magatti et al.,
2012). In line with our in vitro observations, others have
shown that intra-tumor injection of hAMSCs inhibited growth
and induced apoptosis of C6 glioma (Jiao et al., 2012). To
the contrary, CM from hAMSCs was shown to promote the
proliferation and migration of breast cell lines (Kim et al., 2015),
lung adenocarcinoma cells (SPC-A-1), and gastric carcinoma
cells (BGC-823) (Meng et al., 2019). Interestingly, the authors
of this last study only partially confirmed their findings
in vivo as hAMSCs were able to stimulate tumor growth
when subcutaneously co-injected with SPC-A-1 or BGC-823
tumor cells, but not when injected intravenously 12 days
after tumor cell injection when the tumor is well-established
(Meng et al., 2019). Others instead observed no effects on
tumor volume or mice survival when human amniotic fluid
MSCs were iv-injected in bladder tumor-bearing animals
(Bitsika et al., 2012).

Both CV-MSCs and DMSCs have been shown to possess
anti-tumor properties. Indeed, CV-MSCs were shown to inhibit
the proliferation and migration of a triple-negative breast cancer
cell line (MDA-MB231) in vitro (Alshareeda et al., 2018), and
DMSCs reduced the growth of rat primary mammary tumors
induced by N-nitroso-N-methylurea and the development of
secondary tumors (Vegh et al., 2013).

The snapshot of pre-clinical trials outlined here underlines
the high degree of plasticity that endows MSCs from perinatal
tissues. Indeed, in some of the cases reported above, despite the
application of similar experimental conditions (e.g., the same
type of perinatal MSC, the same type of target tumor, etc.), MSCs
display both anti-tumor and pro-tumor activities, but at present,
with current knowledge, it is difficult to say which activity
prevails. Nevertheless, there are many technical and biological
aspects to be considered when comparing independent studies,

such as differences in isolation/culture protocols, presence of
xenogenic, possibly immunogenic, factors (such as BSA), in
culture media and in the experimental methods of both primary
cells and commercial cell lines, as well as variation in oncogenic
and mutational pattern, and in the expression of specific
receptors by cancer cell lines. In addition, different ratios of
MSCs–tumor cells (Silini et al., 2017a) and timing of MSC
delivery into tumors (Klopp et al., 2011) constitute an important
argument in the comparison of different studies. Hence, all these
details play a major role in defining MSC properties and impact
the final outcome.

Given the pleiotropic nature of perinatal MSCs, different
mechanisms have been suggested as mediators of the cells’
effect on tumor development. The main mechanism proposed
is represented by direct impairment of tumor growth. This
process involves tumor cell cycle arrest, accompanied by a
decrease in the expression of cyclin A and cyclin-dependent
kinase-2 (CDK2) (Maurya et al., 2010; Ma et al., 2012; Magatti
et al., 2012; Wu et al., 2013), and/or promotion of tumor cell
apoptosis, with upregulation of apoptotic genes (caspase-3 and
caspase-9), and downregulation of anti-apoptotic genes [survivin
and X-linked inhibitor of apoptosis protein (XIAP)] (Wu et al.,
2013). Perinatal MSCs can attenuate/inhibit the PI3K/AKT
pathway, an important regulator of cellular metabolism and the
survival and proliferation of tumor cells (Ayuzawa et al., 2009;
Ganta et al., 2009; Ma et al., 2012; Wu et al., 2013). An interesting
study by Chao et al. (2012) reported that hUC-MSCs exert
their anti-tumor action either by secreting bioactive factors or
by becoming internalized by tumor cells to form a cell-in-cell
structure resulting in tumor cell apoptosis. To our knowledge,
very few papers investigated whether perinatal MSCs can affect
the inflammatory environment generated by tumor cells.

This is in part due to the use of tumor-induced animal
models where human tumor cells (or tissues) are transplanted
in immune deficient mice [athymic (nude) mice or severe
combined immunodeficiency (SCID)]. These mice lack a normal
immune response in order to allow for tumor growth and avoid
tumor rejection. However, these conditions do not allow for a
complete understanding of the interactions between tumor and
immune cells, and the contribution of immune cells in response
to therapy with perinatal MSC.

To this regard, one study analyzed the impact of perinatal
MSCs on cytokines, growth factors, and chemokines secreted
by tumor cells. In this study, supernatants collected from
the co-culture of MSCs (hUC-MSCs or hAMSCs) and
SPC-A1 lung adenocarcinoma cells revealed that inflammatory
factors [granulocyte stimulating factor (G-CSF), granulocyte
macrophage colony stimulating factor (GM-CSF), intracellular
adhesion molecule (ICAM)-1, IL-1a, IL-1b, IL-1ra, IL-8, tissue
inhibitor of metalloproteinases (TIMP)-2, IL-10, IL-16, and
IL-6sR], growth factors [bone morphogenetic protein (BMP)4,
platelet-derived growth factor (PDGF)-AA, PDGFBB, vascular
endothelial growth factor (VEGF), EGFR, insulin like growth
factor binding protein (IGFBP)2, IGFBP3 and bFGF], and
chemokines [CXCL6, CXCL16, IL-9, IL-18 BPa, leukemia
inhibitory factor (LIF), Lymphotactin, macrophage-derived
chemokine (MDC), macrophage migration inhibitory factor
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(MIF), macrophage inflammatory protein (MIP)-3a, growth
related oncogene (GRO) and SDF-1a] were remarkably altered
after co-culturing, suggesting that these factors were involved in
the regulation of MSC activities on SPC-A-1 cells. Among the
downregulated cytokines, the reduction of VEGF, PDGF, and
IL-6sR was correlated with anti-migration and anti-angiogenic
actions exerted by perinatal MSCs on tumor cells (Meng et al.,
2019). Another study demonstrated that intra-tumor injection
of rat UC-MSCs significantly attenuated tumor growth and
concomitantly increased intra-tumor infiltration of CD4+ and
CD8+ T cells and NK cells and decreased levels of intra-tumor
macrophages and Treg cells (Kawabata et al., 2013). These
findings suggested that rat UC-MSCs can exert anti-tumor
action by enhancing host tumor immune responses via
promoting MCP-1-mediated recruitment of cytotoxic immune
cells in tumor tissues.

CONCLUSION

The TME has a decisive role in tumor progression and more
specifically immune cells within the TME have the power to either
promote or inhibit tumor growth.

In regenerative medicine, MSCs have long been investigated
as a therapeutic strategy, and their contribution to improved
outcome has largely been attributed to their unique ability to
modulate immune cells. Thus, it comes natural to believe that
MSCs, whether local, recruited, or exogenously administered,
could re-educate immune cells within the TME. The question is
what determines their ability to either favor immunosurveillance
and thus inhibit tumor growth, or favor immune editing and thus
support tumor growth. This dual role remains an intense area of
investigation and is confounded by the plasticity of MSCs and
their ability to be molded by the TME milieu.

When considering exogenous MSCs as an anti-cancer strategy,
perinatal MSCs have unique features. Perinatal MSCs are largely
obtained from the placenta, and the placenta’s contribution to
the development and growth of a semi-allogeneic fetus during

pregnancy favors the idea that cells from the placenta possess
intrinsic, peculiar immunological characteristics. Furthermore,
the lack of ethical concerns, the easy isolation and handling,
and the low/absent expression of human leukocyte antigens
and co-stimulatory molecules make perinatal MSCs interesting
candidates, especially for allogeneic transplantation. However,
their contribution in cancer field and specifically their ability to
interact and modulate the immune system of the TME need more
investigation since they are no exception to dual roles that MSCs
have in tumor progression. Finally, there is also a need to develop
immune-competent models in order to better understand the
interactions between MSCs and immune cells in the TME.
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