DOI: 10.1111/1756-185X.14238

### NOVEL HYPOTHESIS

**Rheumatic Diseases** 



# COVID-19 vaccination can occasionally trigger autoimmune phenomena, probably via inducing age-associated B cells

# Athanasios Sachinidis 🕑 | Alexandros Garyfallos

4th Department of Internal Medicine, School of Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece

#### Correspondence

Athanasios Sachinidis, 4th Department of Internal Medicine, School of Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Email: apsachini@auth.gr

Keywords: age-associated B cells, autoimmune rheumatic diseases, coronavirus disease 2019, vaccination

#### 1 AGE-ASSOCIATED B CELLS

Age-associated B cells (ABCs) constitute a CD11c<sup>+</sup> T-bet<sup>+</sup> B-cell population that expands continuously with age in healthy individuals,<sup>1</sup> but also displays a premature accumulation in cases of autoimmune and/or infectious diseases.<sup>2-5</sup> In autoimmune settings, ABCs are implicated in the production of autoreactive immunoglobulin G,<sup>2</sup> the enhanced antigen presentation to T cells, and the formation of spontaneous germinal centers.<sup>6,7</sup> T-bet, which is a transcription factor highly expressed in ABCs, is considered to be the master regulator of all these processes,<sup>8</sup> although new data suggest that its expression may not be required for the generation of functional ABCs.<sup>9</sup>

In humans, the ABC subset is also known as double-negative (DN) B cells because of the lack of immunoglobulin D and CD27 memory marker expression.<sup>10-12</sup> DN B cells have been further divided into two subgroups, based on the expression of the follicular homing marker CXCR5.<sup>13</sup> More specifically, the CXCR5<sup>+</sup> cells (DN1) are expanded in elderly healthy individuals and lack T-bet expression, whereas the CXCR5<sup>-</sup> cells (DN2) express T-bet and are more marked in autoimmune diseases (mostly systemic lupus erythematosus).<sup>10,11,13</sup> The DN2 cells are hyperresponsive to Toll-like receptor 7 (TLR7) signaling, so are poised to generate autoreactive antibody-secreting plasmablasts.<sup>13</sup> In general though, their role in the development of autoimmunity remains elusive.

# 2 | AUTOIMMUNE PHENOMENA FOLLOWING COVID-19 VACCINATION

Autoimmune disease flares and new-onset disease following coronavirus disease 2019 (COVID-19) vaccination have recently been reported.<sup>14,15</sup> In general, all these cases appeared rare and most of them were moderate in severity and had an excellent resolution of inflammatory features, with the use of corticosteroids alone<sup>14,15</sup> (indicating that COVID-19 vaccines are actually safe). The use of TLR7/8 and TLR9 agonists, as adjuvants of the available mRNA and DNA severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, may be the trigger of these post-vaccination autoimmune/inflammatory phenomena,<sup>14</sup> as it is well known that both TLR7 and TLR9 are involved in the generation and amplification of autoreactive immune responses.<sup>16</sup>

In more detail, the adjuvanticity of COVID-19 vaccines depends-to a large extent-on the intrinsic adjuvanticity of mRNA or DNA, which respectively stimulate the innate immune system through endosomal and cytoplasmic RNA/DNA sensors such as TLRs.<sup>17</sup> The stimulation of TLR7 and TLR9 might be expected to produce elevated levels of type I interferon and so upregulate interferon-stimulated genes<sup>16,17</sup> that contribute to the pathogenesis of a number of rheumatic diseases.<sup>18</sup>

# 3 | POTENTIAL INDUCTION OF ABCs BY **COVID-19 VACCINATION**

Apart from autoimmune diseases, ABCs/DN B cells also expand in infectious diseases-including COVID-19,4,5,19,20 usually having either an exhausted or anergic phenotype.<sup>21</sup> Moreover, circulating DN B cells increase in numbers after vaccination against influenza virus in healthy individuals.<sup>22</sup> Considering all these facts, we believe that there is a strong possibility for ABCs/DN B cells to be induced by COVID-19 vaccines and then be involved in the autoimmune phenomena that (may) follow.

<sup>© 2021</sup> Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

# ILEY- Rheumatic Diseases

Our knowledge regarding the role of TLR7 and TLR9 in determining the fate of ABCs,<sup>23</sup> in conjunction with the fact that agonists that bind to these two receptors are used as adjuvants in the available mRNA and DNA COVID-19 vaccines,<sup>14,17</sup> further strengthens our hypothesis. To be more specific, we note that TLR7 and/or TLR9 stimulation, after antigen internalization via B-cell receptor, leads pre-immune B cells to an ABC-poised status.<sup>23</sup> Signals from interferon- $\gamma$  or interleukin-21 determine the ABC phenotype.<sup>24</sup> Otherwise, especially when TLR9 is engaged but no further signals exist, the cell is led to apoptosis.<sup>23,24</sup> In general, ABC generation is based on the synergistic triggering of B-cell receptor, TLR7, and interferon- $\gamma$  or interleukin-21 receptors.<sup>3,23,24</sup>

## 4 | CONCLUSIONS

In this article, we discuss the probability of ABC-mediated autoimmunity (flare or new-onset) following COVID-19 vaccination. We find it important to mention here that, according to observations from a new study, the frequencies of DN B cells decrease in previously SARS-CoV-2-infected individuals after their vaccination against the aforementioned virus,<sup>25</sup> indicating that vaccine response counters the infection-induced production of potentially pathogenic B cells. At first glance, the results of that study seem to oppose our hypothesis. However, we want to make it clear that we do not call into question the safety of COVID-19 vaccines (besides, the data derived from participants in observational studies<sup>14,15</sup> clearly suggest that rheumatic disease flares and new-onset disease following COVID-19 vaccination are uncommon, mild to moderate in severity, and in most cases are treated with oral corticosteroids) and we propose an ABC-induction only in the rare cases that autoimmune phenomena occur after the vaccination, as ABCs are indissolubly associated with autoimmunity.<sup>2,3,7,8,11-13</sup> Furthermore, it is wise to keep in mind that ABC-induction and as a result the estimation of ABC percentages are affected by various parameters, such as the age of the individual,<sup>1,26</sup> the ethnicity (as these cells are more marked in African-American people),<sup>13,27</sup> and of course the interval between vaccination and cell counting.

Taking into account the prognostic and/or diagnostic potential of ABCs in rheumatic diseases,<sup>28</sup> we believe that the enumeration of these cells could enable better management of people to be vaccinated (especially those with autoimmune/rheumatic history, as some of the post-vaccination flares described were severe).<sup>14</sup> Such an approach may determine the most proper vaccination time-points for these people and so bring the least side effects and the most effective therapeutic benefits.<sup>29</sup>

#### AUTHOR CONTRIBUTIONS

Conceptualization and Writing-Original Draft: Athanasios Sachinidis. Critical Revision and Supervision: Alexandros Garyfallos.

#### CONFLICT OF INTEREST

The authors declare no conflict of interest.

#### ORCID

### Athanasios Sachinidis 🔟 https://orcid.org/0000-0002-3309-6032

#### REFERENCES

- Hao Y, O'Neill P, Naradikian MS, Scholz JL, Cancro MP. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. *Blood*. 2011;118(5):1294-1304.
- Rubtsov AV, Rubtsova K, Fischer A, et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. *Blood*. 2011;118(5):1305-1315.
- Rubtsov AV, Marrack P, Rubtsova K. T-bet expressing B cells novel target for autoimmune therapies? *Cell Immunol.* 2017;321:35-39.
- Rubtsova K, Rubtsov AV, van Dyk LF, Kappler JW, Marrack P. T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. *Proc Natl Acad Sci* USA. 2013;110(34):E3216-E3224.
- Rubtsova K, Rubtsov AV, Halemano K, et al. T cell production of IFNγ in response to TLR7/IL-12 stimulates optimal B cell responses to viruses. *PLoS One*. 2016;11(11):e0166322.
- Rubtsov AV, Rubtsova K, Kappler JW, Jacobelli J, Friedman RS, Marrack P. CD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCs. *J Immunol.* 2015;195(1):71-79.
- Domeier PP, Chodisetti SB, Soni C, et al. IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J Exp Med. 2016;213(5):715-732.
- Rubtsova K, Rubtsov AV, Thurman JM, Mennona JM, Kappler JW, Marrack P. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J Clin Invest. 2017;127(4):1392-1404.
- Du SW, Arkatkar T, Jacobs HM, Rawlings DJ, Jackson SW. Generation of functional murine CD11c+ age-associated B cells in the absence of B cell T-bet expression. *Eur J Immunol*. 2019;49(1):170-178.
- Colonna-Romano G, Bulati M, Aquino A, et al. A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. *Mech Ageing Dev.* 2009;130(10):681-690.
- Wei C, Anolik J, Cappione A, et al. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. *J Immunol*. 2007;178(10):6624-6633.
- Claes N, Fraussen J, Vanheusden M, et al. Age-associated B cells with proinflammatory characteristics are expanded in a proportion of multiple sclerosis patients. *J Immunol.* 2016;197(12):4576-4583.
- Jenks SA, Cashman KS, Zumaquero E, et al. Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. *Immunity*. 2018;49(4):725-739.e6.
- Watad A, De Marco G, Mahajna H, et al. Immune-mediated disease flares or new-onset disease in 27 subjects following mRNA/DNA SARS-CoV-2 vaccination. *Vaccines*. 2021;9(5):435.
- Connolly CM, Ruddy JA, Boyarsky BJ, et al. Disease flare and reactogenicity in patients with rheumatic and musculoskeletal diseases following two-dose SARS-CoV-2 messenger RNA vaccination. *Arthritis Rheumatol.* 2021. https://doi.org/10.1002/art.41924
- Krug A. Nucleic acid recognition receptors in autoimmunity. Handb Exp Pharmacol. 2008;183:129-151.
- Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021;21(4):195-197.
- Muskardin TLW, Niewold TB. Type I interferon in rheumatic diseases. Nat Rev Rheumatol. 2018;14(4):214-228.
- Weiss GE, Crompton PD, Li S, et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J Immunol. 2009;183(3):2176-2182.
- Woodruff MC, Ramonell RP, Nguyen DC, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-1516.

#### International Journal of Rheumatic Diseases

- 21. Moir S, Ho J, Malaspina A, et al. Evidence for HIV-associated B cell 26. exhaustion in a dysfunctional memory B cell compartment in HIV-
- infected viremic individuals. *J Exp Med.* 2008;205(8):1797-1805.
  22. Ruschil C, Gabernet G, Lepennetier G, et al. Specific induction of double negative B cells during protective and pathogenic immune responses. *Front Immunol.* 2020;11:606338.
- 23. Cancro MP. Age-associated B cells. Annu Rev Immunol. 2020;38(1):315-340.
- 24. Naradikian MS, Myles A, Beiting DP, et al. Cutting edge: IL-4, IL-21, and IFN-γ interact to govern T-bet and CD11c expression in TLRactivated B cells. *J Immunol*. 2016;197(4):1023-1028.
- 25. Mishra PK, Bruiners N, Ukey R, et al. Vaccination boosts protective responses and counters SARS-CoV-2-induced pathogenic memory B cells.*medRxiv*.2021.https://doi.org/10.1101/2021.04.11.21255153

- Buffa S, Bulati M, Pellicanò M, et al. B cell immunosenescence: different features of naive and memory B cells in elderly. *Biogerontology*. 2011;12(5):473-483.
- 27. González LA, Toloza SM, McGwin G Jr, Alarcón GS. Ethnicity in systemic lupus erythematosus (SLE): its influence on susceptibility and outcomes. *Lupus*. 2013;22(12):1214-1224.
- Sachinidis A, Xanthopoulos K, Garyfallos A. Age-associated B cells (ABCs) in the prognosis, diagnosis and therapy of Systemic Lupus Erythematosus (SLE). *Mediterr J Rheumatol*. 2020;31(3):311-318.
- Sachinidis A, Garyfallos A. Double negative (DN) B cells: a connecting bridge between rheumatic diseases and COVID-19? *Mediterr J Rheumatol.* 2021;32(3):192-199.

WILE