
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9237  | https://doi.org/10.1038/s41598-022-13323-w

www.nature.com/scientificreports

Quantum coherence on selectivity 
and transport of ion channels
Mina Seifi1, Ali Soltanmanesh1,2 & Afshin Shafiee1*

Recently, it has been suggested that ion channel selectivity filter may exhibit quantum coherence, 
which may be appropriate to explain ion selection and conduction processes. Potassium channels play 
a vital role in many physiological processes. One of their main physiological functions is the efficient 
and highly selective transfer of K+ ions through the membranes into the cells. To do this, ion channels 
must be highly selective, allowing only certain ions to pass through the membrane, while preventing 
the others. The present research is an attempt to investigate the relationship between hopping rate 
and maintaining coherence in ion channels. Using the Lindblad equation to describe a three-level 
system, the results in different quantum regimes are examined. We studied the distillable coherence 
and the second order coherence function of the system. The oscillation of distillable coherence from 
zero, after the decoherence time, and also the behavior of the coherence function clearly show the 
point that the system is coherent in ion channels with high throughput rates.

Quantum biology is a relatively new field of study in quantum mechanics which can use quantum theory in some 
aspects of biology that classical physics cannot describe precisely. In the beginning, it was believed that quantum 
phenomena such as tunneling or quantum entanglement do not exist in living environments since these environ-
ments are inherently warm, humid, and noisy1–3. The newfound evidence, in recent years, reveals that quantum 
principles play a critical role in explaining various biological phenomena such as photosynthesis, quantum 
effects in the brain, and spin and electromagnetic routing of the migratory birds4–9. According to this evidence, 
the role of quantum phenomena, such as tunneling and quantum coherence, has been widely accepted in the 
crucial activities of living cells10. Recently, it has been proposed that quantum coherence may play a role in the 
selectivity of ions and their transport through ion channels11–13. Due to the energy scale and transport phenom-
ena, ion channels can be considered as a distinct protein system that the quantum effects may have a functional 
role within them so that their activities can be comprehended via quantum mechanics11. These channels are a 
collection of proteins embedded in the cell membrane that tune the flux of specific ions across the membrane 
and regulate interactions between the cell and its environment14. Structurally, ion channels are protein complexes 
comprised of several subunits whose cyclic arrangement forms sub-nanometer pores for ions to enter or leave 
the cell1. Ion channels share common properties, the most important of which is the presence of a gate that can 
be activated by such factors as chemicals, voltage, light, and mechanical pressure. Another common feature is 
having a selectivity filter responsible for passing only one specific type of ion. The structure of this filter is well 
studied in the Streptomyces lividans (KcsA) bacterial channel15. The 3.4 nm long KcsA channel is comprised 
of a 1.2 nm long selectivity filter that is composed of four P-loop monomers. Each P-loop is composed of five 
amino acids: [Theronine (Thr75), Valine (Val76), Glycine (Gly77), Tyrosine (Tyr78), Glycine (Gly79)] linked by 
peptide units (H–N–C=O). The selectivity filter width is only a few angstroms (3A). The ions must move in a 
single file without their hydration shell in this filter. The process of gating, i.e., the mechanism that controls the 
closing and opening of the pores, is different in the variety of potassium channels, but the sequence of amino 
acids forming the selection filter is the same in all potassium channels15. The selectivity filter is capable of select-
ing potassium ions over sodium ions in a ratio of 104 : 1. Ion channels allow ions to enter or leave cells in a very 
selective and rapid manner. FIG. 1 shows the structure of the KcsA channel and its selectivity filter. Potassium 
channels conduct K+ ions at a rate of 106-108 s−1 throughout the cell membrane16,17. An important question is 
how a flexible structure, such as a selectivity filter, can be selected at high speed. This rapid and high selectivity 
is critical for the physiology of living creatures. Various ion channels are involved in several biological processes, 
including nerve signaling, muscular contraction, cellular homeostasis, and epithelial fluid transport18–20. The 
selectivity of ion channels refers to the fact that each ion channel is individually for passing the specific ions. 
For example, potassium channels only allow the potassium ions to pass through the membrane while rejecting 
the other ions (e.g., sodium ions)18. The ion radii of sodium and potassium ions only differ by 0.38 A. Despite 
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this slight difference in ion radii, the selectivity of the potassium ions is more than a thousand times higher than 
that of sodium ions21. Hence, the high selectivity of the ion channels cannot be simply explained by the physical 
obstruction, and the other factors may be involved22. There is a large body of literature and numerous hypotheses 
about ion selectivity in biomolecular and genetic disciplines. Many researchers have contributed to developing 
the current views and concepts by experimentation and simulation23–25. Qi et al. examined the importance of 
channel size in ion transport selectivity in molecular detail26. To investigate the selectivity and other properties 
of the ion channel, Allen et al. performed molecular dynamic calculations on the entire experimental protein 
structure determined for the KcsA potassium channel from Streptomyces lividans27. Allen and Chung used three-
dimensional Brownian dynamics simulations to study the conductivity of the KcsA potassium channel using a 
known crystallographic structure28. Salari et al. investigated the possibility of quantum ion interference through 
ion channels to understand the role of quantum interference on selectivity in ion channels12. Summhammer 
et al. also analyzed the solutions of the Schroedinger equation for the bacterial KcsA ion channel. They claimed 
that quantum mechanical calculation is needed to explain basic biological properties such as ion selection in 
the ion channels of the trans membrane29. Despite the extensive experimental and theoretical researches, most 
biomolecular methods cannot well explain the ion selection in small scale (nanoscale), and still, numerous issues 
remain unresolved. After determining the three-dimensional structure of the bacterial KcsA channel with atomic 
resolution using x-ray crystallography, doubts were raised about the classical explanations, such as sung fit. It 
seems that such a process cannot well explain ion selectivity30–32. Considering the inadequacy of classical mechan-
ics in explaining ion selectivity as well as experimental evidences demonstrating the existence of quantum effects 
in biological cells, it seems that quantum mechanics should be used to resolve this problem. To comprehend the 
ion selection as well as ion transport, accurate atomic models which are able to well describe the microscopic 
interactions are required. The coherence functional relations can only be guessed in the ion channels. In other 
words, coherence may play a role in ion selectivity. Vaziri et al. suggested that the ion channel selectivity filter 
shows quantum coherence, which could possibly explain the ion selection process13.

In the present work, the relationship between hopping rate and maintaining coherence in ion channels is 
investigated. The Lindblad master equation is used to describe the system, and the coherence of the system is 
examined at different hopping rates. Selectivity and high rates in ion channels seem to be two contradictory fea-
tures. We show that these two features are not going to be contradictory to each other, but high rate is an essential 
requisite for selectivity. High selectivity occurs only at high hopping rates. Despite the occurrence of decoherence, 
the high rate of hopping causes the system to always maintain its coherence in an oscillating manner.

This paper is organized as follows. In Section II, we briefly review the Lindblad master equation and decoher-
ence in open quantum systems. In Section III, the quantum mechanical model for ion transition through the ion 
channel is presented, and quantum transport equations in terms of Lindblad operators are introduced. Then, the 
results are discussed and the effect of hopping rates on coherence is investigated in detail in Section IV. Finally, 
the paper is concluded in Section V.

Decoherence and Lindblad master equation
All realistic systems inevitably interact with their environments. For the quantum systems in nanoscale and 
quantum biological systems, these interactions are not negligible; therefore, they should be considered as open 
systems33. In recent years, understanding the dynamics of open systems has been one of the most complex chal-
lenges in quantum physics. The environment has an important role in the quantum realm. The interaction of a 
system and its environment can result in the entanglement between the system and environment in the quan-
tum realm so that the system entity may generally change34. In this interaction, the environment has an infinite 
degree of freedom, and the system cannot be characterized with wave function or specific states. So, a density 
matrix should be assigned to the central system, and the evolution of this matrix is important over time34. The 
terms associated with the quantum behavior emerge as diagonal elements of the density matrix operator. Due 
to the system and environment interactions, quantum coherence which is characterized by the non-diagonal 

Figure 1.   (Left) A representation of KcsA ion channel after PDB 1K4C. (Right) Two P-loop monomers in the 
selectivity filter.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9237  | https://doi.org/10.1038/s41598-022-13323-w

www.nature.com/scientificreports/

elements decay, and quasi-classical features occur in the system. Based on decoherence, if the interactions of a 
quantum system and its environment are considered, a realistic image of a distinct model can be achieved35. The 
complexity of the transmission dynamics in ion channels is attributed to the high interactions between ions along 
with the high degree of freedom of the environment. The selectivity filter is responsible for the passage of certain 
ions in ion channels. There are three sites for this filter, as shown in Fig. 1. Jumping from one site to another 
is accompanied by an energy barrier. The jump rate between these sites is called the hopping rate. The rate of 
hopping between sites should be equal to the rate of transmission ( 106-108s−1 ) through the channel. To maintain 
the quantum state of the ions during the passage of the ion channel, the decoherence time must be greater than 
the time interval of the ion passing through the channel (10–20 nanoseconds)13. Unlike a closed system, the 
temporal evolution of an open system is non-unitary due to the dissipative terms in the master equation. The 
Lindblad master equation is of special importance because it is the most general generator of Markovian dynam-
ics in quantum systems36,37. Here, the Lindblad master equation can be written in a generic state as follows38–40:

The first term on the right side of the above equation is the Liouvillian part which represents the unitary 
evolution of the density matrix. The second term is Lindbladian which illustrates the system’s interaction with 
its environment and represents decoherence effects41. The Lindblad master equation is local and markovian over 
time. The ν operators are not necessarily hermitic and are known as Kraus operators, satisfying 

∑

L k̂
†
Lk̂L = 1 . A 

simple application of this equation in quantum optics is photon emission from a two-level atom in free space. 
In this situation, the density matrix is transformed into a 2 x 2 matrix, and the ν operators are reduced to Pauli 
lowering and rising operators. Consequently, the Lindblad equation is simply transformed into four first-order 
linear differential equations42.

Equation (1) can be symbolically expressed as follows:

where L is a Lindbladian super-operator that is implemented on the density matrix and leads to its temporal 
evolution. Since L†i  is a linear map in the operator space, it is referred to as a super-operator. In the present work, 
the evolution of the reduced density matrix is investigated using the Lindblad master equation. In the following, 
the employed model is described in detail.

Model and methods
Herein, we express our model to discuss the high speed of selectivity in ion channels using Lindblad master 
equation.The mechanism of ion permeation through the selectivity filter in ion channels has been investigated 
using diverse experimental techniques such as radiotracer flux assays, single-channel electrophysiological meas-
urements, X-ray crystallography, and molecular dynamics (MD) simulations. These experiments support two 
mechanisms commonly referred to as “knock–on” (water molecules may or may not be present in this mecha-
nism) and “hard-knock” (water molecules are ignored in it) permeation models. To determine whether these 
experimental features can be explained by either of the two permeation models, Kratochvil et al. conducted 
molecular dynamics (MD) simulations and computed 2D IR spectra for all relevant ion configurations43. They 
showed that knock-on model with water molecules is in most agreement with experience. Accordingly, we con-
sidered the presence of water molecules in our model. We examined our model on a relatively short time scale. 
Due to the large fluctuations of ions in the ion channel, there is probably no strong columbine repulsion at this 
time scale. To this end, an ion channel with four sites is considered43 (Fig. 2). In this model we consider a three 
state system: (1) Potassium ions in the first and third sites and water molecules in the second and fourth sites. (2) 
Potassium ions in the second and fourth states with water molecules in the first and third sites. (3) A Potassium 

(1)
d
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ρ̂(t) = −i[Ĥ(t), ρ̂(t)] +

∑
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†
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Figure 2.   Schematic illustration of the ion channel states corresponds to (a) = |0� (b) = |1� (c) = |2� states.
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ion releases to the environment from the previous state. The jump from site 4 to the environment is considered 
as a 3 to 1 transition. Jumping between these sites is associated with an energy barrier. Due to the high speed of 
passing, there is always a state transition from site 1 to 2, 2 to 3, or 3 to 1. The system can be shown in a three-
dimensional Hilbert space with three states of |0� , |1� and |2� similar to a spin-1 system.

The evolution of the density matrix is obtained using the Lindblad master equation as below ( ℏ is assumed 
to be one in the rest of the paper):

Also, the time-dependent Hamiltonian is considered as:

where Ĥ0 is the Hamiltonian system with a transition frequency ω0 , ŜZ is the z-coordination operator of spin-1 
and Ĥ1 is associated with the coupling of the system and its environment. Here, c is the hopping rate coefficient, 
and L is a super-operator:

where Ŝ± = 1√
2
(Ŝx ± iŜy) are the spin-1 operators.

The Hamilton function, Ĥ1 , expresses the transition between states by passing particles from one site to the 
next. To drive the corresponding equations in the Dirac picture, the system density matrix and the Hamiltonian 
interaction are rewritten as follow:

Using Eqs. (8) and (9) and going to the Dirac picture, the Lindblad equation becomes:

where

According to the above discussion, Eq. (10) can be rewritten in the basis of the eigenstates of Ŝz operator as 
follows:

(3)
d

dt
ρ̂(t) = −i[Ĥ(t), ρ̂(t)] + L[ρ̂(t)]

(4)Ĥ = Ĥ0 + Ĥ1

(5)Ĥ0 = ω0ŜZ

(6)Ĥ1 = c(|1��0| + |2��1| + |0��2|)

(7)L[ρ̂] = γ (Ŝ−ρ̂Ŝ+ − 1

2
Ŝ+Ŝ−ρ̂ − 1

2
ρ̂Ŝ+Ŝ−)

(8)ρ̂D(t) = eitĤ0 ρ̂(t)e−itĤ0

(9)ĤD
1 (t) = eitĤ0 Ĥ1e

−itĤ0

(10)
d

dt
ρ̂D(t) = −i[ĤD

1 (t), ρ̂
D(t)] + LD[ρ̂D(t)]

(11)LD[ρ̂D] = γ

(

Ŝ−ρ̂
DŜ+ − 1

2
Ŝ+Ŝ−ρ̂

D − 1

2
ρ̂DŜ+Ŝ−

)

(12)

d

dt
ρ̂D00 = −ic(ρ̂D20 − ρ̂D01)− 2γ ρ̂D00

d

dt
ρ̂D01 = eiω0t(icρ̂D21 + icρ̂D02 − 2γ ρ̂D01)

d

dt
ρ̂D02 = e2iω0t(−icρ̂D22 + icρ̂D00 − γ ρ̂D02 )

d

dt
ρ̂D10 = e−iω0t(−icρ̂D00 + icρ̂D11 − 2γ ρ̂D10 )

d

dt
ρ̂D11 = −ic(ρ̂D01 − ρ̂D12)+ 2γ (ρ̂D00 − ρ̂D11)

d

dt
ρ̂D12 = −iceiω0t(ρ̂D02 − ρ̂D10)+ γ eiω0t(2ρ̂D01 − ρ̂D12)

d

dt
ρ̂D20 = −ice−2iω0t(ρ̂D10 − ρ̂D21)− γ e−2iω0t ρ̂D20

d

dt
ρ̂D21 = −ice−iω0t(ρ̂D11 − ρ̂D22)+ γ e−iω0t(2ρ̂D10 − ρ̂D21)

d

dt
ρ̂D22 = −ic(ρ̂D12 − ρ̂D21)+ 2γ ρ̂D11
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Results and discussion
The mechanism behind the high throughput rate in K+ channels and its contradiction with its high selectivity is 
still an open problem. However, it has been suggested that quantum coherent hopping is included throughout 
the process11,13,44,45. Nevertheless, the system is coupled to a biological environment, which causes the system 
to go through a decoherence process. The mentioned problem is a tremendous obstacle in understanding the 
mechanism in the quantum regime. To study the problem, first we solved the system of Eq. (12) with the system 
initial state being in a superposition:

In the absence of the environment (in a case with γ = 0 ) the probabilities of the states oscillate with time 
as we expect. However, the probability of finding the system in the |1� state tends to zero as time passes by (see 
Fig. 3a). This phenomenon shows us that |1� is just an intermediary state with a short lifetime. The use of the spin 
1 matrix in the Hamiltonian system indicates that these states are not degenerative. The difference in energy of 
these states causes them to behave differently. In the spin model, the middle term is considered as an intermediary 
state. We also considered its energy in proportion to the intermediary state. It is expected that the system will 
be found more likely in the states where a potassium ion enters the channel from the environment or enters the 
environment from the channel(|0� and |2� respectively). On the other hand, it is found less likely in the interme-
diary state. This expectation is consistent with our results. Otherwise, in a case in which decoherence is present 
(with γ > 0 ) the probabilities oscillate and tend to a finite value after the decoherence time, as shown in Fig. 3b. 
As the values ofγ increases, makes the system to equilibrate faster. The appropriate gamma for our system varies 
between γ = 0.5× 107s−1 and 2× 108s−113. The larger the number in this range, the more fluctuations we see. 
After the decoherence time we can almost find the system with the lowest energy, in state |2� . In other words, the 
system prefers to cross and release the particles to the environment quickly. Also, Fig. 4a and b shows a study 
on the evolution of off-diagonal elements of the density matrix of the system. Surprisingly, the off-diagonal ele-
ments tends to zero as time passes by. But, it seems the fast hopping speed of particles prevents the off-diagonal 
elements to became zero, and some oscillation can be observed even after the decoherence time. This behavior 
encourages us to study the coherence of the system. If the selectivity process considered to be quantum mechani-
cal, it is required for the system to remain coherent.

Now, let us have a glimpse on the order of the magnitude of the decoherence time in the case of our problem. 
By using the thermal de Broglie wavelength �dB = 1/

√
2mkBT  , we could define a corresponding decoherence 

time as

where �X is the dispersion in position space and

with r = �/ω and n̄ = (eω/kBT − 1)−1 . � represents the cutoff frequency and n̄ denotes the mean population 
of the environment based on the Temperature (T). In the case of ours, we introduced the states consisting of 

(13)|ψi� =
1√
3
(|0� + |1� + |2�).

(14)τD = �X2

γ �2dB
,

(15)γ = γ0ωn̄
r2

1+ r2
,

Figure 3.   The probability of finding the system in |0�, |1� and |2� states versus time, with ω = 1× 108s−1 and (a) 
γ = 0 and c = 2× 107s−1 (b) γ = 0.5× 107s−1 and c = 2γ.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9237  | https://doi.org/10.1038/s41598-022-13323-w

www.nature.com/scientificreports/

two K+ ions and two water molecules each interacting with channel wall, with its own dephasing rate γ . In this 
case, one can show that the system evolution can be written in a single Lindblad equation with the sum of all 
individual dephasing rates as its dephasing rate. The value of the decoherence time in decoherence formalism 
extremely depends on the value of this dephasing rate [Eq. (14)].

We examined the calculation of the decoherence time at the body temperature. We placed the values of 
mass, gamma, and dispersion in position space in Eqs. (14) and (15). We used the reduced mass of potassium 
and water molecule. The value of the dispersion greatly depends on the frequency of the particles and varies 
between 1× 10−12 to 1× 10−10m . Changes in the value of the dephasing rate drastically change the value of 
the decoherence time. In this regard, we sketched the effect of the dephasing rate and the particles frequencies.

As it is shown in Fig. 5, increasing in dephasing rate, decreases the decoherence time, on the other hand, an 
increase in system frequency also increases the decoherence time. Accordingly, we considered the dephasing 
rate in the range of γ = 1× 106s−1 to γ = 1× 108s−1 , as reported in13. In the mentioned range of the dephas-
ing rate and with the system frequency in the range of 1× 109s−1 to 1× 1012s−1 , the decoherence time varies 
between 1× 10−10s to 1× 10−7s . If we consider other mechanisms in the absence of water molecules, our 
model can still predict the overall behavior of the system. Due to the change in frequency and reduced mass, 
the overall behavior of the system does not change, but the decoherence time coefficients and the slope of the 
graph may change. This is because we reduced the whole mechanism to a three-level process. Our model states 
are a three-step process. The decoherence time is not short for a particle to cross the channel, but definitely, it is 
not secure that the system remains coherent in the whole process. Therefore, we need to have an accurate study 
on the coherency of the system.

So far, many approaches have been proposed to quantify coherence. One of the most useful of them is the 
framework developed by Baumgratz et al.46,47. Following this framework, a number of coherence quantifiers 
have been found. These include relative entropy of coherence, distillable coherence, the robustness of coherence, 
coherence concurrence, and coherence of formation48,49. If the coherence quantifier satisfies all the postulates 
mentioned in Table 1, it is called a coherence measure50.

It has been proven that distillable coherence and relative entropy of coherence are equivalent and satisfy all 
the necessary conditions. Hence, they are considered as two basic coherence measures46,51. Using these measures 
is mainly justified based on the physical intuition48. The distillable coherence is the optimal number of maximally 
coherent states which can be obtained from a state ˆ̺ via incoherent operations47. A simple expression for distill-
able coherence was given by Winter and Yang as follows52:

Figure 4.   The evolution of (a) real parts and (b) imaginary parts, of off-diagonal elements of density matrix 
versus time. With γ = 0.5× 107s−1 and c = 2γ.

Table 1.   Requirements for a coherence measure Cd( ˆ̺ ) . S is von Neumann entropy and � represents the 
dephasing operator.

Postulate Definition

Nonnegativity C( ˆ̺ ) ≥ 0 , in general

Monotonicity C does not increase under the action of incoherent operations

Strong monotonicity C does not increase on average under selective incoherent operations

Convexity C is a convex function of the state

Uniqueness For any pure states |ψ� , C takes the form: C(|ψ��ψ |) = S(�[|ψ��ψ |])
Additivity C is additive under tensor products
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where �[ ˆ̺ ] =
∑d−1

i=0 |i��i| ˆ̺ |i��i| is the dephasing operator and S( ˆ̺ ) = −Tr[̺log2̺] is the Von Neumann entropy.
By studying the changes of distillable coherence, as we expect, the distillable coherence tends to zero as time 

passes by. In a hypothetical case with no hopping rate c = 0 , after the decoherence time the distillable coherence 
reaches zero Cd(ρ) = 0 (see the black line in Fig. 6). In the other hand, we sketched the distillable coherence 
against time in different hopping rates in Fig. 6. The distillable coherence tends to zero yet, but interestingly, 
increasing the hopping rates causes the distillable coherence to oscillate. Therefore, the system remains coher-
ent, even after the decoherence time. Moreover, a faster hopping rate results in increasing the amplitude of the 
oscillations and also more coherence.

To support our findings, we calculate the second-order quantum coherence function g (2)(or the degree of 
coherence). At a fixed position g (2) depends only on the time difference τ and defines as

where,

is the positive frequency part of the field operator with wave vector k , and E(−) is its conjugate. For a coherent 
state |α� the degree of coherence is g (2)(τ ) = 1 . Also, for a field in a single mode thermal-state it can be shown 
that g (2)(τ ) = 2 = 1+ |g (1)(τ )|2 , which lies in the range of 1 ≤ g (2)(τ ) ≤ 2 and is just as in the classical case. 

(16)Cd( ˆ̺ ) = S(�[ ˆ̺ ])− S( ˆ̺ )

(17)g (2)(τ ) = �E(−)(t)E(−)(t + τ)E(+)(t + τ)E(+)(t)�
�E(−)(t)E(+)(t)��E(−)(t + τ)E(+)(t + τ)�

(18)E(+) = i

(

�ω0

2ǫ0V

)1/2

Ŝ−e
i(k.r−ω0t)

Figure 5.   Changes of the decoherence time as the dephasing rate increases, in a variety of system frequencies.

Figure 6.   The changes of the distillable coherence Cd(ρ) versus time with ω = 1× 108s−1 , γ = 5× 106s−1 in a 
variety of hopping rates (c).
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On the other hand, in nonclassical systems such as numbers states the degree of coherence is in the range of 
0 < g (2)(τ ) ≤ 1 . In the case of ours, for lower hopping rates g (2)(τ ) tends to 1/2 after the decoherence time. By 
increasing the hopping rate (c), not only the oscillations appear, but also g (2)(τ ) increases in high hopping rates 
as we showed in Fig. 7. This observation confirms that a high throughput rate is a necessary requirement for an 
ion channel to stay coherent.

Conclusion
The objective of this paper is to give a clear answer to the paradox of the coexistence of a very high throughput 
rate of K+ ions in KscA channels and their very high selectivity. In recent years, it has been suggested that 
quantum coherence is included in the process. However, the biological temperature and channels coupling with 
environment cause the system to lose coherence.

In this regard, to investigate the problem, we studied a model that assume the system being in a superposi-
tion of three states: (i) Potassium ions in the first and third sites and water molecules in the second and fourth 
sites. (ii) Potassium ions in the second and fourth states with water molecules in the first and third sites. (iii) A 
Potassium ion releases to the environment from the previous state. As the system interacts with the environment, 
it goes through a decoherence process. We studied the process using Lindblad master equation and solved the 
equations numerically.

The results shows that by measuring the system after the decoherence time, it almost always can be found 
in a state where release a Potassium ion to the environment. This observation is in accordance with the high 
throughput rate, but it does not necessitate quantum coherence in the system. Also, we discussed the decoherence 
time in the formalism of quantum decoherence in a variety of system frequencies and dephasing rates. Increasing 
the dephasing rate decreases the decoherence time, on the other hand, an increase in system frequency results 
a longer decoherence time. To study the system coherence directly, we used distillable coherence as a coherence 
measure and also calculated the second order coherence function. As we expect the distillable coherence tends to 
zero after the decoherence time. However, in high throughput rates, it oscillates from zero value and causes the 
system to remain coherent. Moreover, increasing the hopping rate increases the amplitude of the oscillations. The 
coherence function of the system tends to 1/2 and by increasing the throughput rate, the value of the coherence 
function after the decoherence time increases but remains less that 1. This observation clearly shows the point 
that the system is coherent in ion channels with high throughput rate as the systems that behaves classically have 
second order coherence functions greater than 1.

In this paper we successfully show that not only the high throughput rate is not in contrast with high selec-
tivity, but also it is necessary for the system to remain coherent and act in quantum manner. In future works we 
concentrate on the topic that how the quantum coherence can act in the selectivity process.
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