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In fact, the risk of dying from CVD is significant when compared to the risk of developing

end-stage renal disease (ESRD). Moreover, patients with severe CKD are often excluded

from randomized controlled trials, making evidence-based therapy of comorbidities like

CVD complicated. Thus, the goal of this study was to use an integrated bioinformatics

approach to not only uncover Differentially Expressed Genes (DEGs), their associated

functions, and pathways but also give a glimpse of how these two conditions are related

at the molecular level. We started with GEO2R/R program (version 3.6.3, 64 bit) to get

DEGs by comparing gene expression microarray data from CVD and CKD. Thereafter,

the online STRING version 11.1 program was used to look for any correlations between

all these common and/or overlapping DEGs, and the results were visualized using

Cytoscape (version 3.8.0). Further, we used MCODE, a cytoscape plugin, and identified

a total of 15 modules/clusters of the primary network. Interestingly, 10 of these modules

contained our genes of interest (key genes). Out of these 10 modules that consist of 19

key genes (11 downregulated and 8 up-regulated), Module 1 (RPL13, RPLP0, RPS24,

and RPS2) and module 5 (MYC, COX7B, and SOCS3) had the highest number of these

genes. Then we used ClueGO to add a layer of GO terms with pathways to get a

functionally ordered network. Finally, to identify the most influential nodes, we employed

a novel technique called Integrated Value of Influence (IVI) by combining the network’s

most critical topological attributes. This method suggests that the nodes with many

connections (calculated by hubness score) and high spreading potential (the spreader

nodes are intended to have the most impact on the information flow in the network) are
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the most influential or essential nodes in a network. Thus, based on IVI values, hubness

score, and spreading score, top 20 nodes were extracted, in which RPS27A non-seed

gene and RPS2, a seed gene, came out to be the important node in the network.

Keywords: CVD, CKD, PPIN network, IVI, hubness score, spreading score

INTRODUCTION

The risk of getting cardiovascular disease (CVD) in patients
with chronic kidney disease (CKD) is more than without CKD
as discussed by Jankowski et al. (1). Chronic kidney disease
(CKD) is a systemic condition that affects almost 10% of the
population. The prevalence of CKD has increased in recent
decades due to aging which affects about one out of every 10
people (2). Multiple studies have confirmed that individuals with
renal disease undergo rapid aging, which accelerates the onset of
pathologies, such as CVD, which is strongly correlated with older
age. Furthermore, patients with CKD are more prone to CVD
and even death due to the progression of end-stage renal disease
(ESRD) (3). CVD, along with chronic renal disease, remains
the leading cause of morbidity and mortality in individuals,
particularly in those involving a systemic inflammatory process,
such as atherosclerosis (4). CKD is the 14th leading cause of
mortality, with the death rate anticipated to increase to 14 per
100,000 people by 2030 (5). Despite the rising pervasiveness of
CKD and its frequent combination with CVD, patients with
severe CKD (eGFR 30 ml/min per 1.73 m2) were commonly
omitted from key randomized controlled studies (6). Traditional
CVD risk factors, such as hypertension, advanced age, diabetes,
male sex, dyslipidemia, and smoking, are also prevalent in CKD.
The number of people with end-stage renal disease (ESRD) is
expected to rise by 50% in the next 20 years (7). In the current
era, CKD is a severe health and economic burden. CKD-related
mortality has increased by 82.3% in the last two decades. In
addition, it has risen to third place among the world’s top 25
major causes of death (8). Now, the molecular description of
CKD onset and progression is lacking. Based on these findings,
the researchers have described CKD as a worldwide epidemic
(9). The present method for prioritizing disease-related genes is
based on the “guilt-by-association” assumption, which states that
physically and functionally related genes have similar phenotypic
effects and are likely to be involved in the same biological
pathways (10).

Network theory is a useful tool for deciphering the topological
features and dynamics of complex systems and their functional
modules. Many extant networks can be classified as scale-free,
small world, random, or hierarchical networks. The hierarchical
form of the network includes modules and sparsely dispersed
hubs to manage the network which is of particular interest
to biologists (11). Moreover, the identification of essential and
critical protein(s) is crucial for understanding progression of the
disease. Thus, the current paradigm for investigating CVD and
CKD focuses on combining protein interactions, functions, and
disease networks to identify important regulators of CVD and
CKD among DEGs. Also, it is substantial to study network’s
topological characteristics, so that the essential key regulators,
their function, and regulating mechanism could be forecasted

(12). The topology of a network and its many centrality
measures (metrics reflecting the impact of each node within a
network) can be examined and evaluated to explore fundamental
biological meanings and prominent regulatory molecules (13).
A network could best be studied in relation to the spreader
nodes as these are projected to have the biggest impact on the
process of distribution of information throughout the network
because they have strong connections with other nodes. So these
influential nodes can commonly be identified by calculating the
characteristics like hubness and spreading potential (14). Since
the fundamental characteristics of a network and its centrality
metrics are universal, it can be applied to any network domain,
including biological networks (15). These network centralities
can be used to further narrow down and validate the extracted
influential nodes. In our present study, we have used the seed
genes, gene ontology, and pathways in an integrating manner
to give a glimpse of molecular relation between CVD and CKD
that may further facilitate the identification and validation of
novel biomarkers.

METHODOLOGY

Acquisition of mRNA Expression Data
The mRNA expression profile of CVD and CKD were
downloaded from the publicly available databases of gene
expression microarrays, stored in the repository bank Gene
Expression Omnibus (GEO) NCBI [www.ncbi.nlm.nih.gov/geo/;
(16)]. These were the mRNAs expression profiles series of CVD
(GSE26887, GSE42955, GSE67492, GSE71226, GSE141512,
GSE48060) and CKD (GSE15072, GSE23609, GSE43484,
GSE62792, GSE66494) consisting of normal and treated samples.
The selection of the datasets using inclusion and exclusion
criteria were made using the following keywords in the NCBI :
CVD, cardiac failure, cardiac arrest, chronic heart failure (CHF),
etc., whereas, CKD, AKI, chronic kidney disease, renal failure
AND human [Organism] (17). The details of all GSE series are
given in Table 1. Patient samples from various sources were not
differentiated during the data integration procedure to show
a common and/or overlapped gene signature. The expression
microarray is a method for studying gene expression on a
genome-wide scale that is widely utilized. Batch effects can be
decreased through proper experimental design, but they cannot
be eradicated until the entire study is conducted in one batch.
Before analyzing microarray data, a few algorithms are now
available to correct for batch effects. We employed the Empirical
Bayes method built-in function in LIMMA, in combination
with the fit2 function. Meta-analyses based on microarray data
integration require effective in silico methods. We may now use
in silico tools to efficiently merge numerous microarray datasets
while ignoring differing demographics, experimental designs,
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TABLE 1 | Samples from the GSE series and their DEGs.

SERIES Total

sample

Normal Disease Up

regulated

Down

regulated

Fold

change

Illness Country Year Platform Authors Source

GSE48060 52 21 31 15 14 0.5 CVD USA 2014 GPL-570 Xing Li Peripheral blood

GSE67492 6 2 4 73 16 0.5 CVD USA 2015 GPL-6244 James West Right ventricular

wall

GSE26887 24 5 19 58 95 0.5 CVD Italy 2012 GPL-6244 Fabio Martelli Left ventricular

wall

GSE71226 6 3 3 97 82 1.5 CVD China 2015 GPL-570 Bofan Meng Peripheral blood

GSE42955 29 5 24 125 236 0.5 CVD Spain 2013 GPL-6244 M. M. Molina Heart

GSE141512 12 6 6 69 85 0.5 CVD Russia 2019 GPL-17586 German Osmak Blood

GSE66494 61 8 53 102 325 0.5 CKD Japan 2015 GPL-6480 Satohiro Masada Kidney

GSE43484 6 3 3 134 136 0.5 CKD Sweden 2013 GPL-571 Elham Dadfar Uremic monocyte

GSE15072 29 8 21 51 38 2 CKD Italy 2009 GPL-96 Palo Pontrelli PBMC

GSE62792 18 6 12 352 262 0.5 CKD Sri Lanka 2018 GPL-10558 D. N. Magana Blood

GSE23609 24 7 17 219 189 0.5 CKD USA 2010 GPL-6454 Persis P. Wadia Serum

The entire sample available in the GSE series is shown in column 2, and the fold change values are shown in column 7. In each GSE series, the total up and down regulated genes were

recorded in 5 and 6 columns, respectively. For the GSE series, the platform GPL in column 11 indicates the number of probes and the type of data (Affymetrix data and oligo data).

and specimen sources with the advancements of ever-growing
theories and bioinformatics tools (18).

Identification of CVD and CKD Associated
DEGs
To further analyze the obtained data samples series, the GEO2R
tool (http://www.ncbi.nlm.nih.gov/geo/geo2r/) was used.
GEO2R is a web-based analytical tool with a built-in R program
and GEO query for Linear Models for Microarray Data (Limma).
The default settings were utilized to prepare the datasets (19).
Differentially Expressed mRNAs were extracted applying criteria
p < 0.05 and log fold-change |0.5–2| as the threshold values. Up
and downregulated genes from meta-analysis were used as genes
of interest in PPIN network. As a result, the Benjamini-Hochberg
(BH) correction method was utilized to adjust the significant
value of p obtained by the original hypothesis test during
differential expression analysis. Finally, for DEGs screening, log
Fold change was employed as the key index. Log fold change
|0.5–2| was employed as a DEG screening condition in this
study. The criteria [i.e., value of p < 0.05 and fold change 0.5–2]
were selected in order to expand the total number of DEGs
between healthy control and diseases samples. Since very few
genes were differentially expressed with respect to this threshold,
therefore it made the threshold more stringent and would lead
to nearly no or very few DEGs. If the fold change is altered, the
resulting DEGs will be changed as well, and vice versa. There
is no standard value for fold change when it comes to selecting
DEGs (20).

Network Construction of Protein-Protein
Interactions (PPIN)
The network was built using the String online database and
imported into Cytoscape v.3.80. It supports bipartite graph
visualization of gene-gene linking/interaction/regulation (gene-
disease associations) and also provides gene-centric views of
the network data (21). The Probe Ids were mapped to their

corresponding gene symbols to build the native network
from DEGs. The gene regulatory network of CVD and CKD
was built using the simple premise of one gene and one
protein. A variety of features can be used to construct and
filter the network. The network combines data from curated
databases with knowledge gleaned from the literature (22).
Because the networks might be based on a certain gene
or condition, the PPIN networks are visualized using the
Cytoscape program (23). To discover the significant modules
and top-ranked genes in the PPIN network, the Cytoscape
plugin Molecular Complex Detection (MCODE; version 2.0.0)
and the igraph with Influential packages in R (version 3.6.3)
were used. The network’s topological properties were estimated
using Network analyzer, a Cytoscape version 3.8.0. plug-in,
while the eigenvalues were generated using CytoNCA, another
Cytoscape plug-in for topological properties calculation. This
could also be useful for double-checking Network Analyzer
data (24).

Module/Cluster/Subnetwork Finding:
Molecular COmplex DEtection Method
The MCODE method (A cytoscape plugin) was used to detect
the modules/clusters/communities (Strongly interconnected
regions) in the native network. In a PPI network, protein
complexes and pathways are prevalent groupings (clusters) (25).
To separate the dense regions according to provided parameters,
the approach uses vertex weighting by local neighborhood
density and outward traversal from a locally dense seed protein.
The algorithm has the advantage of having a directed mode,
which permits fine-tuning of clusters of interest without
considering the remainder of the network and investigation
of cluster interconnectivity, which is important in protein
networks (26). The modules from the native network along
with sub-modules from modules at each level of organization
were identified until only motifs remained (i.e., 3 nodes with 3
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edges). Vertex weighting, complex prediction, and possible post-
processing to filter or add proteins in the generated complexes
are the three stages of the MCODE algorithm (27). Intuitively, a
network of interacting molecules can be represented as a graph
with vertices representing molecules and edges representing
chemical interactions. If the temporal pathway or cell signaling
information is known, a directed graph with arcs reflecting
chemical activity or information flow can be created. Otherwise,
an undirected graph is employed. Graph theoretic methods can
be used to aid in the analysis and solution of biological problems
using this graph model of a biological system (28).

Gene Ontology, Pathway Analysis, and HE
Gene ontology words are a standardized set of terms separated
into three categories: Molecular function, Biological Processes,
and Protein Class (29). Thus, DEGs were collected and sent
to ClueGO (a Cytoscape plug-in that facilitates biological
interpretation and visualizes functionally grouped terms in the
form of networks, tables, and charts) to enrich the given set
of DEGs to possible GO terms for exploratory research. We
used ClueGO to assess the function of hub genes and define
the GO term. ClueGO employs kappa statistics to link the
terms in the network. It creates a dynamical network structure
by considering the gene lists of interest at the start. It also
constructs a functionally ordered GO/pathway term network by
combining GO terms and KEGG/BioCarta pathways (30). A
number of adjustable limitation criteria allow for visualizations
of various levels of specificity. ClueGO can also compare gene
groups and highlight their functional differences. ClueGO also
makes use of Cytoscape’s flexible visualization framework and
works in tandem with the GOlorize plug-in. Gene lists can
be imported directly into ClueGO or produced interactively
from gene network graphs shown in Cytoscape. ClueGO comes
with a few gene identities and species by default, and it
is simple to add more via a plug-in. ClueGO is an open-
source Java application that uses different ontologies to extract
non-redundant biological information for huge clusters of
genes (31).

For gene annotation and gene list enrichment analysis,
Metascapes leverages a variety of databases and technologies.
Metascape uses lists of gene identifiers to extract rich annotations,
find statistically enriched pathways, and build PPIN networks.
Pathway or process enrichment analysis uses the standard
accumulative hypergeometric statistical test to identify ontology
words with significant input genes given a gene list (32). We
give more arguably better ontology concepts, including ones
from Broad’s MSigDB, than other GO-based enrichment analysis
tools. Modules were also subjected to MCODE to identify sub-
modules and sub-sub-modules. All modules, sub-modules, and
sub-sub-modules with clustering coefficients less than or equal to
unity were examined. We discovered modules and sub-modules
that were related to independent functions and followed the
modularity laws, and the fact that their activities are non-linear
(33). As a result, we needed to quantify their role as important
genes at the systems biology level, which we did by utilizing HE
analysis of biological networks (34).

Identification of the Most Influential Nodes
Using IVI Methods
The IVI is a newmethod for detecting influential nodes. Hubness
and spreading values combine to form the IVI algorithm. IVI
captures all the network’s topological dimensions. In domains
ranging from transportation to biological systems, identifying
critical individuals within a network is a persistent challenge.
Identifying the most powerful nodes with the ability to have the
most influence on the PPIN network (35), degree centrality (DC)
and ClusterRank (CR), neighborhood connectivity (NC), local
H index, betweenness centrality (BC), and collective influence
(CI), respectively, and to synergize their effect for the unbiased
identification of prominent nodes in the network (36). Influential
is an R package that primarily focuses on identifying the most
influential nodes in a network, as well as categorizing and rating
top candidate characteristics (37).

RESULTS

Figure 1 depicts the workflow of the entire integrative network-
based approach used in this study. Adobe Illustrator CS6 was
used to create the flowchart.

Selection of DEGs
The GSE series of CVD denoted by X and the GSE series of CKD
was denoted by Y. There are 6 GSE series of X (X1, X2, X3, X4, X5,
and X6) and 5 GSE series of Y (Y1, . . . . . . Y5).

Xu = (X1u1, X2u2, . . . .X6u6) (1)

where u stands for upregulation.

Xd = (X1 d1, X2d2.... X6d6) (2)

d stands for downregulation.

Yu = (Y1 u1, . . . .Y5u5) (3)

Yd = (Y1d1, . . . .Y5d5) (4)

To find DEGs, we combine equations, i.e., (1) with (3) and (2)
with (4), as follows:

Xu ∩ Yu = {Xu} ∩ {Yu} (5)

Xd ∩ Yd =
{

Xd
}

∩ {Yd} (6)

The intersection of (5) and (6) gives the Overlapped genes. Genes
showing a value of p ≤ 0.05 and log fold change |0.5–2.0| were
considered statistically significant and differentially expressed.
The total upregulated genes in all 11 GSE series of CVD and
CKD was Xu∩Yu = {1295}, whereas total downregulated genes
are Xd ∩ Yd = {1478}. Total up and downregulated genes in
CKD and CVD, separately, are 437 and 528, and 858 and 950
while the total upregulated genes in all 11 GSE series of CVD
and CKD are 1,295, and downregulated genes are 1478 (Table 2).
After comparison of CVD vs. CKD, we finally got 43 overlapped
genes, including 24 upregulated genes in CVD and CKD, and 19
genes downregulated in both diseases (Figure 2).
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FIGURE 1 | The workflow of our integrative network-based approach is depicted in this diagram.

Gene Network Construction
Based on mRNA profiling and protein networks, to generate
subnetwork biomarkers (interconnected genes whose aggregate
expression levels are predictive of disease state), networks
provide a rich source of biomarkers for illness classification. To
construct a CVD and CKD interaction network and infer gene-
disease correlations using network features (38), we started with a
list of seed/key genes (43 DEGs) that are known to be associated
to the disease, and each gene is represented by a single node in
the interaction network. Next, we built a disease-specific gene-
interaction network where the nodes are the genes and the edges
are their connections (39) using selection of top ranked genes

in the network via IVI -Value, Spreading score, Hubness score,
ClusterRank, Collective influence, h-index, Local h-index degree
centrality (DC), betweenness centrality (BC), and Neighborhood
Connectivity (NK) centrality metrics.

A network representation and analysis is a powerful tool
for studying the complicated behavior of biological systems’
physiology and pathology (40). Through cluster/module analysis,
it was studied that the CVD and CKDnetwork shows hierarchical
scale free nature. The 19 key genes and their presence in various
modules are traced following MCODE community finding
algorithm. There are 15 modules (highly connected nodes)
extracted from the native network. Ten out of 15 modules were
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TABLE 2 | The up and downregulated genes are listed in a table with a count

number column.

Sr.

No.

Common genes

in CVD and CKD

# Count Gene symbol

1 UP regulation 19 NPR3, NFE2L1, TNFSF10, HMGB2,

GABPB2, KDM5D, RSRP1,

GPCPD1, ZNF83, THY1, COX7B,

NPPB, PDZK1IP1, BCL6, IRAK3,

GRN, SOCS3, CASP5, RPS24

2 Down regulation 24 BCL3, ZRANB2, NR1D2, C7, LYN,

ANXA3, PER3, PTP4A3, RPLP0,

HSPB1, ACTG1, RPL13, HCAR3,

FCGR3A, MAP2K3, MYC, CIRBP,

AHSA2, ATP1A1, NPIPB3, PNISR,

RPS2, ENO1, CNN1

Up-regulated genes have red lettering, whereas downregulated genes have green text.

FIGURE 2 | Venn diagram illustrating overlap of the two conditions with each

other [cardiovascular disease (CVD) vs. chronic kidney disease (CKD)].

(A) Overlapped Upregulated genes in 11 GSE Series of CVD and CKD (B) a

total of 24 downregulated genes were found in both conditions.

found to be having our seed genes (Figure 3). These genes will
be utilized to build a gene network and to investigate their
biological importance.

Gene Enrichment Analysis and Pathways
The key genes are submitted to ClueGO a cytoscape plugin to
find the Gene Ontology term. The default setting of ClueGO are
network specificity (medium), organism (human), visuals styles
(group), evidence of experiments, all experimental (EXP, IDA,
IPI, IMP, IGI, and IEP), and value of p < 0.05 (41). ClueGO

constructs a functionally ordered GO/pathway term network
by combining Gene Ontology (GO) terms and KEGG/BioCarta
pathways. It can evaluate and compare numerous lists of genes
and visualize functionally grouped terms in a comprehensive
way. ClueGO can be used in conjunction with the GOlorize
plug-in to offer an intuitive depiction of the analysis results.
ClueGO is enhanced with CluePedia, which allows for a thorough
examination of pathways (42). WikiPathways is a collaborative,
open-source tool for curating biological pathways. Metascape
selects the most informative phrases from the GO clusters
obtained using a heuristic method. It takes a sample of the
20 highest-scoring clusters, picks up to 10 best-scoring words
(lowest p-values) inside each cluster, and then connects all term
pairs with Kappa similarity >0.3 (Figure 4). Cytoscape is used
to show the resulting network, with each node representing one
enriched phrase. The cluster IDs or the p-values can be used
to color the nodes. Edges connect phrases that are similar—
the thicker the edge, the greater the resemblance (43). To
maintain readability, only one label (corresponding to one term)
is displayed per cluster (Figure 4).

Hamiltonian Energy

HE = Ec− γNc,

where Ec represents number of edges in a cluster, Nc for number
of nodes, and the gamma constant γ = 0.8. The HE calculation
for a network within the modules considers contributions from
the organization of nodes and edges in a competitive manner, and
this energy is used in organizing or re-organizing the network
at various levels. This approach can also magnify the significant
changes in the network organization when it goes down to
various levels of organization, which capture the importance
of hubs in the network and at the modular level. Therefore,
HE formalism proves to be a useful technique for considering
variations in the network organization (44). For hubs at each
level of all potential modules in the network, the HE was
determined (Figure 2). When the network’s HE is plotted as
a function of network modules, we discover that the energy
distribution is highest in the native network and gradually
decreases as the amount of organization grows. Because HE
is based on node and edge competition for a set resolution
parameter value (gamma symbol), a drop in HE reflects the
dominance of interacting edges over the network size, implying
rapid information processing (45).

Most Influential, Potential, and Sovereignty
of the Nodes in a Network
Integrated Value of Influence (IVI) is a method for identifying the
most influential nodes in a network that considers all topological
aspects. The IVI formula combines the most important local
(degree centrality and Cluster Rank), semi-local (neighborhood
connectivity and local H-index), and global (betweenness
centrality and collective influence) centrality measures in such
a way that their effects are synergized and their biases are
eliminated (46). The degree function from the igraph package can
be used to calculate degree centrality, which is the most used local

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 January 2022 | Volume 8 | Article 755321

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ahmed et al. Comparative Study to Find Hub Genes Using a Novel IVI Methods in CVD

FIGURE 3 | Cardiovascular disease and CKD parental network (merge network) with 587 nodes and 13,887 edges, red and green colors for seed genes and blue for

interaction partners (non-seed genes). Using the MCODE cytoscape plugin, the native network is broken down into subnetworks up to the motif level. Each module

(Continued)

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 January 2022 | Volume 8 | Article 755321

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ahmed et al. Comparative Study to Find Hub Genes Using a Novel IVI Methods in CVD

FIGURE 3 | subnetwork from native network represents with MCODE score and seed genes (up-regulated red and downregulated green). The hierarchy of energy is

depicted on the right side of the illustration by a Hamiltonian energy (HE) bar graph. As the number of nodes in the modules decreases, so does the amount of energy

used. The HE was calculated for nodes at each level of all conceivable modules in the network. The HE of the CVD and CKD networks is given as a function of

network levels. We determined that energy distribution is greatest in the core network and diminishes as the level of (modules) organization increases. Because HE is

dependent on nodes and edges for a fixed resolution parameter value (gamma = 0.8), the drop in HE shows the dominance of interacting edges over the network

size, indicating rapid information processing. The HE of a complex network is a measure of overall energy in the system, and its value fluctuates as the network

structure changes.

FIGURE 4 | (A) Metascape, a web-based application, was used to enrich the gene ontology of our interest genes (seed genes). Metascape created an 8-cluster

network for the go term (Biological Process), with color according on gene proportion. Each cluster has a large number of genes, including seed genes. Each cluster’s

node has a different GO term, but the main term is taken into account because of the seed genes (8 genes in first term and seed genes count decreases from top to

bottom term whereas Log P-value increases). The GO keywords, gene counts, gene symbols, and lop p-value are shown in (B) table shows GO terms, genes count,

genes symbols, and lop p-value. The term having seed genes count and log p-value higher were on top. In the GO term table w and k represents wiki and keg

pathways, respectively. (C) Bar graph on the basis of p-value shows the GO term. As P-values decreases the go term goes top to bottom.

centrality measure. The degree centrality (DC) DCi =
∑

i 6= j =

Aij is the simplest local centrality metric for a graph, where A
represents the adjacency matrix of the associated network and
Aij = 1 if nodes i and j are connected and Aij = 0, otherwise
(47). Betweenness centrality, like degree centrality, is a widely
used centrality metric. However, it only represents a node’s global
centrality. Another important centrality metric that reflects a
node’s semi-local centrality is neighborhood connectedness. For
the first time, this centrality measure can be calculated in the
R environment using the influential package. ClusterRank is

another local centrality metric that removes the negative impacts
of local clustering by intermediating between local and semi-local
properties of a node. The H-index is a measure of how well a
piece of the H-index is a semi-local centrality metric that was
inspired by its use in analyzing the influence of researchers and
is now available in the R environment for the first time via the
influential package (48). Local H-index (LH-index) is a semi-local
centrality measure and an upgraded variant of H-index centrality
that applies the H-index to a node’s second order neighbors and is
now calculable in R using the influential package. The product of

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 January 2022 | Volume 8 | Article 755321

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ahmed et al. Comparative Study to Find Hub Genes Using a Novel IVI Methods in CVD

FIGURE 5 | (A) Gene ontology study of hub genes (CVD and CKD) using ClueGO, a cytoscape plugin, including KEGG pathways (B), molecular function (C), and

cellular localization, and (D–F) their respective bar plots. In the case of KEGG pathways, the network encompasses all modules and their seed genes. The modules

are labeled with a circle and are referred to as clusters. There are four seed genes in the first cluster. The different colors of nodes indicate which genes are involved in

which functions. All clusters are included in the molecular function, whereas only five clusters are visible in cellular localization (cluster 1, 5, 10, 11, and cluster 13).

TABLE 3 | The gene tracing in a network where the primary network is broken

down into subnetworks/clusters/modules is shown in this table.

Sr. No. Module Nodes Edges #Count Gene of interest

1 Module 1 133 8061 4 RPL13, RPLP0,

RPS2, RPS24

2 Module 5 44 231 3 MYC, COX7B,

SOCS3

3 Module 6 36 126 2 MAP2K3, TNFSF10

4 Module 7 6 14 1 PER3

5 Module 8 25 67 1 IRAK3

6 Module 9 30 80 2 BCL6, HSPB1

7 Module 10 16 38 1 ENO1

8 Module 11 5 10 1 ATP1A1

9 Module 13 5 6 2 LYN, FCGR3A

10 Module 15 3 3 2 NPR3, NPPB

Ten modules out of fifteen have our gene of interest (seed genes). The table displays

the number of nodes, edges, and genes in the specific module. Upregulation genes are

shown in red, whereas downregulation genes are highlighted in green. There are a total

of 19 genes that have been traced (11 downregulation and 8 up-regulation).

the reduced degree (degree – 1) of a node and the total reduced
degree of all nodes at a distance d from the node is calculated
as Collective Influence (CI). For the first time, this centrality
metric is included in a R package. Two global centrality measures,
betweenness centrality and collective influence, are among
the most extensively used for identifying network influencers.
Betweenness is the likelihood of a node in a network to be on
the shortest path between nodes. Influencers of information flow
inside a network are nodes with a high betweenness. Sometimes,
we want to find the nodes that have the most potential
for propagating information throughout the network, rather
than the most influential nodes. ClusterRank, neighborhood
connectedness, betweenness centrality, and collective impact all
contribute to the spreading score, which is an integrative score
made up of four separate centrality measurements. Also, one of
the primary components of the IVI is the spreading score, which
measures the spreading potential of each node within a network.
In some circumstances, we wish to find out which nodes have
the most sovereignty in their immediate surroundings. Hubness
score is an integrative score comprised of two different centrality
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FIGURE 6 | (A) The most important nodes are shown in the network created with R and influential packages. Zooming closer on the nodes reveals their color and

interaction. The nodes in the native network are mostly the same color, indicating that they have a score of <25. The values of nodes are represented using a color

spectrum. If the nodes are yellow, it suggests they are larger in size and have values >75. (B) Higher values are represented by a larger IVI value representation with

yellow color. (C) A bar graph depicting three scores (IVI-Score, Spreading Score, and Hubness Score) for 19 essential genes’ hub nodes. RPS27A is the highest

non-seed gene in all three scores, with a value of 100, whereas RPS24 is the top seed gene in two of them (IVI-Score and Spreading score), with values of 45.82538

and 49.77075, respectively. In hubness score 81.57813, RPS2 is the top seed gene. The most powerful node in the network is RPS27A (non-seed gene).

measures: degree centrality and local H-index (49). In addition,
theHubness score, which is one of the key components of the IVI,
shows the power of each node in its surrounding environment
(Figure 5).

DISCUSSION

The risk of CVD is increased with stages of CKD by promoting
myocardial hypertrophy, coronary (CAD), atherosclerosis, and
fluid overload. As the two most important organs of the body,
the heart and kidneys work in close relation to each other. So,
to unroll this methodical relationship at the molecular level,
the present study was intervened. In this study, we have used
integrated network-based approach and IVI methods to extracts

the information (influential of nodes), hub genes, functions, and
pathways. One of the limitations of this kind of study is that
we have different cell and tissue types. Using p-adjustment is
not the right choice under such circumstances as we did get no
significant genes at 0.5 adjusted P-value for the GSE43484 and
GSE67492. The current study is more like the meta-analysis of
gene expression datasets using common microarray platforms
which is quite widespread in many species. Apart from all the
technicalities, the sharing of similar functions associated with
transcripts of similar expression has persistently been used to
annotate functions for humans in bioinformatics. Thus, using
multiple datasets within functional premises governed by genes
expressing in cell/tissue for a phenotype can be considered to
involve similar pathways. This study retrieved 2,773 DEGs from
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TABLE 4 | The top 20 nodes in the network were extract on the basis of IVI-score, spreading score, hubness score, CI score, and local HI score.

Sr. No. Gene IVI-value Gene Spreading score Gene Hubness score CI Gene Local HI Gene

1 RPS27A 100 RPS27A 100 RPS27A 100 1453138 EIF4G1 19288 RPS27A

2 FAU 86.54204 UBA52 66.35965 UBA52 83.6756 919132 FAU 17854 UBA52

3 PPP2CA 69.49985 EIF2S2 53.61083 RPS6 82.12102 910888 RPL10 17813 RPS6

4 EIF4A3 66.75017 EIF3M 53.49261 RPS2 81.57813 897390 RPL10A 17813 RPS2

5 ABCE1 65.97182 EIF3C 53.38627 RPS7 81.44018 866059 RPL10L 17792 RPS14

6 NHP2L1 64.97156 EIF3J 53.20541 RPS9 81.44018 862729 RPL11 17761 RPS7

7 GAPDH 61.76868 EIF2S1 53.19844 RPS14 81.30669 816804 RPL12 17692 RPS9

8 GNB2L1 60.52372 EIF3D 52.99297 RPS3 80.93769 806190 RPL13 17649 RPS3

9 IMP3 56.46971 EIF3K 52.99297 RPS18 80.63545 774473 RPL13A 17606 RPS11

10 NHP2 56.35967 EIF3B 52.53035 RPS11 80.50452 769952 RPL14 17606 RPS18

11 RPL11 55.67579 EIF5 52.38929 RPS27 80.35306 761514 RPL15 17606 RPS27

12 RPP38 51.82545 EIF3F 52.28384 RPS13 80.3332 751443 RPL17 17606 RPS13

13 EIF3D 46.9192 EIF3H 52.28384 RPS16 80.3332 681471 RPL18 17606 RPS15

14 RPS24 45.82538 EIF1AX 52.28095 RPS17 80.3332 674001 RPL18A 17606 RPS16

15 EEF1G 45.05756 PPP2CA 51.95736 RPS23 80.3332 646646 RPL19 17606 RPS17

16 BOP1 44.26816 RPS14 51.83609 RPS3A 80.3332 634176 RPL21 17606 RPS23

17 EIF3L 43.55821 RPS7 51.10068 RPS4X 80.3332 630175 RPL22 17598 RPS3A

18 RPL24 42.99506 RPS9 51.10068 RPS5 80.3332 624200 RPL22L1 17584 RPS4X

19 RPL14 42.20691 GNB2L1 50.96442 RPS8 80.3332 622336 RPL23 17548 RPS5

20 RPS28 41.40638 SEC61B 50.94699 RPS15 80.27672 621550 RPL23A 17548 RPS8

These 20 nodes/genes are the most important nodes in the network retrieved from IVI methods. Using versatile methods (IVI-methods), most influential network nodes can be detected.

11GSE Series (6 CVD and 5CKD) series with thousands of genes.
The 2,873 genes were overlapped in both cases during the process
of distinguishing between the significant genes. Finally, based on
our filtering criterion, we got to 43 key (or seed) genes in both
conditions (24 down and 19 up-regulated genes) represented by
Venn diagram in Figure 2.

Our retrieved key genes might be of significance in
understanding the pathological degree of CRS in a better way.
The network was constructed from 43 seed genes (487 nodes
and 12,027 edges) using String (a web tools) with an interaction
score of 0.9, the network was then imported to Cytoscape
(3.8.1) for further downstream analysis. Out of 43, only 19 seed
genes (8 up and 11 downregulated genes) were retained by the
native network.

To find the involvement of the DEG(s) at different levels in the
constructed network, the native or primary network was further
broken down to 15 subnetworks or modules using MCODE
(MCODE parameters were used for network scoring and cluster
finding, i.e., “Degree cutoff = 2,” “node score cutoff = 0.2,” “k-
score= 2,” and “max. depth= 100.” Out of these 15 modules, 10
modules were found to have seed genes. Interestingly, Module
1 contains 4 downregulated (RPL13, RPLP0, RPS2) and one
upregulated (RPS24) gene, module 5 contains one downregulated
gene (MYC) and two (SOCS3, COX7B) upregulated genes,
module 6 contains two genes, one (MAP2K3) downregulated
and one (TNFSF10) up-regulated gene. Modules 7 and 8 consist
of one downregulated (PER3) and one (IRAK3) up-regulated
gene. Module 9 contains two genes, one BCL6 (upregulated)
and one HSPB1 (downregulated). Module 10 contains one
downregulated gene (ENO1). Module 11 contains the gene

ATP1A1 (downregulated), and module 13 and 15 contain two
genes each, namely, LYN, FCGR3A (downregulated) and NPR3,
NPPB (up-regulated) as shown in Table 3. As the number of
nodes and edges decreases, theMCODE score decreases as shown
in Figure 3. A high MCODE score indicates that the nodes
are well-connected (dense network). To further establish the
stability and integrity of these modules, Hamiltonian energy was
calculated using the formalism in the method section where
low HE suggests less likely to remain stable under stress (say
when seed genes are removed). Module 7 shows very low
value of HE, while modules 8 and 9 bar indicate higher values
than module 5 (see Figure 3). The decline of top to bottom
indicates the hierarchy of nodes. Seed genes (19) were further
studied for their functions (GO TERM) and pathways. These
19 genes were submitted to Metascape, an online database,
to get an understanding of the biological processes, molecular
functions, and pathways they represent. Gene ontology terms
are a comprehensible input of terms organized into three
categories: Molecular function, Biological Processes, and Protein
Class. Thus, these extracted DEGs were submitted to ClueGO,
a Cytoscape plug-in that facilitates the biological interpretation,
functional differences, and visualizes functionally grouped terms
in the form of networks, tables, and charts (Figure 4). It illustrates
the clusters of 8 networks based on the color of the gene
connections and the percentage of genes in each cluster. The
seed gene count, p-value, and gene symbol, along with their
GO-TERM are represented in the table.

Based on GO term enrichment, the highest represented a
group of 8 genes (BCL6, ENO1, HSPB1, LYN, MYC, MAP2K3,
SOCS3, and IRAK3) perform negative regulation of intracellular
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FIGURE 7 | (A) The miRNAs-mRNA network contains 47 nodes and 85 edges. Red color eclipse indicates genes, whereas, cyan color rectangle indicates their

associated miRNAs. The mienturnet database also analyzes the major miRNAs pathways of key miRNAs. The degree of these four miRNAs was plotted against the

KEGG pathways (B), WikiPathways (C), and disease ontology (F). The bar plot shows the genes (D) and miRNA (E) based on degree centrality. (G) The gene-drug

network was build using drug gene interaction database, which build the network of 78 nodes and 72 edges. Red color diamond for genes and cyan color for

their drugs.
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TABLE 5 | The scores of the 19 seed genes in the native network were determined.

Sr. No. Gene IVI score Gene SPD score Gene Hubness score

1 RPS24 45.82538 RPS24 49.77075 RPS2 81.57813

2 MYC 26.69248 RPS2 46.32048 RPS24 79.5567

3 RPL13 25.10682 RPL13 41.60822 RPL13 64.30335

4 RPS2 20.43554 RPLP0 41.56268 RPLP0 64.30078

5 RPLP0 18.87599 LYN 8.263571 MYC 16.28468

6 BCL6 6.661571 MYC 6.925186 LYN 12.20791

7 LYN 6.297702 MAP2K3 5.662946 SOCS3 8.827513

8 TNFSF10 4.720607 BCL6 5.502842 HSPB1 5.966899

9 SOCS3 3.093086 TNFSF10 5.278298 MAP2K3 5.497646

10 HSPB1 2.515714 SOCS3 3.546049 TNFSF10 4.816811

11 ENO1 2.15667 HSPB1 3.370381 BCL6 4.770602

12 MAP2K3 2.067014 COX7B 2.702907 COX7B 3.981947

13 IRAK3 1.913351 FCGR3A 2.099974 ENO1 2.789033

14 FCGR3A 1.432519 ENO1 2.067738 IRAK3 2.3437

15 PER3 1.328185 IRAK3 2.014448 FCGR3A 2.182645

16 NPPB 1.24651 PER3 1.614294 PER3 2.082526

17 ATP1A1 1.15923 ATP1A1 1.031002 ATP1A1 1.611522

18 COX7B 1.088852 NPPB 1 NPPB 1.19186

19 NPR3 1.030828 NPR3 1 NPR3 1.19186

RPS24 has the greatest score in the table, while NPR3 has the lowest.

signal transduction (GO:1902532) while the least suggested
function is negative regulation of apoptotic signaling pathway
(GO:2001234) (see Figure 5A for seed gene pathways), with
circles indicating modules. The different pathways are indicated
by the color of interaction between nodes. If a gene has
multiple colors, it suggests that it plays multiple roles in different
pathways. Genes that play a key role in the pathophysiology of
various diseases could be useful biomarkers in future research.
In cluster 5, the gene MYC has many colors and various
connections via edges. Thus, it may be a more important
gene as compared to others. While some seed genes, like
RPS24 and RPS2, show only one type of color that suggests
a unique function that also plays a key role (see Figures 5B,C

for molecular functions and cellular location of seed genes).
Following the PPIN and Gene enrichment analyses, we tried
to find the most influential nodes, also known as hub nodes,
using the IVI-value and other associated scores. The IVI values,
hubness score, spreading score, and local HI index of the
19 seed nodes are displayed in the network. The non-seed
genes, such as RPS27A and FAU, have the greatest values. In
Figure 6, the size of the nodes and colors indicates higher to
lower IVI value. If the nodes have a higher value than 100,
the color will be yellow and circle size enlarge. The exact
IVI-value of nodes is mentioned in Table 4. The spreader
nodes are projected to have the largest impact on the flow of
information throughout the network because they have high
connections with other nodes inside the network. We took
these influential nodes to add one more intermediate layer of
information in the networks that reveal the interaction of genes
and proteins through the intermediate miRNA that regulate the
genes (Figure 7). Thus, giving us a glimpse of the underlying

physiology of these two conditions that were cumulatively
called CRS.

Furthermore, we used various other available tools for
identifying the most influential nodes with IVI like based on
its centrality measurements (9, 10). The DC is the simplest
local centrality measure for a graph (degree centrality). Two
global centrality measures, betweenness centrality, and collective
influence, are among the most extensively used for identifying
network influencers. Betweenness is the tendency of a node in a
graph to be on the shortest path between nodes (1). Influencers
of information flow inside a network are nodes with a high
betweenness (11). The collective number of nodes that may be
reached from a given node is measured by collective impact,
a new global centrality metric. Neighborhood connectedness is
a network’s semi-local centrality measure that considers node
connectivity (number of neighbors). It’s called a semi-local
measure because it’s not limited to a node’s immediate neighbors
and considers the entire environment. The average connectivity
of all neighbors of a vertex I is defined as its neighborhood
connectivity. It is also said that a node’s prominence in
the network is determined by not only the number of first
connections (degree centrality), but also the amount to which
the nodes near neighbors are connected to each other and other
nodes (neighborhood connectivity). The greatest value h such
that there are at least h neighbors of a degree greater than or
equal to h is defined as the H index of node i. The local H
index is a semi-local centrality metric, despite its name, because it
applies the H index centrality to a node’s second order neighbors.
All these centrality metrics (Hubness Score, Spreading Score,
Degree Centrality, ClusterRank, local H index, neighborhood
connectivity, betweenness centrality, and collective influence)
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FIGURE 8 | These five networks containing the top 20 nodes were extracted from the native network using five centrality approaches. (A) Based on IVI method,

RPS24 seed genes is present. (B) According to the Spreading Score, there are no seed genes in the top 20 nodes. (C) Local H index network, (D) collective influence

network, (E) hubness score network with RPS2 seed gene.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 14 January 2022 | Volume 8 | Article 755321

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ahmed et al. Comparative Study to Find Hub Genes Using a Novel IVI Methods in CVD

are critical for identifying a network’s most significant nodes
(Table 5). Based on five centrality top 20 genes network extract
from native network (Figure 8).

These results offer DEGs thatmay act as therapeutic targets for
CVD and CKD in the future. This study reveals many aspects of
CVD and CKD, such as gene-gene interaction, gene enrichment
analysis, and pathways of hub genes. The hub genes may be
the biomarker of the two conditions (CVD and CKD) need
to be validated further but there are limitations such as few
genes may be up-regulated and downregulated in the separate
entity (means either in CVD or CKD). Maybe those genes are
the key genes in CVD or CKD further research will reveal
this gap. The study mainly focuses only on overlapped genes,
despite all up and down genes. The non-seed genes are the
most influential nodes in the network, not related to CVD and
CKD. Because of the PPIN networks from the String database
construct, the gene-gene interaction network using the source
selected (human) and not disease specific genes interact with
the seed genes. So, the study focuses only on the seed genes or
related genes with the disease, but the results show the IVI -score,
hubness score, and Spreading score, etc., of the non-seed genes
(Table 4).

Our computational approach offers a comprehensive study,
revealing the biomarkers of CVD and CKD using network
approach and IVI methods (centrality measures), signifying the
importance of nodes in the network, which help in Discover
and understanding the various aspects of this disease. CKD
Patients exhibit a pronounced risk for CVD events, utmost 50%
of patients with CKD (stage 4 to 5) have CVD.

CONCLUSION

Evidence-based approach has always been the center of clinical
studies, while in-silico approaches focus to produce that potential
evidence based on past knowledge, thus making this integrated
process fast and efficient. On the other hand, there is great
efforts are ongoing with the aim of reducing CVD residual risk
by developing reliable prognostic and predictive biomarkers.
Apart from many challenges, finding seed genes is one of
the first challenges and we have proposed a very simple and
efficient way to do that using set theory. The resulting 43 seed
genes (that defines the molecular relationship between CVD
and CKD) can then be used to construct the GGiN (gene-
gene interaction network) to uncover the possible biological and
functional meaning. On the other hand, we have used IVImethod

to calculate the influence of the nodes in the network, which
further minimizes the gene list to a more realistic one (that can
be tested in-vivo or vitro). Our study finds 19 genes out of many
for being more prominent in the CRS (published data), whereas
many other genes show a good expressions level. Although,
RPS27A, a non-seed gene, was found to be the most influential
node in the network followed by RPS2 and MYC. Based on
these findings, new validation experiments can be constructed to
further prove these as markers or good drug targets. Thus, giving
us an opportunity to reduce the risks of CKD and CVD.
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