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The mechanisms responsible for the propensity to gain weight or remain normal weight
are poorly understood. The objective of this study was to study the neuronal response
to visual food cues during short-term energy imbalance in healthy adults recruited as
obesity-resistant (OR) or obesity-prone (OP) based on self-identification, body mass index,
and personal/family weight history. Twenty-five OR and 28 OP subjects were studied in
underfed (UF) and overfed (OF) as compared to eucaloric (EU) conditions in a randomized
crossover design. Each study phase included a 3-day run-in diet, 1 day of controlled feed-
ing (basal energy needs for EU, 40% above/below basal energy needs for OF/UF), and
a test day. On the test day, fMRI was performed in the acute fed stated (30 min after a
test meal) while subjects viewed images of foods of high hedonic value and neutral non-
food objects. Measures of appetite and hormones were also performed before and every
30 min after the test meal. UF was associated with significantly increased activation of
insula, somatosensory cortex, inferior and medial prefrontal cortex (PFC), parahippocam-
pus, precuneus, cingulate, and visual cortex in OR. However, UF had no impact in OP. As
a result, UF was associated with significantly greater activation, specifically in the insula,
inferior PFC, and somatosensory cortex in OR as compared to OP. While OF was over-
all associated with reduced activation of inferior visual cortex, no group interaction was
observed with OF. In summary, these findings suggest that individuals resistant to weight
gain and obesity are more sensitive to short-term energy imbalance, particularly with UF,
than those prone to weight gain. The inability to sense or adapt to changes in energy bal-
ance may represent an important mechanism contributing to excess energy intake and risk
for obesity.
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INTRODUCTION
Despite the high prevalence of overweight and obesity, some indi-
viduals appear to be resistant to weight gain and obesity even
though they live in the same obesogenic environment. An individ-
ual’s susceptibility to weight gain may be associated with a greater
ability to adapt to changes in energy balance. We have previously
shown that thin, “obesity-resistant” (OR) individuals are more
sensitive to 2 days of overfeeding and to an acute meal than indi-
viduals prone to weight gain and obesity with greater changes in
appetite-related behaviors and in neuronal responses to food cues
(Cornier et al., 2004, 2009, 2013). How underfeeding, acute caloric
reduction or acute overfeeding impacts the neuronal response to
food cues, however, has not been well studied.

The regulation of energy balance is a result of complex interac-
tions between physiologic signals, such as leptin and intestinal-
derived peptides, and non-physiologic signals, such as reward,
motivation, attention, and environmental cues (Zheng et al.,

2009). Neuroimaging studies have helped elucidate neuroanatom-
ical and neurophysiologic correlates associated with food intake
regulation and how these processes may be altered in obesity. Neu-
roimaging studies have focused on how obesity impacts the brain’s
response to food-related cues and have generally found altered
responses to visual, gustatory, and olfactory cues in brain regions
important in the regulation of appetitive regulation (Rothemund
et al., 2007; Rosenbaum et al., 2008; Stoeckel et al., 2008; Cornier
et al., 2009; McCaffery et al., 2009; Martin et al., 2010; Carnell et al.,
2012; Pursey et al., 2014). It is unclear, though, if these findings
are a consequence or cause of obesity (Rothemund et al., 2007;
Stoeckel et al., 2008; Martin et al., 2010). We have shown that both
reduced-obese (obese individuals who were studied after 8–10%
weight loss through caloric restriction) and obesity-prone (OP)
individuals not only have altered eating related behaviors but also
altered neuronal responses to visual food cues in response to feed-
ing as compared to thin, OR individuals (Cornier et al., 2004,
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2009, 2013; Thomas et al., 2013). These studies suggest that risk
for weight gain and obesity is not only associated with changes in
the neuronal response to food but also in an inability to alter this
response based on physiologic need.

Studies examining the neuronal response to short-term changes
in energy balance have not been well examined, especially in indi-
viduals resistant or prone to weight gain and/or obesity. We there-
fore designed the present study to assess the neuronal response
to visual food cues during short-term energy imbalance, 1-day of
under- and over-feeding, in thin individuals who identified them-
selves as being OR, as compared to “never-obese” OP individuals.
Research participant were classified as OR or OP based on personal
and family weight history as well as the subject’s own percep-
tion of their tendency to gain weight or not, as previously defined
(Schmidt et al., 2012, 2013; Smucny et al., 2012; Cornier et al., 2013;
Thomas et al., 2013, 2014). We hypothesized that OR individuals
would be more sensitive to changes in short-term energy balance
with greater changes in the neuronal response to food cues with
under- and overfeeding vs. eucaloric (EU) feeding as compared to
OP individuals.

MATERIALS AND METHODS
RESEARCH PARTICIPANTS
This study was conducted according to the principles of the Dec-
laration of Helsinki and was approved by the Colorado Multiple
Institutional Review Board. All research participants provided
written informed consent.

As we have previously described, subjects were recruited to have
a propensity to be resistant to weight gain and obesity (OR) or to be
prone to weight gain and obesity (OP) (Schmidt et al., 2012, 2013;
Smucny et al., 2012; Cornier et al., 2013; Thomas et al., 2013, 2014).
Subjects were 25–40 years of age and were free of significant med-
ical and psychiatric disease, including eating disorders as assessed
by screening medical history, physical examination, biochemical
testing, and questionnaires [eating attitudes test (Garner et al.,
1982) and the Center for Epidemiologic Studies Depression Scale
(Radloff, 1977)]. OR subjects responded to advertisements for
“naturally thin people.” They defined themselves as “constitution-
ally thin” based on their perception of difficulty gaining weight,
expending little effort to maintain their weight, and reporting a
sense that their body weight regulation was somewhat “different”
from other people. They had a body mass index (BMI) of 17–
25 kg/m2 and reported no obese first degree relatives, never being
overweight themselves, weight stability despite few to no attempts
to lose weight, and no high levels of physical activity. OP subjects,
in contrast, responded to advertisements for “people who struggle
with their weight”and defined themselves as chronically struggling
with body weight control. They had a BMI of 20–30 kg/m2and
reported at least one obese first degree relative, a history of weight
fluctuations despite putting effort into not gaining weight and
previous attempts to lose weight, but were not actively attempting
to lose weight and were weight stable for at least 3 months. All
participants were right-handed and could not have contraindi-
cations for MRI scanning. A total of 28 subjects were studied in
each group. Data from three individuals were not included in the
analysis due to technical problems or head movement of >2 mm
during scanning data. As a result, 25 OR (14 men, 11 women) and

28 OP individuals (14 men, 14 women) are included in the current
analyses.

STUDY DESIGN AND MEASUREMENTS
As previously described (Cornier et al., 2013; Thomas et al.,
2013, 2014), subjects first underwent baseline assessments, includ-
ing anthropometric measurements (body weight, height), the
three factor eating questionnaire (Stunkard and Messick, 1985),
and body composition (lean body mass, fat mass) measurement
by dual-energy x-ray absorptiometry (DPX whole-body scanner,
Lunar Radiation Corp., Madison, WI, USA). Each subject then
underwent three study phases in a randomized counterbalanced
manner, with each phase consisting of a 3-day baseline EU diet
period to ensure energy and macronutrient balance, followed by
the intervention diet on day 4, and then a study day on day 5 as
shown in Figure 1. The three study phases consisted of one of
the following intervention diets on day 4: EU diet, overfeeding
(OF) by 40% above estimated energy needs, or underfeeding (UF)
by 40% of baseline caloric intake. During all three study periods,
the diets were made up of the same macronutrient composition
(50% carbohydrate, 30% fat, and 20% protein). Estimates of daily
energy needs were made using lean body mass (as determined by
DEXA) in the following equation: resting metabolic rate= (fat free
mass× 23.9)+ 372. The estimates were confirmed using resting
metabolic rate as assessed by indirect calorimetry and multiplied
by an activity factor of 1.3. This method has been used success-
fully by our group in a number of prior studies (Cornier et al.,
2004, 2006, 2007, 2009; Adochio et al., 2009; Wang et al., 2012).
All food was prepared and provided by the Clinical Translational
Research Center metabolic kitchen. Subjects presented to the Clin-
ical Translational Research Center each morning, were weighed,
ate breakfast, and picked up the remainder of their daily meals,
which were packed in coolers. Subjects were asked to maintain
their usual pattern of physical activity and were regularly ques-
tioned regarding activity and compliance. Subjects were asked to
not consume any alcoholic or calorie-containing beverages during
the study period. In women, study days were scheduled during the
follicular phase of their menstrual cycle.

STUDY DAY
Again as previously described (Cornier et al., 2013; Thomas et al.,
2013, 2014), subjects presented to the outpatient clinic of the Clini-
cal Translational Research Center after an overnight fast of at least
10 h. They first completed baseline (fasting) appetite ratings by
visual analog scale (VAS) (Cornier et al., 2004). Hunger was rated
by VAS on a line preceded by the question, “How hungry are you
right now?” and anchored on the left by “not at all hungry” and by
“extremely hungry” on the right. Satiety was rated by the question,

FIGURE 1 | Study design. Subjects were studied during three conditions,
eucaloric (EU), underfeeding (UF), and overfeeding (OF) as shown.
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“How full do you feel right now?” with the anchors “not at all” and
“extremely.” An intravenous catheter was then placed for blood
sampling. Baseline (fasting) samples were drawn for hormones
[insulin, leptin, ghrelin, peptide YY (PYY), glucagon like peptide-1
(GLP-1)] and metabolites (glucose, triglycerides, free fatty acids).
Subjects were then escorted to the Brain Imaging Center at the
University of Colorado where they consumed a liquid breakfast
meal over 20 min. The caloric content of the liquid breakfast was
equal to 25% of the energy provided during the intervention diet
(EU, OF, or UF) and had an identical macronutrient composition.
fMRI measures (described below) were then performed 60 min
after the start of the test meal. Repeat appetite ratings by VAS
and blood sampling were also performed 30, 60, 90, 120, 150, and
180 min after the meal.

LABORATORY ANALYSES
Blood samples were collected in EDTA-containing tubes, cen-
trifuged, placed in aliquot tubes and stored at−70 to−80°C until
analysis. All assays were run after all three studies phases were com-
plete for each subject. For GLP-1, 30 µl of dipeptidyl peptidase IV
inhibitor was added to the 4 ml EDTA tube prior to collection.
Total GLP-1 assays were performed with Alpco Diagnostics ELISA
(43-GPTHU-E01). Insulin concentrations were measured using
competitive radioimmunoassay (Millipore). Radioimmunoassays
were used to analyze serum leptin (Millipore), serum PYY con-
centrations (Millipore Cat. #PYYT-66HK), and total serum ghre-
lin concentrations (Millipore Cat. #GHRT-89HK). All radioim-
munoassays were performed with a Perkin Elmer Wallac Gamma
counter using Maciel RIA-AID data reduction software. Assays for
glucose, triglycerides, and free fatty acids were performed on the
Olympus AU400e Chemistry Analyzer (Beckman).

FUNCTIONAL MAGNETIC RESONANCE IMAGING
As previously described (Cornier et al., 2013), imaging studies
were performed using a General Electric (Milwaukee, WI, USA)
3.0 T MR scanner with a standard quadrature head coil. Prior
to functional imaging, high-resolution, T1-weighted 3D anatom-
ical scan over 10 min was acquired for each subject. Functional
images were then acquired with an echo-planar gradient-echo
T2* blood oxygenation level dependent (BOLD) imaging con-
trast technique, with TR= 2000 ms, TE= 30 ms, 642 matrix, 240
mm2 FOV, 27 axial slices angled parallel to the planum sphe-
noidale, 2.6 mm thick, 1.4 mm gap. Additionally, one inversion-
recovery echo-planar-image (TI= 505 ms) volume was acquired
to improve coregistration between the echo-planar images and
gray matter templates used in pre-processing. The acquisition
voxel size was 3.43 mm× 3.43 mm× 2.6 mm. Head motion was
minimized with a VacFix head-conforming vacuum cushion (Par
Scientific A/S, Odense, Denmark). Functional imaging was per-
formed while the participants were presented visual stimuli using
a projector and screen system. Previously validated visual stimuli
consisted of three different categories: neutral non-food-related
objects, foods of high hedonic value, and foods of neutral hedonic
value (Burger et al., 2011). To reduce the potential for habit-
uation, different but similar images were used in each of the
scanning sessions (EU, OF, UF). Because previous studies have
shown that comparisons involving neutral food objects to be

qualitatively similar but less sensitive (Cornier et al., 2007), the
primary analysis examined differences between hedonic foods
and non-food objects. Images of hedonic foods included images
of pastries, savory dishes, furti, and images of neutral foods
included images of bread products, vegetables, and starchy side
dishes. Images of non-food objects included images of scener-
ies, furniture, buildings, tools, vehicles, books, and others. Two
runs were performed with each run consisting of a pseudo-
randomized block design with six blocks of pictures of each
category. Seven blocks of a low-level baseline (fixation cross) were
also included in each run. Each block consisted of four stim-
uli shown for 4 s each for a total of 16 s/block. Four additional
scans were acquired at the beginning of each run to minimize
saturation effects. Subjects were asked lie quietly and to view the
images.

CALCULATIONS AND STATISTICAL ANALYSES
fMRI data were analyzed using Statistical Parametric Mapping 8
software (SPM8, Wellcome Department of Imaging Neuroscience,
London, England) as previously described (Cornier et al., 2013).
Data analyses were blind to participant group. Data from each
subject were realigned to the first echo-planar image, normalized
to the Montreal Neurological Institute (MNI) template, using a
gray-matter-segmented IR-EPI as an intermediate to improve reg-
istration, and smoothed with a 6 mm FWHM Gaussian kernel.
Movement parameters derived from the realignment procedure
were included in the model to reduce the effects of residual
motion-related noise. The hemodynamic response was modeled
with a double gamma function, without temporal derivatives,
using the general linear model in SPM8. A 128 s high pass filter
was applied to remove low-frequency fluctuation in the BOLD
signal. To account for both within-group and within-subject
variance, a random effects analysis was implemented. Parameter
estimates for each individual’s first level analysis (SPM contrast
images) contrasting “hedonic food cues” to “non-food objects”
were entered into second-level repeated measures ANOVA. Com-
parisons across conditions (e.g., underfed-EU) and group (OR–
OP) were evaluated with directional contrasts (SPM t -contrasts).
Results were considered significant at a whole-brain level if they
exceeded a voxel-wise threshold of p < 0.01 and a cluster-level
false discovery rate (FDR) threshold of q < 0.05 (critical clus-
ter size= 193). Results in all figures are statistical parametric
maps (i.e., colored voxels indicate t -values), thresholded at the
above level, overlaid on a group averaged anatomical image.
Finally, order effect was examined using SPSS v21 (IBM Corp,
Armonk, NY).

Non-imaging analyses were performed using SigmaStat soft-
ware (Jandel Scientific, San Rafael, CA, USA). The total area under
the curve (AUC) for appetite ratings and biochemical measure-
ments was calculated using the Trapezoid Method (Allison et al.,
1995), using all time points over 3 h post-test meal. Group differ-
ences were analyzed using a two-sided t -test with significance set
at a level of 0.05. Finally, the Pearson Product Correlation between
the fMRI BOLD% signal change, relative to the global mean (local
maxima) and appetite/biochemical measures was examined, with
a significance set at a level of 0.05, Bonforoni corrected for the
number of brain regions examined.
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RESULTS
SUBJECT CHARACTERISTICS
Twenty-five OR and 28 OP subjects were studied (Table 1). Com-
pared to OR subjects, OP subjects had higher BMI, body fat mass,
and percent body fat but had similar fat free mass. As previously
described, OP subjects had higher scores for restraint, disinhibi-
tion, and hunger on the Three Factor Eating Questionnaire than
OR, but no significant group differences in ratings of hunger
or satiety at baseline (EU) or in response to energy imbalance

Table 1 | Baseline characteristics.

OR OP

Total n (male/female) 25 (14/11) 28 (14/14)

Age (years) 30.7±3.4 30.4±3.9

BMI (kg/m2) 20.9±1.9 26.1±2.8a

Lean body mass (kg) 48.5±10.3 53.4±10.4

Fat mass (kg) 10.7±3.6 22.7±8.0a

Percent body fat 18.8±4.6 28.7±8.0a

Mean±SD for obese resistant (OR) and obese prone (OP).
ap < 0.001.

(OF, UF) were observed (Thomas et al., 2013). Also as previously
reported, OR had lower leptin (OR: 598± 71 ng/ml, OP:
1,881± 72 ng/ml, p < 0.001) and insulin (OR: 6,908± 452 ng/ml,
OP: 9,147± 436 ng/ml, p < 0.05) AUC and higher ghrelin (OR:
147,256± 2,286 ng/ml,OP: 124,586± 2,207 ng/ml,p < 0.05) AUC
than OP at baseline, but other hormones (PYY, GLP-1) and
metabolites (glucose, free fatty acids, triglycerides) were similar
between groups (Thomas et al., 2014).

EFFECTS OF UNDERFEEDING
One day of underfeeding (UF; 40% below basal needs) as com-
pared to EU feeding resulted in increased neuronal response to
visual food cues in bilateral insula, somatosensory cortex, inferior
prefrontal cortex (PFC), and visual cortex as well as left medial
PFC, parahippocampus and precuneus and right cingulate in OR
(Table 2; Figure 2). UF, however, had no impact on the neuronal
response to food cues in OP. As a result, directional t -contrasts
revealed significantly greater neuronal response in OR as com-
pared to OP (UF > EU, OR > OP) in insula, inferior PFC, and
somatosensory cortex (Table 2; Figure 3). The signal change in
the insula/inferior PFC is shown in Figure 4. Order effect was
examined for the change in insula/inferior PFC and none was
found (p= 0.63). To assess whether these differences were due to
differences in the attention network we examined whether there

Table 2 | Coordinates and brain regions showing differential responses to diet conditions between OR and OP.

Brain region MNI coordinatesa T valueb Cluster size

x y z

OR, underfed > eucaloric

Insula/inferior prefrontal cortex (R) 39 11 10 4.78 982

Somatosensory cortex (R) 60 −28 34 4.26

Inferior prefrontal cortex (R) 54 5 4 4.31

Inferior prefronal cortex (L) −57 5 1 4.67 745

Insula (L) −36 5 4 3.77

Medial prefrontal cortex (L) −12 −4 61 4.01

Parahippocampus (L) −33 −46 −8 4.42 635

Precuneus (L) −12 −88 40 4.15

Visual cortex (L) −3 −85 4 3.91

Visual cortex (R) 33 −79 16 3.27 216

Visual cortex (R) 24 −79 16 3

Somatosensory cortex (L) −45 −28 19 4.17 231

Somatosensory cortex (L) −54 −34 −28 4.17

Cingulate cortex (R) 12 −25 40 3.36 193

Cingulate cortex (R) 6 −31 49 3.17

OR > OP, underfed vs. eucaloric interaction

Insula/inferior prefrontal cortex (R) 42 11 7 4.55 1314

Inferior prefronal cortex (R) 57 14 7 4.15

Inferior prefronal cortex (L) −54 2 7 4.25 531

Somatosensory cortex (R) 60 −28 31 4.16 201

Somatosensory cortex (L) −57 −34 28 4.07 233

All values in table are significant at a voxel-wise threshold of p < 0.01 and a cluster-corrected FDR threshold of q < 0.05.
aStereotactic coordinates in MNI space.
bT values reported for local maxima within clusters.
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FIGURE 2 | Neuronal response to visual food cues in obesity-resistant
(OR) individuals with underfeeding (UF). The neuronal response to visual
stimuli of foods of high hedonic value as compared to non-food objects with
UF as compared to EU in OR is shown. Robust activation is observed in the
insula, inferior prefrontal cortex, medial prefrontal cortex, somatosensory

cortex, cingulate cortex, parahippocampus, and visual cortex. Statistical maps
thresholded at a voxel-wise threshold of p < 0.01 and a cluster-level false
discovery rate (FDR) threshold of q < 0.05 and overlaid onto the group
averaged anatomical image. Data are shown in the neurological convention
(right hemisphere on the right).

FIGURE 3 | Neuronal response with underfeeding (UF) in
obesity-resistant (OR) as compared to obesity-prone (OP) individuals.
The difference in neuronal response with UF as compared to EU in OR as
compared to OP individuals when viewing foods of high hedonic value is
shown. Greater response is seen in the insula, inferior prefrontal cortex,
and somatosensory cortex in OR as compared to OP individuals. Statistical
maps thresholded at a voxel-wise threshold of p < 0.01 and a cluster-level
false discovery rate (FDR) threshold of q < 0.05 and overlaid onto the group
averaged anatomical image. Data are shown in the neurological convention
(right hemisphere on the right).

were group differences in response to the non-food images and
found no differences.

EFFECTS OF OVERFEEDING
One day of overfeeding (OF; 40% above basal needs) as compared
to EU feeding resulted in decreased neuronal response to visual
food cues in posterior temporal visual cortex in both OR and OP
when grouped together (right, x = 48, y =−76, z =−2, t = 5.2,
p= 0.001; left, x =−51, y =−70, z =−8, t = 4.04, p= 0.038).
No group (OR vs. OP) differences were observed, however, in the
response to OF.

CORRELATES OF NEURONAL RESPONSE
Because there were differences in BMI between groups as per
group definitions, it was determined that these variables should
not be included in the analyses when OR/OP status was included.
However, we did repeat the analyses adjusting for fat mass. These
models indicated that fat mass did not have a significant effect on

FIGURE 4 | Change in the insula/inferior prefrontal cortex by diet and
group. The percent signal change in the insula/inferior prefrontal cortex is
compared between diet intervention (UF, EU, OF) and group (OR, OP) is
shown. In OR, UF was associated with a significant increases in response.
In OP, the opposite effects were observed. Mean BOLD responses (±SEM)
are shown for the insula/inferior prefrontal cortex.

any of the outcomes. We did not find a correlation between neu-
ronal responses to food cues and appetite ratings or measures of
eating behaviors such as restraint and disinhibition. We did find,
however, that changes in PYY in response to UF were positively
correlated to changes in inferior PFC/insula activation (r = 0.53,
p= 0.005).

DISCUSSION
This study was completed to investigate the neuronal response to
visual food cues in response to short-term energy imbalance (1 day
of under- and over-feeding) in healthy adult subjects screened to
be resistant to weight gain and obesity (OR) as compared to indi-
viduals screened to be prone to weight gain and obesity (OP).
Underfeeding was associated with increased neuronal response to
food cues in OR as compared to OP. Overfeeding, however, was
not associated with group (OR/OP) differences. These results sug-
gest that individuals resistant to weight gain are more sensitive to
short-term changes in energy balance especially with underfeeding
than individuals prone to weight gain and obesity. These results
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were not influenced by fat mass, suggesting that the differences
seen may represent an important mechanism for the propensity
to weight gain and obesity and are not simply a result of increased
body fat.

We have previously shown that, while thin or normal weight
individuals show greater activation of visual cortex, overall the
neuronal response to food cues during the overnight fasted state is
similar between individuals resistant or prone to obesity (Cornier
et al., 2009). Two days of overfeeding, however, is associated with
significant attenuation of a network of brain regions, including the
insula, in thin as compared to reduce-obese individuals (Cornier
et al., 2009). Furthermore, a single meal also significantly atten-
uates the response to food cues in the insula and PFC in OR as
compared to OP individuals (Cornier et al., 2013). Recent meta-
analyses have also found that obese individuals appear to have
great activation in the PFC, insula, and caudate when fed as com-
pared to normal weight individuals (Kennedy and Dimitropoulos,
2014; Pursey et al., 2014). These findings suggest that individuals
who are prone to obesity and who already are obese do not seem to
be as sensitive to food cues during times of acute and short-term
positive energy balance. This could also represent a mechanism for
the consistent under-reporting of food intake in obese individuals.

Fasting studies have shown greater activation of reward centers
in normal weight individuals (Goldstone et al., 2009; Siep et al.,
2009). Chronic caloric restriction in obese individuals, resulting in
weight loss, has also been shown to increase activation in reward
and regulatory brain centers (Rosenbaum et al., 2008) but this is in
the setting of significantly reduced body weight, which may have
independent effects. We are not aware, however, of any published
studies that have examined the effects of acute caloric restriction or
underfeeding on the neuronal response to food cues. The current
findings suggest that OR individuals appear to be more sensitive to
short-term negative energy balance than OP. This may be a result
of their reduced fuel stores, although adjusting for fat mass did
not impact the results. The specific mechanisms for these findings
of differences in neuronal “sensitivity” to energy imbalance are
not entirely clear. Certainly, observed effects could be driven by
baseline genetic predispositions. Learned behaviors could also be
important. Finally, while adjusting for fat mass did not impact the
results, it is still possible that years of slight overnutrition result-
ing in higher body and fat mass may have led to changes in the
brain response to food-related cues in the OP. Moreover, there are
certainly data to support that overnutrition may lead to desensiti-
zation of the system (Cornier et al., 2009, 2013), and as discussed
below alterations in insula activity may play an important role.

We have previously shown that 2 days of overfeeding was asso-
ciated in significant differences in the neuronal response to similar
visual food cues in reduced-obese as compared to thin individuals
(Cornier et al., 2009). In the present study, however, we did not
find a difference between OR and OP after 1 day of overfeeding.
This lack of a difference in response to overfeeding is likely due
to the fact that in the previous studies participants were studied
in the fasted state while in the present study they were studied
in the acute fed state. As seen in Figure 4, neuronal activation is
significantly reduced even in the EU state in the OR suggesting
significant sensitivity to even the acute positive energy balance
associated with a meal. The OP has an increased activation after

both EU and overfed meals. Furthermore, the meal effect may have
been too great to see an effect from this modest 40% overfeeding.

We and others have found that food cues have a robust impact
on the insula (Gordon et al., 2000; Hinton et al., 2004; Pelchat et al.,
2004; Cornier et al., 2007, 2009, 2013; Van Der Laan et al., 2011;
Tang et al., 2012; Pursey et al., 2014). Again, we show the effects
of phenotype and energy balance on the response to visual food
cues appear to be strongest in these brain regions. The insula has
many known functions that relate to eating behaviors, including
being important for the memory of the rewarding aspects of food
(Levy et al., 1999). The insula may also be a key center for the
interpretation of bodily states and peripheral signals (Augustine,
1996), and the greater activation seen in OR with underfeeding
may thus relate to a greater sensitivity to changes in homeostasis.
One such peripheral signal could be the response to the hormone
PYY. We saw a correlation between changes in PYY and changes
in activation in the insula with underfeeding, and PYY has been
shown to modulate insula activity (De silva et al., 2011).

An important strength of this study is that it was carried
out individuals who were not yet obese but were selected for a
propensity to gain weight or to remain thin; however, classifying
individuals as being prone or resistant to obesity before its devel-
opment is associated with problems. We cannot be certain, though,
that OP individuals may consciously alter their behaviors to reduce
weight gain, nor can we be certain that OR individuals may expe-
rience health-related problems or life events that may result in
weight gain. We have previously shown, however, that these groups
as identified are associated with other meaningful biologic and
behavioral differences (Schmidt et al., 2012, 2013; Smucny et al.,
2012; Cornier et al., 2013; Thomas et al., 2013, 2014). We are cur-
rently collecting longitudinal weight data, which will ultimately
determine whether or not these categories are valid. We will also
evaluate individuals for behaviors and/or events that may impact
longitudinal weight. Furthermore, because the OP individuals had
higher BMI and fat mass than the OR individuals, it is possible that
the group differences seen may be related to the greater fat mass
and not the classification of obesity proneness, per se. Adjusting the
data for fat mass, however, did not alter the findings; as such, we
would argue that these effects are not likely to be due to higher
adiposity and therefore are a marker of potential obesity risk.
Finally, our conservative whole-brain analysis approach, resulting
in a cluster extent threshold of 193 voxels, may have decreased the
sensitivity to see differences in other regions found to be involved
by others, such as the amygdala, orbital frontal cortex, striatum,
and nucleus accumbens (Tang et al., 2012).

In conclusion, the results of this study suggest that individuals
who are prone to weight gain have differences in brain regions
known to be important in body weight regulation as compared to
those who are recruited to be resistant to weight gain and obesity.
Specifically, OR individuals had significant increases in neuronal
responses to visual food cues in response to 1 day of underfeeding
as compared to OP individuals. Paired with our previous findings
that an acute meal attenuates the neuronal response to food cues
in OR as compared to OP, these findings suggest that OR individu-
als are more sensitive to acute/short-term changes energy balance.
These differences in the neuronal response to food cues between
individuals of differing propensity for weight gain may represent a
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core feature of weight gain and obesity risk and an ability for those
resistant to weight gain to adapt to changes in energy balance.
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