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Abstract

Motivation: Temporal biomarker discovery in longitudinal data is based on detecting reoccurring trajectories, the
so-called shapelets. The search for shapelets requires considering all subsequences in the data. While the accompa-
nying issue of multiple testing has been mitigated in previous work, the redundancy and overlap of the detected
shapelets results in an a priori unbounded number of highly similar and structurally meaningless shapelets. As a
consequence, current temporal biomarker discovery methods are impractical and underpowered.

Results: We find that the pre- or post-processing of shapelets does not sufficiently increase the power and practical
utility. Consequently, we present a novel method for temporal biomarker discovery: Statistically Significant
Submodular Subset Shapelet Mining (S5M) that retrieves short subsequences that are (i) occurring in the data, (ii)
are statistically significantly associated with the phenotype and (iii) are of manageable quantity while maximizing
structural diversity. Structural diversity is achieved by pruning non-representative shapelets via submodular opti-
mization. This increases the statistical power and utility of S5M compared to state-of-the-art approaches on simulated
and real-world datasets. For patients admitted to the intensive care unit (ICU) showing signs of severe organ failure,
we find temporal patterns in the sequential organ failure assessment score that are associated with in-ICU mortality.

Availability and implementation: S5M is an option in the python package of S3M: github.com/BorgwardtLab/S3M.

Contact: thomas.gumbsch@bsse.ethz.ch or karsten.borgwardt@bsse.ethz.ch

1 Introduction

In hospitals, critically ill patients are transferred to intensive care
units (ICUs) and are subjected to increased intensity of monitoring
and care. The sequential organ failure assessment score (SOFA)
describes the severity of a patient’s organ dysfunction where a high
score is associated with high in-ICU mortality (Singer et al., 2016;
Vincent et al., 1996). Recently, there have been a growing number
of publicly available critical care databases (Hyland et al., 2020;
Johnson et al., 2016; Pollard et al., 2018) recording patient varia-
bles, clinical actions and patient outcomes. In clinical practice, the
SOFA score is assessed in 24 h intervals or more (Ferreira et al.,
2001; Tee et al., 2018). The high resolution of critical care data-
bases, however, makes more frequent evaluations of the SOFA
scores possible. In this work, we mine critical care databases for
statistically significant temporal patterns to provide additional infor-
mation and assistance to clinicians in recognizing and interpreting
clinical data.

The natural data mining choice for this task are shapelets (Ye
and Keogh, 2009)—typically short subsequences that yield competi-
tive classification accuracy given the class label (i.e. the phenotype)
of the time series. For the biomedical domain, however, it is import-
ant to ensure the interpretability of shapelets in terms of a P-value,
as they might be novel biomarkers. Therefore, Bock et al. (2018)

employ association mapping, which is fundamentally different to
classification in that statistical significance is ensured. Nevertheless,
statistically significant shapelet mining is fundamentally underpow-
ered because it does not account for redundant or structurally mean-
ingless (e.g. flat) shapelets. This may become a problem for
downstream applications, for example when implementing a medic-
al assistance system based on thousands of highly similar significant
shapelets: monitoring many features increases the risk of a clinician
being overwhelmed by alarms, alerts and notifications—which is
among the top 10 health technology hazards in 2020 (ECRI, 2019).
Therefore, we build a method maximizing statistical power and
representativeness of the shapelets by searching for a set of statistic-
ally significant shapelets with maximal structural diversity of man-
ageable size: Statistically Significant Submodular Subset Shapelet
Mining (S5M).

S5M selects shapelets using Tarone’s multiple test procedure
(Tarone, 1990) and classifies them as (non-)representative by opti-
mizing a submodular mixture objective function (Libbrecht et al.,
2018). Instead of pre- or post-processing shapelets to select a repre-
sentative subset, S5M declares non-representative shapelets as non-
testable which leads to an increase in statistical power and runtime
compared to any two-step alternative. To declare statistical signifi-
cance and representativeness simultaneously, we introduce a new it-
erative solver for submodular optimization problems. Therefore,
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S5M returns a structurally more diverse and useful shapelet set than
the state-of-the-art, which is confirmed on simulation data and on
patient data from the MIMIC-III database (Johnson et al., 2016).
We also discover novel interpretable biomarkers in the sequential
organ failure assessment (SOFA) score of patients associated with
in-ICU mortality on the eICU database (Pollard et al., 2018).

2 Related work

The search for a structurally diverse subset of manageable size can
be summarized as finding a set of sequences that is minimally redun-
dant and whose elements exhibit maximum coverage. The tradition-
al approach to extract a representative subset of an itemset is
described by the threshold algorithm of Hobohm et al. (1992): (i)
initialize an empty set of representatives. (ii) Iteratively fill this set
with sequences whose similarity to all currently representative
sequences is less than a given threshold. The drawbacks of not being
able to trade off redundancy with coverage and having no approxi-
mation guarantees of the threshold algorithm are mitigated by solv-
ing a submodular mixture objective function, which leads to the
successful selection of a representative training set in machine learn-
ing (Lin and Bilmes, 2009; Wei et al., 2015) and prioritization of se-
quence data experiments (Libbrecht et al., 2018; Yilmaz et al.,
2019).

For discovering representative subsequences in time series, Imani
et al. (2018) introduce the concept of ‘snippets’, a greedy search
over all non-overlapping time series subsequences that rewards
coverage by considering the MPdist (Gharghabi et al., 2018) be-
tween a representative candidate and all-time series. Similarly, in
Mueen et al. (2009), the authors extract representative subsequen-
ces, or ‘motifs’, by rewarding fidelity of coverage. The caveat of
these approaches is that (i) they are not exact, in the sense that only
non-overlapping subsequences are considered, and (ii) while ‘snip-
pets’ considers a mixture objective function, it is not possible to
weight one objective more important than the other.

Traditionally, shapelets serve as a frequency-based feature ex-
traction approach for time series subsequences enabling competitive
classification accuracy (Karlsson et al., 2016). Due to the enumer-
ation problem of time series subsequences of all lengths
(Rakthanmanon et al., 2012), there have been efforts in constraining
the shapelet search, e.g. by requiring structural diversity of the
retrieved shapelets. In Fang et al. (2018) and in Ghalwash et al.
(2013), easy to interpret subsequences are extracted by optimizing
for classification accuracy. However, statistical validation is not in-
herent to the shapelets retrieved in the classification setting and has
to be done a posteriori via a Bonferroni correction, which is too con-
servative and results in no significant associations (Pr�zulj, 2019,
Chapter 8).

Statistical validation of shapelets is tackled in Bock et al. (2018),
which allows for meaningful interpretation of the features in terms
of P-values. Compared to the approaches for discovering interpret-
able shapelets, however, there is no way of controlling the cardinal-
ity of the set of shapelets returned and thus many redundant or
structurally meaningless shapelets may appear. Therefore, applica-
tions of statistically significant shapelet mining will require pre- or
post-processing of shapelets and thus suffer from low statistical
power (Hyland et al., 2020).

3 Materials and methods

3.1 Shapelet mining
We assume a dataset D ¼ fðti; yiÞg0< i�n of n time series and class
labels for each time series, where mi is the length of time series i, i.e.
ti ¼ ðti

1; . . . ; ti
mi
Þ, and yi 2 f0; 1g is the binary class label of ti. Since

shapelets are time series subsequences that can be different lengths,
the comparison of shapelets requires a distance measure for sequen-
ces of unequal length. The traditional distance measure for shapelets
is the minimum Euclidean distance between the shorter sequence
r ¼ ðr0; . . . ; rmr

Þ and the longer sequence s ¼ ðs0; . . . ; sms
Þ (i.e.

ms � mr) over all possible alignments of r on s (Ye and Keogh,
2009):

distðr; sÞ ¼ min
0� j< jsj�jrj

Xk< jrj

k¼0

ðsjþi � rkÞ2
0
@

1
A

1=2

: (1)

A shapelet is a tuple of two items: a time series subsequence and
a distance threshold ðs; hÞ. A shapelet predicts a class label ŷi for a
time series ti if

ŷi
ðs;hÞ ¼ distðs; tiÞ � h: (2)

In general, shapelet mining approaches consist of the following
setup (see Algorithm 1): the inputs to the method are D, a dataset of
time series ti with a class label yi for each time series, a, a threshold
on the shapelet selection, and k, a vector of parameters to the
method. First, in Line 2, shapelet candidates C are extracted from
the time series. Second, in Line 3, a quality measure gives a ranking
P of the shapelet candidates. The quality of a shapelet is usually
determined by a measure of statistical dependence between the
shapelet occurrence and the class label, i.e. by information gain (Ye
and Keogh, 2009). Finally, in Lines 5 and 6, a selection of the shape-
lets is returned by applying the threshold a.

3.2 Statistically significant shapelet mining
In the following, we briefly describe the association mapping ap-
proach of Bock et al. (2018). This means Algorithm 1 is concretized
in the following way: First, as input, we specify the family-wise error
rate (FWER), which is the probability of generating one or more
false positives that we set to a ¼ 0:05 for all experiments. Next, in
Line 2, shapelet candidates are extracted with a sliding window
method of variable width w. In Line 3, Bock et al. (2018) use the
minimum P-value over all thresholds based on a v2-test (Pearson,
1900) as a measure to rank shapelets, i.e.

pminðsÞ ¼ min
h2fdistðs;tÞjt2Dg

pv2fðŷi
ðs;hÞ; y

iÞj0 < i � ng: (3)

In Line 4, statistically significant shapelet mining selects significant
shapelets with minimum P-value smaller than the multiple-testing
corrected FWER, i.e. R̂ ¼ fsjpminðsÞ < d̂; s 2 Cg. The set of statis-
tically significant shapelets therefore depends on d̂, the multiple-
testing corrected significance threshold that is computed using
the distribution of the minimum P-values of all shapelets, P, and the
target FWER a.

3.2.1 Correcting for multiple testing

Since the search for shapelets requires testing all subsequences of the
dataset D for all possible thresholds, it results in an enormous mul-
tiple testing problem (Shaffer, 1995) that requires controlling for the
FWER a. Correcting a without any further assumptions on the test
statistic or the distribution of the null hypotheses is traditionally
accomplished with a Bonferroni correction (Bonferroni, 1936),
which divides a by the number of statistical tests conducted to assess
the P-value of each shapelet (there are n thresholds per shapelet in
the set on candidate subsequences C), i.e.

^dBF ¼
a
jCjn (4)

Bock et al. (2018) observe the Bonferroni correction can be too
conservative to detect statistically significant shapelets. Instead, they
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propose to leverage Tarone’s method (Tarone, 1990) for assessing
the statistical significance of a shapelet. The insight of Tarone is that
for discrete test statistics (e.g. Fisher’s exact test or a v2 test), there is
a minimum attainable P-value that a pattern can attain based on its
frequency. All patterns s whose minimum attainable P-value pminðsÞ
is larger than a continuously decreasing significance threshold are
deemed untestable as they can never contribute to the FWER.
Hence, the significance threshold is obtained as

d̂tar ¼
a

jfsjpminðsÞ < d̂tar; s 2 Cgj
: (5)

3.3 Statistically significant submodular subset shapelet

mining (S5M)
This section describes our proposed approach, S5M, where an itera-
tive selection of representative shapelet candidates prunes non-
representative shapelets before adjusting for multiple testing via
Tarone’s method. For now, we assume the classification of shapelets
into representative and non-representative to be known; the full de-
scription of the bidirectional iterative greedy algorithm (BIG) to op-
timize the submodular mixture objective function can be found in
Section 3.5.1 and Algorithm 3.

In S5M (Algorithm 2), the set of statistically significant and rep-
resentative shapelets R̂ and the set of non-representative and non-
testable shapelet candidates B are initialized to the empty set in Line
2. In Line 3, the Tarone significance threshold is initialized to one,
because no shapelets have been selected yet. Next, we iterate over all
shapelet candidates and their minimum P-values. In Line 5, the next
shapelet candidate s will always appear in the order of their min-
imum P-value (we process candidates from lower minimum P-values
to higher minimum P-values). In Line 6, we apply the representative
subset search with BIG (Algorithm 3) to check whether s is a repre-
sentative shapelet, given the previously processed candidates. If s is
added to the set of representatives R̂, the estimated FWER â will in-
crease in Line 8. If the estimated FWER is higher than the desired
error rate, the Tarone significance threshold will be decreases (Line
9) and the non-testable shapelets from R̂ will be removed (Line 11)
until the estimated FWER is smaller or equal to the desired error
rate (Lines 13 and 14). The shapelets removed from R̂ are assigned

to the set of non-representative and non-testable shapelets B in Line
10. Note that we check whether the minimum P-value of the candi-
date s is above the current significance threshold d̂tar in Line 13 and
could prune many of the candidate shapelets by exiting the outer
loop of Line 4 before C is empty. Moreover, since we process the
candidates from the smallest to largest minimum P-values and d̂tar is
monotonically decreasing, the number of statistically significant
shapelets does not increase when lowering the threshold. Finally, in
Line 17, the set of representative and statistically significant shape-
lets are returned.

By pruning both non-representative and non-testable shapelets
simultaneously, S5M is expected to have more power compared to a
two-step approach. A feature selection approach, which extracts
representatives in Line 2 of Algorithm 1, will be less sensitive, be-
cause the representatives capture the full dataset and not the diver-
sity that is due to the class label. In a post-processing approach, the
Tarone significance threshold is too conservative, because represen-
tatives are selected after declaring significance. The large number of
non-representative, statistically significant shapelets will lower the
power of this approach. Both two-step comparison partners are also
contrasted to S5M experimentally in Sections 4.2 and 4.3.

3.4 Clustering of shapelets
For extracting representative shapelets, a similarity measure be-
tween unequal length subsequences is required. Since shapelets come
with a distance measure, we compute the similarity between shape-
let candidates r and s with the transformation

simðr; sÞ ¼ ð1þ distðr; sÞÞ�1: (6)

Note that the traditional shapelet distance measure (as defined in
Equation 1) is not a metric because the triangle inequality does not
hold. This poses a problem for clustering shapelets, because cluster-
ing groups similar items: When clustering with a similarity measure
constructed from the minimum distance, two highly dissimilar items
might falsely end up in the same cluster because they can share close
similarity to a third item. Another reason against clustering shape-
lets is the additional challenge of specifying a procedure for selecting
a representative from each cluster. A third reason against clustering
shapelets is that shapelets are overlapping time series subsequences
where naive application of k-means clustering results in meaningless
clusters (Keogh and Lin, 2005).

On a larger scale, significant shapelet mining can be viewed as
an instance of significant pattern mining (Terada et al., 2013),
which also faces the challenge of an uncontrollably large number of
statistically significant patterns, e.g. for testing single nucleotide
polymorphism (SNP) interaction in genome wide association studies
(GWAS) (Llinares-López et al., 2019). The problem is mitigated by
clustering items by their overlap and only returning the item with
the lowest P-value (Papaxanthos et al., 2016). For GWAS, the SNP
location (e.g. the gene in which the SNP lies) has an interpretation.
For shapelets, however, the point in time of the originating time ser-
ies has no associated biological interpretation.

In contrast to clustering, representative subset selection extracts
individual items chosen to represent a larger set which has fewer
requirements, e.g. even symmetry is not needed for the underlying
distance measure.

3.5 Submodular subset selection
Submodularity is a property of a function f S : 2S ! R acting on a
finite set S. Following Fujishige (2005), f is submodular if and only
if, for a subsetR and B whereR � B � S and an element s 2 S with
s 62 B

f SðR [ fsgÞ � f SðRÞ � f SðB [ fsgÞ � f SðBÞ: (7)

Intuitively, submodularity of functions on sets is the analogue of
convexity of continuous functions. If a function is submodular, it
can be optimized with standard approximation algorithms that find
a solution that is guaranteed to be within a constant factor of the op-
timal solution (Nemhauser et al., 1978).

i842 T.Gumbsch et al.



Libbrecht et al. (2018) introduce a submodular subset quality
measure for choosing a representative subset of protein sequence
data. We chose to apply their approach due to the mathematical
similarities between sequence and time series data, in contrast to
other cut-based approaches where we would need to first construct
a graph, as in Yilmaz et al. (2019). The mixture objective by
Libbrecht et al. (2018) is weighted by a parameter kmix. A represen-
tative subsetR of a set S is defined as

1. maximizing the similarity between every item in full set to the

most similar item in the representative set, called the facility-

location

f Sfl ðRÞ ¼
1

jSj
X
s2S

max
r2R

simðs; rÞf g (8)

2. and minimizing the pairwise similarity between items of the rep-

resentative set, called the sum-redundancy

f SsrðRÞ ¼
X

a;b2S
simða; bÞ �

X
r1 ;r22R

simðr1; r2Þ: (9)

Both functions are submodular and thus the mixture objective is
also submodular. If the target number of items in the representative
subset is unknown, the objective is extended by a regularization
term penalizing larger subsets with a parameter ksize. In our nota-
tion, we subsume both parameters by denoting k ¼ ðkmix; ksizeÞ.

To summarize, the quality of a representative subset R of a
larger set S is given as

f Sk ðRÞ ¼ kmixf Sfl ðRÞ þ ð1� kmixÞf SsrðRÞ þ ksizejRj: (10)

It has been shown by Libbrecht et al. (2018) that the setting of
kmix 2 ð0:25; 0:75Þ does not significantly change the accuracy of the
algorithm and therefore kmix ¼ 0:5 is set in all cases. ksize ¼ 1 is
chosen by us because it works well in a diverse range of datasets.

3.5.1 Submodular optimization with BIG
Discovering the optimal representative subset requires submodular
optimization of the mixture objective in Equation 3.5. Optimizing
via the greedy algorithm means sequentially adding the item that

decreases the objective function as much as possible, requiring a
search over the full dataset for each element, i.e. n2 computations of
the objective function. Computing the objective once requires com-
putational complexity of Oðn2Þ for n items because of the double
sum in the sum-redundancy objective. That means extracting repre-
sentatives via the greedy algorithm has a worst-case complexity of
Oðn4Þ. The bidirectional greedy algorithm of Libbrecht et al.
(2018) improves upon the computational complexity by iterating
once over the full dataset while maintaining a growing set R̂ and a
shrinking set B. Items are assigned stochastically to the sets with
probabilities proportional to the marginal gains in objective func-
tions. The bidirectional greedy algorithm therefore requires a worst-
case computational complexity of Oðn3Þ for n items.

However, the bidirectional greedy algorithm cannot be used to
select shapelets within Tarone, because the size and the elements of
the shrinking set B are not known in advance due to d̂tar changing
after each iteration. The key difference to the proposed bidirec-
tional iterative greedy (BIG) algorithm is that B has to be
initialized to the empty set and contains the items that are declared
non-testable because they are already represented by another item.
Consequently, for every shapelet candidate in S5M, BIG (Algorithm
3) can be called in Line 6 of Algorithm 2. BIG declares this item s as
either representative (and s is added to R̂) or as non-representative
(and s is not removed from B).

Specifically, Algorithm 3 takes the previously returned sets R̂
and B, the parameters k, and the new item to be considered s as in-
put. In Line 2, s is added to B. Then, the relative increase in the ob-
jective f of either adding s to R̂ or removing s from B is computed in
Lines 3 and 4. Because the size of the full set changes, computing the
objectives requires normalization to the current set size, i.e. jR̂ [ Bj
or jR̂ [ Bj � 1. We then compute a value P that is proportional to
the respective change in the objective function in Line 8. If P would
be invalid, it is set to 0.5 (Lines 5 to 7). In Lines 10 to 14, we use P
as the probability for adding s to R̂ and removing s from B. Both
sets are returned in Line 14.

BIG requires the computation of the objective four times at each
iteration, which has a computational complexity of Oðn2Þ per iter-
ation. However, in contrast to the greedy or the bidirectional greedy
algorithm, we note that the facility-location and the sum-
redundancy can be updated from the value of the previous iteration.
At iteration iþ1 with R̂ iþ1

in the role of R in Equation 3.5, assume
R̂iþ1 ¼ R̂i [ fsig and Biþ1 ¼ Bi [ fsiþ1gnfsig; in other words, at it-
eration i, si was added to R̂ i

. Then,

f iþ1
fl ¼ f i

fl þ max
r2R̂ i[fsig

simðsiþ1; rÞ (11)

and

f iþ1
sr ¼ f i

sr þ
X

a2R̂̂ i[Bi[fsiþ1g

simða; siþ1Þ

�
X

r2R̂ i[fsig

simðr1; s
iÞ

: (12)

Similar equations can be constructed for si is remaining in Bi and
Biþ1 in the role of R. This eliminates the double sums in the execu-
tion of BIG and reduces the computational complexity of Algorithm
3 to O(n) per iteration, i.e. Oðn2Þ for S5M. The quantitative differ-
ence between the iterative version of BIG and the two algorithms
proposed by Libbrecht et al. (2018) is investigated in Section 4.1.

4 Experiments

4.1 Simulation results for BIG
Section 3.5.1 proposes a novel submodular subset optimization al-
gorithm—the bidirectional iterative greedy (BIG) algorithm. Here,
we compare BIG to its state-of-the-art comparison partners, the
greedy and the bidirectional greedy algorithm on simulation
datasets. The datasets consist of a varying number of sequences that
are built from five ground truth prototype sequences that are over-
laid with uniform noise. Figure 1 shows the prototypes and the
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retrieved submodular subset. Here, the greedy algorithm (left)
finds all ground truth representatives but has a high maximum error
by achieving a low minimum similarity to the closest ground truth
shapelet. The bidirectional greedy algorithm (middle) does
not find all ground truth representative sequences whereas the bi-
directional iterative greedy algorithm (right) finds too many
sequences.

To quantitatively compare the three algorithms, we vary loga-
rithmically n, the number of sequences generated from the same rep-
resentative prototype n 2 f2; . . . ; 100g and r, the uniform noise
added to the sequence r 2 f0:01; . . . ;20g. For each simulation, we
create five repetitions each with a different randomization. From the
right-hand size of Figure 2, we can observe a marginal difference in
the objective value between the iterative and the other two algo-
rithms for high levels of noise. At the same time, the left-hand side
of Figure 2 shows the runtime comparison varying the sample size,
where we can validate that the bidirectional iterative greedy algo-
rithm (Algorithm 3) is multiple orders of magnitude faster compared
to the non-iterative comparison partners. Note that all three algo-
rithms scale in practice much better than their worst-case computa-
tional complexity may suggest – this is due to the very conservative
bound on the complexity for computing the objective function,
where we assumed the worst case of jR̂j ¼ n. We conclude that the
proposed bidirectional iterative greedy algorithm BIG is a valid
and faster alternative to both greedy algorithms. Unless stated
otherwise, we use BIG for representative subset selection in all
experiments.

4.2 Simulation results for S5M
This work proposes S5M for the extraction of representative and
statistically significant shapelets. In the following, we validate that
the proposed S5M method has higher statistical power compared to
its alternative flavors discussed in the method section on datasets
where the ground truth representative shapelets are known. Each
simulation consists of five known ground truth shapelets R that are
injected into the sequences of length m¼20. The five prototype
shapelets in R are the same as in Section 4.1 (Fig. 1 left), the control
sequences consist of uniform noise. We create several instances of
the dataset by varying the sample size n 2 f100; 200;500g and the
variance of uniform noise r 2 f1;2;5g. For each simulation, we cre-
ate 5 repetitions with a different randomization. We compare the
following five algorithms for extracting representative statistically
significant shapelets:

1. Feature Selection Tarone: After candidate extraction, rep-

resentatives are selected from the candidates, irrespective of the

class label. As a second step, statistically significant shapelet

mining via Tarone’s multiple test procedure is performed.

2. Bonferroni submodular: As a first step, statistically signifi-

cant shapelets are extracted using a Bonferroni significance cor-

rection (Equation 4). As a second step, representatives are

extracted from the set of statistically significant shapelets.

3. Tarone submodular: As a first step, statistically significant

shapelets are extracted using Tarone’s multiple test procedure.

Then, representatives are selected via BIG.

4. S5M threshold: Representative and statistically significant

shapelets are extracted simultaneously as in S5M where ‘repre-

sentativeness’ is determined with the threshold method. The

threshold is set to a uniform random value between 0 and 1.

5. S5M: Representative and statistically significant shapelets are

extracted simultaneously as described in Section 3.3.

Note that in this experiment we follow the standard time series sub-
sequences mining approach of providing the ground truth subse-
quence length to all algorithms (Rakthanmanon et al., 2012); for all
real-world data experiments in the subsequent sections, we allow a
range of possible shapelet lengths.

Each method returns a number of shapelets R̂ which we call
retrieved shapelets. R̂ can be evaluated in terms of precision and re-
call, by mapping each retrieved shapelet in R̂ to its most similar
ground truth shapelet in R. The number of correctly detected shape-
lets kd is the size of the image of that map. Shapelet recall is the
number of correctly detected shapelets over the number of ground
truth shapelets. Shapelet precision is the number of correctly
detected shapelets over the number of retrieved shapelets. The F1
score is the harmonic mean of precision and recall. To be precise,

recall ¼ kd

jRj ; precision ¼ kd

jR̂j
(13)

F1 score ¼ 2 � precision � recall

precisionþ recall
(14)

Figure 3 shows the results of this experiment. First, we observe
the S5M threshold approach having a very low F1 score.
Investigating precision and recall showed this is due to a very high
number of shapelets and thus very low precision. The variance being
small, we hypothesize the large error is not due to an incorrect
choice of the threshold, but due to the underlying method being
based on clustering and not on representative subset selection.
Second, the error of the Bonferroni submodular approach and
the Feature selection Tarone approach vary more than for the
other two methods. Investigating the components of the F1 score,
we find the Feature selection Tarone approach has low recall
in most cases, because it suffers from the representative selection
being the first step. This means the representatives capture the full
dataset and not the diversity that is due to the class label. The
Bonferroni submodular approach has a low recall because few
shapelets are returned due to the Bonferroni correction being overly

Fig. 2. Comparison of three submodular optimization algorithms on a simulation

dataset consisting of five ground truth prototype representatives (shown in red in

Fig. 1). Left: the runtime in seconds (y-axis) when varying the number of replicates

per prototype (x-axis). Right: the value of the objective function (y-axis) varying the

uniform noise added to the prototype (x-axis)
Fig. 1. An illustrative example of how the three submodular optimization algo-

rithms extract time series representatives (noise and sample size fixed). Precision

and recall are computed using the ground truth representatives shown in red. Also

shown is min_sim, the minimum similarity to the closest ground truth shapelet—the

lower the min_sim, the higher the greatest error of the method
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conservative. The remaining methods perform well, S5M having a
slight but significant (P<0.005 Welch’s t-test; see Welch (1947))
edge over its two-step competitor that is subsequently investigated
on real-world data.

4.3 Real-world data experiment for onset of sepsis in

the ICU on MIMIC-III
We compare S5M to the state-of-the-art comparison partner S3M for
temporal pattern mining by extracting shapelets of vital signs of in-
tensive care patients that are statistically significantly associated
with the onset of Sepsis-3 (Singer et al., 2016) in the MIMIC-III
(Multiparameter Intelligent Monitoring in Intensive Care) database
(Johnson et al., 2016). Our experimental setup follows for the most
part the same pipeline as in Bock et al. (2018), also using the queries
from Johnson et al. (2018). The change to the pipeline is to not div-
ide the dataset into training and testing parts, but to find associa-
tions on the full MIMIC-III cohort. In general significant pattern
mining does not use a dataset split because the P-value is con-
structed with the assumption of a limited dataset (Pr�zulj, 2019,
Chapter 8).

We search for statistically significant shapelets on heart rate, re-
spiratory rate and systolic blood pressure associated with onset of
sepsis comparing S5M to the internal comparison partner Tarone
submodular and the state-of-the-art comparison partner S3M
(Bock et al., 2018). The number of shapelets returned by the three
methods is shown in Table 1. Please recall that our goal is to use
shapelets as a method for biomarker discovery for downstream
applications. S3M returns a number of shapelets that is too large to
process by humans and contains many redundant sequences. That is
expected, because the approach is fundamentally underpowered due
to not accounting for representativeness of the shapelets. Regarding
the internal comparison, S5M returns a few more shapelets com-
pared to its two-stage sibling approach Tarone submodular
which is consistent with the assumption that S5M is of greater statis-
tical power.

In Table 1, we also show the number of shapelets that lie in
bounds that are associated with low clinical risk according to the na-
tional early warning score (McGinley and Pearse, 2012), a widely
used scoring system for recognizing critical illness (Bersten and
Handy, 2013). We observe fewer shapelets of S5M lying within a

normal range, in contrast to Tarone submodular and S3M.
Assuming that instability of vital signs is strongly associated with
the patient at the onset of sepsis [which has been the hypothesis of
Bock et al. (2018)], we conclude S5M yields the lowest number of
false positives. Moreover, we find many shapelets which fall below
the normal range. At first glance, this seems counter-intuitive be-
cause the human body is known to compensate for a state of shock
by increasing respiratory rate and heart rate. On second glance,
shapelets that show the vital sign falling below the normal range
could indicate a failure of this compensation mechanism (or clinical-
ly: a decompensation) in patients with sepsis. Many shapelets of
S5M exhibit this pattern, whereas only some shapelets in Tarone
submodular do, including the shapelets found on respiratory rate.
To conclude, S5M returns a more diverse set of shapelets that are at
the same time more informative for patients with sepsis.

We proceed to quantitatively compare the shapelets of S5M to
the shapelets of its internal comparison partner Tarone submodu-
lar (Fig. 4). Each row corresponds to one clinical variable (heart
rate, respiratory rate and systolic blood pressure). In the first col-
umn, the shapelet with the lowest P-value from both methods is
shown. S5M consistently yields the shapelet with the lowest P-value,
which was deemed non-representative in Tarone submodular.
The second column shows the Gaussian kernel density estimate
(Seabold and Perktold, 2010) of the distribution of the shapelet P-
values (on a log p-scale). The distribution of P-values retrieved by
S5M is more skewed towards lower P-values compared to Tarone
submodular, which is consistent with the hypothesis that S5M has
more statistical power. In the third column, the distribution of struc-
tural diversity is shown by looking at the within-shapelet variances.
We can observe that S5M consistently yields shapelets that are of
higher structural diversity. In the fourth column, the distribution of
the pairwise similarities are shown. For heart rate, the results for
Tarone submodular and S5M agree. For the other two vital signs,
S5M yields on average lower pairwise similarities compared to
Tarone submodular.

To summarize, the meaningful search for representatives should
always be a stage in data mining driven temporal biomarker discov-
ery. The only state-of-the-art competitor that allows for statistical
significance testing, S3M, is fundamentally underpowered due to the
very high number of shapelets. Moreover, we find the simultaneous
approach (S5M) has more power yielding a structurally more diverse
set of shapelets and fewer false positives compared to a post-
processing approach of S3M.

4.4 Real-world data experiment for in-ICU mortality

from the SOFA score on eICU
The eICU collaborative research database for critical care (Pollard
et al., 2018) is the largest openly accessible critical care database
available to date by patient numbers. Extracting the in-ICU

Fig. 3. Comparing the F1 score of alternative strategies for extracting representative

statistically significant shapelets on a simulation dataset varying the noise added to

the prototype sequence and number of time series. S5M significantly outperforms its

competitors (P< 0.005 with Welch’s t-test)

Table 1. The three comparison partners return a different number

of statistically significant shapelets for temporal patterns in vital

signs associated with Sepsis in MIMIC-III

Vital sign S5M Tarone submodular S3M

Heart rate 45 42 11 895

Within (41 130) 25 40 10 548

Below/above 41/130 15/6 0/1 400/870

Respiratory rate 24 21 72 158

Within (9, 20) 0 0 0

Below/above 9/20 14/24 1/21 2047=72 050

Systolic blood pressure 56 41 104 863

Within (91 219) 0 22 58 342

Below/above 91/219 56/0 19/0 42 472=30

Note: Also shown is the number of shapelets within, below and above

bounds that are associated with low clinical risk according to the national

early warning score (McGinley and Pearse, 2012).
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mortality of patients in eICU, we notice an increase in patients dying
in the ICU after their first four hours of stay (see Fig. 5 left).

The SOFA describes the severity of a patients organ dysfunction,
developed for defining Sepsis (Singer et al., 2016) but also used as a
possible predictor of death in the ICU (Vincent et al., 1996). The
medical intuition of the SOFA score, in terms of organ dysfunction,
is that it reflects the severity of critical illnesses. We have extracted
the SOFA score for all 200 000 eICU patient admissions at an hourly
resolution by forward filling each measurement and assigning the
time of measurement to the next full hour (we also use urine output
added to the database as recently as 2019). Note that previous stud-
ies assessing serial evaluations of SOFA used 48 h intervals or more
(Ferreira et al., 2001; Tee et al., 2018). The high resolution of eICU
measurements, however, makes more frequent assessments of the
SOFA scores possible. We observe that with an increasing maximum
SOFA score, the ICU mortality rate also increases, reaching a plat-
eau at a SOFA score of 10 (see Fig. 5 right).

We employ S5M on the first 4 h after admission for the 2600
stays with a maximum SOFA score of 10 or higher within the first

4 h (1954 controls, 546 death cases, length of time series m¼5).
The resulting statistically significant and representative shapelets
returned by S5M for (not) dying in the ICU, conditioned on having
a maximum SOFA score of 10 or higher in the first 4 h, are shown in
Figure 6. The shaded area illustrates the threshold associated with
that shapelet by indicating the region of SOFA score trajectories that
are associated with the patient outcome. Note that since the SOFA
score can only take discrete values, the pruning mechanisms of S3M
fail when repeatedly testing the same (significant) subsequence
which leads to an increase in runtime, making the comparison to
S3M impossible.

The shapelets retrieved by S5M indicate that a SOFA score im-
provement (decrease) by six points within three hours is statistically
significantly associated with the patients surviving the ICU stay.
A sharp increase from 0 followed by a plateau at a SOFA score of
10 is statistically significantly associated with the patient dying in
the ICU. Moreover, a constant SOFA score at 13 is also statistically
significantly associated with a patient dying in the ICU. All three
observations are in line with the clinical intuition that the SOFA

Fig. 4. Comparing the extraction of representative and statistically significant shapelets associated with Sepsis in MIMIC-III with S5M and the two-step approach Tarone

submodular. Each row refers to one clinical variable (heart rate, respiratory rate and systolic blood pressure). In the first column, the shapelet returned by S5M/Tarone sub-

modular with the lowest P-value is depicted. Note that the particular date at which a shapelet occurs within a time series has no associated biological meaning, leaving the x-

axis ticks blank. The second column shows the distribution of the shapelet P-values (on a log P-scale). In the third column, the structural diversity of the set of shapelets is

shown by assessing the distribution of within-shapelet variances. The fourth column displays the distribution over the pairwise shapelet similarities. We observe that S5M

returns a structurally more diverse set of shapelets with on average lower P-values including the shapelet with the lowest P-value, which was not deemed representative in

Tarone submodular

Fig. 5. Left: proportion of patient stays exiting the ICU dead (blue) or alive (orange) as a distribution over the length of the patient stay. In black, the fraction of lethal stays is

shown. The relative and absolute number of patients that exit the ICU dead sharply increases after 4 h. Right: admissions are categorized according to their maximum SOFA

score during the first 4 h of the stay (x-axis). The number of stays is separated by patient outcome (dead or alive, y-axis). The green line shows the percentage of in-ICU mortal-

ity given the maximum SOFA score during the first four hours, which increases with increasing maximum SOFA score, reaching a plateau at a score of 10
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score reflects the severity of critical illnesses. This serves as a proof
of concept that S5M is a good method for biomarker discovery in
time series datasets.

Conventionally, the SOFA score is evaluated only once upon ad-
mission and possibly followed up with on a daily basis in the ICU.
In this work we first discover that for a cohort of high SOFA score,
temporal patterns of the SOFA score during the first four hours of
stay (as retrieved via S5M) can be statistically significantly associated
with in-ICU mortality. This is a medically interesting finding, as it
might help ICU practitioners to stratify and prioritize critically ill
patients soon after ICU admission. To which degree our approach
will show clinical utility and external validity will be an exciting
route for future work.

5 Conclusion

This work introduced S5M for association mapping of interpretable
temporal patterns in biomedical time series. The proposed method
searches for subsequences that are both representatives for the set of
all subsequences and statistically significantly associated with pa-
tient phenotype. S5M addresses a fundamental shortcoming of
state-of-the-art temporal pattern mining approaches by optimizing a
submodular mixture objective function that maximizes coverage
and minimizes redundancy of patterns. Applying S5M to a time ser-
ies dataset results in a set of temporal patterns that can be controlled
in cardinality while achieving maximal structural diversity. By con-
trast, in traditional settings (in particular in classification scenarios),
interpretability is not guaranteed due to the lack of a significance
test or due to an uncontrollably large number of redundant shapelets
and low statistical power.

These conceptual advances are primarily driven by a novel itera-
tive optimizer for submodular optimization problems that was
shown to have a lower runtime while yielding qualitatively and
quantitatively comparable results to its traditional state-of-the-art
competitors.

We have shown in both simulated and previously analyzed
real-world datasets that the superiority of S5M in power is due to
its capability of simultaneously pruning non-testable and non-
representative patterns. Moreover, we discovered biomarkers in the
SOFA score of ICU patients that are associated with in-ICU mortal-
ity that have a clear medical interpretation. In particular, our find-
ings suggest a change in the assessment frequency of the SOFA score
for clinical practitioners soon after ICU admission. This demon-
strates that S5M is a reliable method for temporal biomarker discov-
ery in time series datasets.
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