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Abstract 

Background:  We aimed to develop a radiomic model based on pre-treatment computed tomography (CT) to pre-
dict the pathological complete response (pCR) in patients with rectal cancer after neoadjuvant treatment and tried to 
integrate our model with magnetic resonance imaging (MRI)-based radiomic signature.

Methods:  This was a secondary analysis of the FOWARC randomized controlled trial. Radiomic features were 
extracted from pre-treatment portal venous-phase contrast-enhanced CT images of 177 patients with rectal cancer. 
Patients were randomly allocated to the primary and validation cohort. The least absolute shrinkage and selection 
operator regression was applied to select predictive features to build a radiomic signature for pCR prediction (rad-
score). This CT-based rad-score was integrated with clinicopathological variables using gradient boosting machine 
(GBM) or MRI-based rad-score to construct comprehensive models for pCR prediction. The performance of CT-based 
model was evaluated and compared by receiver operator characteristic (ROC) curve analysis. The LR (likelihood ratio) 
test and AIC (Akaike information criterion) were applied to compare CT-based rad-score, MRI-based rad-score and the 
combined rad-score.

Results:  We developed a CT-based rad-score for pCR prediction and a gradient boosting machine (GBM) model was 
built after clinicopathological variables were incorporated, with improved AUCs of 0.997 [95% CI 0.990–1.000] and 
0.822 [95% CI 0.649–0.995] in the primary and validation cohort, respectively. Moreover, we constructed a combined 
model of CT- and MRI-based radiomic signatures that achieve better AIC (75.49 vs. 81.34 vs.82.39) than CT-based rad-
score (P = 0.005) and MRI-based rad-score (P = 0.003) alone did.

Conclusions:  The CT-based radiomic models we constructed may provide a useful and reliable tool to predict pCR 
after neoadjuvant treatment, identify patients that are appropriate for a ’watch and wait’ approach, and thus avoid 
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Background
Colorectal cancer is known as the third common can-
cer in the world, of which 70% are locally advanced rec-
tal cancer (LARC) [1]. The current treatment for LARC 
(T3–4 and/or N+) is the neoadjuvant treatment followed 
by total mesorectal excision (TME) surgery [2]. Among 
the patients receiving neoadjuvant treatment, roughly 
15–27% of patients can achieve pathological complete 
response (pCR) with no visible tumor cells in the resected 
tumor specimen [3]. A "watch and wait" strategy could be 
applied in these patients to achieve comparable survival 
outcomes with radical resection while avoiding surgical 
complications, including anastomotic leak, sexual and 
urinary dysfunction, and severe alteration of bowel func-
tion [3–6].

However, pCR can only be confirmed by evaluating 
resected specimens after surgery. Therefore, it is essential 
to identify patients that could achieve pCR with a reliable 
and non-invasive method before treatment [7]. Numer-
ous studies have tried to develop optimal predictive 
panels using clinicopathological characteristics or molec-
ular biomarkers, but they were limited by variability and 
insufficient sensitivity and specificity [8–11]. Imaging 
techniques such as computed tomography (CT), mag-
netic resonance imaging (MRI), and positron emission 
tomography are non-invasive methods that have been 
exploited to evaluate the therapeutic responses to neo-
adjuvant [12, 13]. Although they have shown promising 
values in response prediction, they are limited by their 
subjective nature and inconsistent evaluation from dif-
ferent radiologists [14]. Therefore, it is urgent to develop 
methods to better use imaging data in batch mode to 
stratify patients by their responsiveness to neoadjuvant 
treatment.

Radiomics, a fast-emerging field of image analysis, 
could extract high-dimension feature information from 
routinely acquired medical images in a high-throughput 
way, followed by subsequent data analysis for decision 
support [15, 16]. These features have been revealed to be 
closely associated with pathological heterogeneity [17], 
prognosis [18, 19], treatment response [20], and molecu-
lar phenotypes [21, 22] in tumors.

Multiple studies have recently applied radiomic analy-
sis to predict pCR after neoadjuvant treatment in LARC 
patients [23–26]. However, previous CT-based mod-
els for predicting pCR after neoadjuvant treatment turn 
out to be controversial, which can be attributed to their 

retrospective design, the small size of cohorts, and non-
contrast CT images that they used [27, 28]. In addition, 
to our best knowledge, none of previous studies has 
evaluated the feasibility of combing CT-based and MRI-
based radiomic signatures to predict pCR.

We therefore aimed to develop a CT-based radiomic 
model to predict pCR by using prospectively collected 
imaging data in LARC patients from a randomized con-
trolled trial (FOWARC, NCT01211210) that compared 
different neoadjuvant regimens [29, 30]. Moreover, we 
assessed the performance of an integrated model that 
combines CT-based and T2-weighted (T2W) MRI-based 
radiomic signature in pCR prediction to better guide the 
decision making of a "watch and wait" strategy.

Materials and methods
Patients
The patients enrolled in the FOWARC (NCT01211210) 
clinical trial [29, 30] were identified and included in 
this study. Briefly, all the patients were locally advanced 
rectal cancer (cT3–4 and/or cN1-2, c-Stage II–III), and 
they were randomly assigned to three neoadjuvant treat-
ment groups as we previously described [29, 30]. Patients 
in each group underwent curative surgery 6–8  weeks 
after neoadjuvant treatment. Among these patients, 177 
patients with available portal venous-phase contrast-
enhanced CT image data using the same CT scanner 
were included in the current study. They were randomly 
allocated to the primary and validation cohort at a ratio 
of 2:1. The workflow of patient cohort disposition was 
shown in Fig. 1.

Data collection and pathological response evaluation
Demographic characteristics and baseline characteristics 
of patients were prospectively collected or obtained from 
our institutional cancer database and inpatient medical 
records. Pathological response after neoadjuvant therapy 
was evaluated using the tumor response grading (TRG) 
system [31] by two pathologists in consensus. Patients 
were divided into two different response groups: pCR 
group (TRG 0, no viable residual tumor cells) and non-
pCR group (TRG 1–4, varying from rare residual cancer 
cells to extensive residual cancer cells).

Image data acquisition and tumor segmentation
All patients underwent CT scans within 1  week before 
neoadjuvant treatment. The imaging data were retrieved 

overtreatment. Moreover, the CT-based radiomic signature may add predictive value to the MRI-based models for 
clinical decision making.
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from the picture archiving and communication system 
(PACS, Carestream, Canada). The details of the imaging 
protocol were provide in Additional file  1. As shown in 
Additional file 1: Figure S1, the region of interest (ROI) 
covering the whole tumor was manually outlined along 
the margin of tumors by two experienced radiologists 
using the itk-SNAP software (version 3.8.0, www.​itksn​
ap.​org). The robustness of each ROI outlining and inter-/
intra-observer reproducibility was evaluated by calcu-
lating the intra- and inter-class correlation coefficients 
(ICCs). Both of the radiologists were blinded to the clin-
icopathological information of each case.

Radiomic features extraction
The radiomic features were preprocessed and extracted 
by Pyradiomics (Version 2.1.2) as previously described 
[32]. Two methods of filters were applied to preprocess 
CT images: Laplacian of Gaussian (an edge enhancement 
filter that emphasizes areas of gray level change) [33] and 
Wavelet filtering (a filter yielding eight decompositions 
per level in each of the three dimensions) [34]. Each orig-
inal image was normalized with z-score before being pro-
cessed by filters. A total of 1218 radiomic features were 
then acquired from CT images in each patient, includ-
ing the first-order statistics and other statistics derived 
from the Gray-Level Co-occurrence Matrix (GLCM), 
Gray Level Run Length Matrix (GLRLM), Gray Level 
Size Zone Matrix (GLSZM), and Gray Level Depend-
ence Matrix (GLDM) [35]. More details about the feature 
extraction procedure and parameter settings could be 
found in Additional file 1.

Feature selection and radiomic signature construction
We took multiple steps to identify the pCR-associated 
radiomic features (Additional file  1). First, we evaluated 
the overall pair-wise correlation and excluded highly 
correlated features based on the cut-off value (ρ = 0.85) 
to select candidate features for further analysis [24, 36]. 
Second, a logistic regression model optimized by the 
least absolute shrinkage and selection operator (LASSO) 
method was applied to further select representative fea-
tures that were associated with achieving pCR [37]. 
Finally, the radiomic signature, termed as rad-score, of 
each patient was calculated through a linear combina-
tion of estimated coefficients and radiomic values of each 
selected feature.

Development and validation of predicting models
We applied three different models to integrate rad-score 
with clinicopathological predictors, including logistic 
regression, support vector machine (SVM) [38] and gra-
dient boosting machine (GBM) [39]. Each model was 
trained and tuned (if needed) by a five-times ten-fold 
repeated cross-validation. More information about the 
models was provided in Additional file 1: Table S3.

Development of a model integrating CT‑ and MRI‑based 
radiomic features
The pre-treatment T2W MRI images of 99 patients were 
retrieved from PACS. The tumor segmentation and radi-
omic signature construction of MRI images were per-
formed as they were done in CT image analyses. The 
multivariate logistic regression analysis was used to inte-
grate the CT-based and MRI-based rad-scores for pCR 

Fig. 1  The diagram of workflow in this study
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prediction. The comparison between the CT-based, MRI-
based and CT-MRI rad-score was assessed using likeli-
hood ratio (LR) and Akaike information criterion (AIC). 
In general, the model with a lower AIC was considered a 
better one.

Statistical analysis
Demographic and clinicopathological characteristics 
were compared between the pCR and non-pCR groups 
using t-test or Mann–Whitney U tests (for continuous 
numerical variables depending on their distributions) 
and chi-squared tests or two-tailed Fisher’s exact tests 
(for categorical variables). All the statistical analyses were 
conducted with R software version 3.6.2 (http://​www.R-​
proje​ct.​org). The model construction, parameter tuning, 
comparison and assessment were performed using the 
"caret" package. The Receiver operating characteristic 
(ROC) analyses were conducted by using the "pROC" 
package. Model performance was assessed with the aver-
age area-under-receiver-operator-curve (AUC), accu-
racy, specificity, and sensitivity. A decision curve analysis 
(DCA) of the logistic regression model was conducted to 
evaluate the clinical practicability by calculating the net 
benefits at different threshold probabilities. The statis-
tical significance levels were all set to be 0.05 with two 
sides.

Results
Demographic and clinicopathological characteristics
The baseline characteristics of patients in the primary 
cohort and validation cohort were shown in Table  1. 
There were 113 and 64 patients in the primary and vali-
dation cohort, respectively. Among them, 20 (17.70%) 
and 11 patients (17.19%) achieved pCR in the primary 
and validation cohort, respectively. The tumor thickness 
was significantly different between pCR and non-pCR 
patients in the primary cohort but not in the validation 
cohort. There were no significant differences in other 
clinicopathological characteristics between pCR and 
non-pCR patients in either cohort.

Feature selection and radiomic signature construction 
for predicting pCR
At the first stage of feature selection, we followed the cri-
terion that features with relatively high overall pair-wise 
correlation would be removed. Accordingly, 272 selected 
features were then included into the LASSO regression 
model and 14 features were finally selected to build the 
rad-score (Additional file  1). The selected features con-
tained 4 first-order features, 4 GLSZM features, 3 GLCM 
features, 2 GLDM features, and 1 shape feature from 13 
different filtrations. Detailed information of the selected 
features was provided in Additional file  1: Table S1 and 

Table S2. The rad-scores of the pCR group were signifi-
cantly higher than those in the non-pCR group in both 
the primary (P < 0.001) and validation (P < 0.001) cohort. 
Of note, the distributions of rad-scores in both cohorts 
were shown in Fig.  3A and C, in which the majority of 
patients achieving pCR had a high rad-score in both 
cohorts. The decision curve analysis (DCA) for the CT-
based rad-score confirmed its application in clinical deci-
sion making (Fig. 2A).

Development and validation of integrated models 
for predicting pCR
We further constructed models that integrated rad-
score with clinicopathological predictors to better pre-
dict pCR. The multivariate logistic regression, SVM, and 
GBM models were constructed as shown in Additional 
file  1: Fig.S2. The top-ranked predictive variables were 
rad-score, CEA, MRF, and tumor thickness in the GBM 
model. Detailed information of these models was given in 
Additional file 1: Fig. S3.

The SVM model and GBM model had better predictive 
performance than the logistic model (Fig. 3B and D). The 
SVM model had an AUC of 0.961 [95% CI, 0.909–1.000] 
and 0.811 [95% CI, 0.672–0.950] in the primary and vali-
dation cohort, respectively, while the GBM model yielded 
the highest AUCs of 0.997 [95% CI 0.990–1.000] in the 
primary cohort and 0.822 [95% CI, 0.649–0.995] in the 
validation cohort. Moreover, the GBM model had the 
best accuracies, sensitivities, and specificities in both 
cohorts (Table  2). Taken together, the GBM model was 
selected for further analysis with the MRI-based radi-
omic model.

CT‑based radiomic signature contributes to MRI‑based 
radiomic model
To explore the values that CT-based radiomic signa-
ture could add to previously reported MRI-based radi-
omic models, we retrieved the pre-treatment T2W MRI 
images of 99 patients from the PACS system and per-
formed radiomic analyses. After feature extraction, a 
total of 21 MRI features were selected and the MRI-based 
rad-score was constructed. CT-MRI rad-scores were cal-
culated for each patient in this subset (Additional file 1). 
The multivariate logistic regression analysis showed that 
both the CT-based rad-score (P = 0.010) and MRI-based 
rad-score (P = 0.011) were independent predictive factor 
(Additional file 1: Table S4). As shown in Table 3, the per-
formance of the integrated model (CT-MRI rad-score) 
was significantly better than CT (P = 0.005) or MRI 
(P = 0.003) alone did (AIC: 75.49 vs. 81.34 vs. 82.39). The 
DCA curves also showed that the integrated model per-
formed better for predicting pCR in this subset (Fig. 2B).

http://www.R-project.org
http://www.R-project.org
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Table 1  Clinical characteristics of patients in the primary and validation cohorts

pCR: Complete pathological response; MRF: Mesorectal fascia; TL: Tumor length; DTVA: Distance of tumor from the anal verge; CEA: Carcinoembryonic antigen; cT 
stage: Clinical T stage, cN stage: Clinical N stage

Characteristics Training cohort p Validation cohort p

Non-pCR (N = 93) pCR (N = 20) Non-pCR (N = 53) pCR (N = 11)

Age (yr) .569 .847

 ≤ 60 62 (66.7%) 12 (60.0%) 37 (69.8%) 8 (72.7%)

 > 60 31 (33.3%) 8 (40.0%) 16 (30.2%) 3 (27.3%)

Gender .668 .586

 Female 28 (30.1%) 7 (35.0%) 19 (35.8%) 3 (27.3%)

 Male 65 (69.9%) 13 (65.0%) 34 (64.2%) 8 (72.7%)

cT stage .494 .847

 III 80 (86.0%) 16 (80.0%) 42 (79.2%) 9 (81.8%)

 IV 13 (14.0%) 4 (20.0%) 11 (20.8%) 2 (18.2%)

cN stage .197 .707

 0 27 (29.0%) 3 (15.0%) 7 (13.2%) 1 (9.1%)

 1 66 (71.0%) 17 (85.0%) 46 (86.8%) 10 (90.9%)

cTNM stage .411 .512

 II 27 (29.0%) 4 (20.0%) 9 (17.0%) 1 (9.1%)

 III 66 (71.0%) 16 (80.0%) 44 (83.0%) 10 (90.9%)

MRF .082 .177

 Negative 73 (78.5%) 12 (60.0%) 32 (60.4%) 9 (81.8%)

 Positive 20 (21.5%) 8 (40.0%) 21 (39.6%) 2 (18.2%)

TL (cm) .625 .266

 ≤ 3 23 (24.7%) 6 (30.0%) 11 (20.8%) 4 (36.4%)

 > 3 70 (75.3%) 14 (70.0%) 42 (79.2%) 7 (63.6%)

DTVA (cm) .351 .549

 ≤ 5 36 (38.7%) 10 (50.0%) 19 (35.8%) 5 (45.5%)

 > 5 57 (61.3%) 10 (50.0%) 34 (64.2%) 6 (54.5%)

CEA (ng/mL) .235 .214

 ≤ 5 64 (68.8%) 11 (55.0%) 33 (62.3%) 9 (81.8%)

 > 5 29 (31.2%) 9 (45.0%) 20 (37.7%) 2 (18.2%)

Tumor thickness (mm)
Median (Q1, Q3)

14.00 (11.00, 17.00) 15.50 (13.00, 21.25) .029* 16.00 (12.00, 18.00) 13.00 (12.50, 18.00) .419

Rad-score Median (Q1, Q3) − 1.89 (− 2.21, − 1.56) − 0.71 (− 1.15, − 0.42) < .001* − 1.95 (− 2.28, − 1.51) − 0.54 (− 1.17, − 0.29) < .001*

a b

Fig. 2  The decision curve analysis in this study. The decision curve analysis showed that using the CT-based rad-score to predict pCR added benefit 
than treating either all or no patients did when the threshold probability was between 0 and 1 (A) and using the CT-MRI-based integrated model 
gained more benefit when comparing with the MRI-based rad-score (B). The y-axis measured the net benefit. The x-axis represented the threshold 
probability. The red line represented the radiomic model. The grey line represented the assumption that all patients achieved pCR. The black line 
represented the hypothesis that no patients achieved pCR
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Discussion
In this post-hoc analysis derived from a prospectively 
randomized controlled trial, we initially used machine 
learning methods to construct a pCR-associated rad-
score based on radiomic features extracted from pre-
treatment portal venous-phase contrast-enhanced CT 

a b

c d

Fig. 3  Performance of the multivariable radiomic models. The CT-based rad‐score for each patient in the primary cohort (A) and the validation 
cohort (C), respectively; The ROC curves of the CT-based radiomic models using different methods in the primary cohort (B) and the validation 
cohort (D), respectively

Table 2  Performances of the radiomics models in the primary 
cohort and validation cohort

SVM: support vector machine; GBM: gradient boosting machine

Accuracy (95% CI) Sensitivity (95% 
CI)

Specificity (95% 
CI)

Primary cohort

 Logistic 0.903 (0.833–0.950) 0.900 (0.669–0.982) 0.903 (0.820–0.952)

 SVM 0.912 (0.843–0.957) 0.950 (0.731–0.997) 0.903 (0.820–0.952)

 GBM 0.973 (0.924–0.995) 1.000 (0.799–1.000) 0.946 (0.902–0.992)

Validation cohort

 Logistic 0.797 (0.678–0.887) 0.727 (0.393–0.927) 0.811 (0.676–0.901)

 SVM 0.766 (0.643–0.863) 0.818 (0.478–0.968) 0.755 (0.614–0.858)

 GBM 0.813 (0.695–0.899) 0.727 (0.393–0.927) 0.830 (0.697–0.915)

Table 3  Model fit among three models

AIC, Akaike information criterion value
a,b p value for the Likelihood ratio test in CT-based and MRI-based rad-scores 
compared with CT-MRI rad-score

Models AIC Brier score P

CT-based rad-score 81.34 0.099 0.005a

MRI-based rad-score 82.39 0.120 0.003b

CT-MRI rad-score 75.49 0.087
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images. The CT-based rad-scores were significantly dif-
ferent between pCR and non-pCR patients in the primary 
and validation cohort, respectively. We next integrated 
the rad-score with clinicopathological variables to 
develop multiple predictive models for pCR. Among the 
models, the GBM model had the best performance with 
AUCs of 0.997 and 0.822 in the primary and validation 
cohort. Moreover, we integrated the CT-based and MRI-
based radiomic signatures to construct an improved 
model for pCR prediction with a better AUC compared 
to CT or MRI alone. The models we constructed may 
provide a useful and reliable tool to identify pCR patients 
that are appropriate for a ’watch and wait’ approach.

A total of 1218 candidate radiomic features were 
extracted from the primary tumor region. The first order 
features including Median and Kurtosis accounted for a 
large proportion in our radiomic signature (4/14, Addi-
tional file 1: Table S1). Previous texture analysis based on 
CT [40] and MRI [41] have also reported the importance 
of first order features in predicting treatment response 
and prognosis. These features basically evaluated voxel 
intensities, which reflect the shape and volume irregu-
larity of tumors, which are difficult to be identified with 
naked eyes. The Gray Level Size Zone Matrix (GLSZM) 
features, which quantify gray level zones (defined as the 
number of connected voxels that share the same gray 
level intensity) in an image, contributed to our radiomic 
signatures as well (4/14, Additional file  1: Table  S1), It 
has been shown that tumors with higher heterogeneity 
tend to get aberrant values in these radiomic features and 
our result is consistent with the hypothesis that radiomic 
analysis may reflect tumor heterogeneity associated with 
underlying molecular phenotypes [42, 43]. Comparing 
with other studies that applied the features merely from 
the primary images [28, 44] we used Laplacian of Gauss-
ian (LoG) and Wavelet filters to preprocess the images 
into multiple filtered images through different scales of 
smoothing [45]. Preprocessing images with filters can 
enhance the high-dimensional features of tumors that are 
difficult to be recognized in direct visual assessment by 
reducing the hybrid texture of tissue adjacent to tumor 
and previous studies have promoted their radiomic mod-
els using these filters [46]. The enrolled LoG and Wavelet 
features (13/14, Additional file 1: Table S1) in our study 
also validated that image filtering before feature extrac-
tion may identify more valuable radiomic features for 
outcome prediction and improve the performance of 
constructed models.

Several studies tried to construct predicting models for 
pCR based on clinicopathological characteristics. In our 
study, we also combined available clinical characteristics 
with rad-scores by a GBM method and the clinical vari-
ables that contribute to the model include CEA, tumor 

thickness, MRF, clinical N stage, which is consistent with 
previous studies based on a large sample size [8–11, 47, 
48]. Decision trees have shown good performance with 
the application of this model, which is recently applied to 
statistical learning methods for classification and regres-
sion. However, our result showed that the clinical varia-
bles contribute less to pCR prediction compared with the 
CT-based rad-scores. It could be anticipated that incor-
porating variables with more dimensions such as molec-
ular biomarkers may further improve current models.

Some recent studies have constructed radiomic mod-
els to identify patients that may achieve pCR after neo-
adjuvant treatment. Among them, most investigated the 
predictive value of radiomic features for pCR based on 
multiparametric MRI, and the AUCs of these models 
were reported to be 0.712–0.966 [25, 36, 38]. The ana-
lyzed MRI data included T1W [36], T2W [25] and DWI 
[24] images from pre-treatment to post-treatment [44]. 
However, few of them focused on CT-based radiomics 
analysis, although it has been demonstrated that multiple 
radiomics analysis based on CT images can facilitate the 
prediction of lymph node metastasis [37, 49, 50], distant 
metastasis [51], therapy response [52, 53] and prognos-
tic outcomes [28]. Two previous studies have performed 
CT-based radiomics analysis for pCR prediction but 
came out with controversial results [27, 54]. Both of these 
studies analyzed non-contrast CT images, which may not 
display tumor characteristics well, and were based on 
small sizes of cohorts with retrospective design [27, 55]. 
Comparing to these studies, one advantage of our study 
is that we better controlled the imbalanced distribution 
of confounding factors by enrolling patients from a ran-
domized controlled trial. Moreover, different from some 
studies based on non-contrast CT [27], we used the por-
tal venous-phase contrast-enhanced CT images that are 
commonly approved to be more informative in interpret-
ing tumor tissues. With these advantages, our CT-based 
model had an AUC as high as 0.997 and 0.822 in the pri-
mary and validation cohort, which seemed to be superior 
to MRI-based models in previous studies [25, 36, 38]. 
Our results add reliable evidence for pre-treatment CT-
based radiomics analysis in predicting pCR after neoad-
juvant treatment. It is well known that MRI and CT may 
interpret tumor characteristics in different physiological 
and biological modalities [56, 57]. Previous studies have 
constructed predictive models based on CT, MRI or their 
combined signature for tumor progression in various 
cancers [58, 59]. Their results proved that CT and MRI 
have unique contributions in predicting outcomes. Based 
on this context, we innovatively explored the additional 
benefits of CT-based radiomic signatures for previously 
reported MRI-based models and constructed a novel 
integrated model. Expectedly, a significant improvement 
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was determined in the integrated rad-score with better 
AIC and brier score compared to either of them alone. 
To the best of our knowledge, our study is the first to 
combine CT and MRI images together to perform radi-
omics analysis in rectal cancer, especially in pCR predic-
tion, and the result showed that it might interpret rectal 
tumors more comprehensively. This novel modality of 
predicting model deserves to be further investigated and 
validated in a large cohort.

As the "watch and wait" strategy is recently proposed to 
be an alternative strategy for patients with clinical com-
plete response (cCR), it is urgent to have a reliable and 
accurate method to distinguish pCR before surgery and 
guide clinical decision making among these patients. 
Considering the predictive value of our radiomic models 
constructed before treatment for pCR, they could at least 
assist clinicians in distinguishing cCR patients achieving 
pCR from those not achieving pCR after neoadjuvant 
treatment. The decision curve analysis (DCA) demon-
strated that the radiomic signatures might add more net 
benefit in the clinical practice than the ’treat all’ or ’treat 
none’ strategies. This model could be a quantitative and 
reliable tool in deciding which patients need radical sur-
gery and which patients are suitable for the "watch and 
wait" strategy.

The robustness of this study mainly came from the pro-
spective patient cohort and homogeneity of imaging data 
that were applied in radiomics analysis, though there are 
some limitations in our study. First, the sample size of 
patients with pCR was small in our cohorts, which may 
introduce bias and bring the inaccuracy and instability 
to the predictive models. Second, this was a secondary 
study of a clinical trial. Validation of the proposed models 
in an independent cohort is warranted in further study 
before clinical application. Third, the integrated model 
that enrolled CT-based and MRI-based radiomic signa-
tures is an exploratory and preliminary test with a limited 
sample size. The additional studies for model optimiza-
tion and validation in patient cohorts would be necessary.

Conclusion
This post-hoc study of a randomized controlled trial 
developed and validated a pre-treatment enhanced 
CT-based rad-score to accurately predict pCR after 
neoadjuvant treatment in LARC patients. We further 
integrated the rad-score with clinicopathological vari-
ables to develop a GBM model for pCR prediction with 
improved performance. Moreover, we explored the 
predictive value CT-based radiomic signature could 
add to the MRI-based models that were reported pre-
viously and proposed a novel comprehensive model 

that performed better than CT or MRI alone. These 
models could be useful tools to help clinical decision 
making in rectal cancer patients receiving neoadjuvant 
treatment.
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