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Abstract: Decaprenylphosphoryl-β-D-ribose oxidase (DprE1) is the flavoprotein subunit of
decaprenylphosphoryl-D-ribose epimerase involved in cell wall synthesis in Mycobacterium
tuberculosis and catalyzes the conversion of decaprenylphosphoryl ribose to decaprenylphosphoryl
arabinose. DprE1 is a potential target against tuberculosis, including multidrug-resistant tuberculosis.
We identified potential DprE1 inhibitors from the ChemDiv dataset through virtual screening based
on pharmacophore and molecular docking. Thirty selected compounds were subjected to absorption,
distribution, metabolism, excretion, and toxicity prediction with the Discovery Studio software
package. Two compounds were obtained as hits for inhibiting DprE1 activity in M. tuberculosis and
are suitable for further in vitro and in vivo evaluation.

Keywords: DprE1; virtual screening; tuberculosis; ADMET

1. Introduction

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a contagious airborne
disease of humans that is one of the top 10 causes of death worldwide and has even caused higher
mortality than the hunan immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS)
since 2015. About one third of the world’s population has latent TB, which means that they have
been infected by M. tuberculosis bacteria but are not yet ill with TB and cannot transmit the disease.
According to the World Health Organization, there were an estimated 10.4 million new TB cases and
1.8 million TB deaths worldwide in 2016. People living with HIV accounted for 1.2 million (11%) of all
new TB cases [1]. Due to the emergence of multidrug-resistant TB, extensively drug-resistant (XDR)
TB, totally drug-resistant TB, and super-XDR TB [2], there is an urgent need for new drug candidates
with new mechanisms of action.

Decaprenylphosphoryl-β-D-ribose oxidase (DprE1) is the flavoprotein subunit of
decaprenylphosphoryl-D-ribose epimerase, which is involved in cell wall synthesis and produces
decaprenylphosphoryl arabinose (DPA), a unique sugar donor for biogenesis of the essential
mycobacterial cell wall polysaccharides arabinogalactan and lipoarabinomannan [3]. DprE1 acts in
concert with DprE2 to catalyze the two-step epimerization of decaprenylphosphoryl ribose (DPR) to
DPA. DprE1 uses Flavin adenine dinucleotide (FAD) to oxidize DPR to a keto intermediate, which
is then reduced to DPA by DprE2 using the reduced form of nicotinamide adenine dinucleotide
(NADH) as a cofactor [4,5]. Analysis of orthologs has revealed that DprE1 is essential for the growth
of mycobacteria, making it a valuable target for drug development [5].
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Although some DprE1 inhibitors have been reported, including benzothiazinones,
dinitrobenzamides, nitroquinoxalines, and nitroimidazoles (Figure 1), no DprE1 inhibitors
are currently in clinical use. Benzothiazinones have been identified as potential candidates for
enzyme inhibition, among which BTZ043 and PBTZ169 are the most promising compounds and are
currently in clinical trials [6,7]. BTZ043 and PBTZ169 are covalent DprE1 inhibitors, in which the nitro
group is reduced to a nitroso group and forms a covalent bond with the thiol group of the active
site Cys387 [6,7]. The dinitrobenzene derivative CT325 inhibits DprE1 by a similar mechanism [7].
VI-9376 is the lead among the nitroquinoxalines, which are compounds structurally similar to
benzothiazinones [8]. The representative compound of nitroimidazoles, 377790, was also found to
bind covalently with Cys 387 in DprE1 [9] Ty38c showed good antitubercular activity as a noncovalent
inhibitor of DprE1 [10]. Though no significant disadvantages of these DprE1 inhibitors were reported,
there is still much uncertainty preventing any currently known DprE1 inhibitor from being developed
as a clinical drug.
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Virtual screening for drug discovery is becoming an essential tool in assisting fast, cost-efficient
lead discovery and optimization. Rational and structure-based drug design is more efficient than
the traditional method of drug discovery because this method examines the molecular basis of a
disease and uses the three-dimensional structure of the biological target. In this work, we used virtual
screening in silico to identify potential small molecular inhibitors against DprE1.

2. Results and Discussion

The ChemDiv is the industry’s largest, most diverse, and most pharmacologically-relevant
commercial collection, containing 1,962,494 individually crafted, lead-like, drug-like small
molecules [11]. First, the dataset was filtered using Oprea’s lead-likeness criteria [12]. After analysis
of the interaction between DprE1 and Ty38c, the pharmacophore model was established, which
consisted of one hydrogen bond donor atom and two hydrophobic features with distance constraints
of 5.63 ± 0.1, 7.21 ± 0.1, and 10.5 ± 0.1 Å, respectively (Figure 2). The 941,361 molecules in the filtered
database were filtered using three-dimensional (3D) and flexible queries in the parmacophore model
generated by the UNITY module of SYBYL-X 2.1. All the conformers of these molecules were generated
on the fly during the pharmacophore search.

A total of 135,755 molecules fitted the pharmacophore features and were subjected to the
docking-based virtual screening in Autodock Vina. Thirty molecules were selected to perform the
absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction with the Discovery
Studio 2.5 software package (Figure 3). The candidate molecules were selected based on the following
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considerations. (1) There were no clashes between the ligand and any residues on DprE1; (2) In a
cluster of similar molecules, smaller ones were preferred, as they would allow more room for structural
optimization; (3) Molecules that formed distinguishable hydrogen bonds (2.5–3.2 Å, 130–180◦) and
π–π stacking interactions (3–5 Å) with the residues in the binding pocket were preferred.Molecules 2018, 22, x  3 of 9 
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bond donors. 
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Figure 3. Superposition of Ty38c (in stick) and 30 selected ligands (in lines) docked in DprE1.

The pharmacokinetic profile of all of the molecules under investigation was predicted by ADMET
models provided by the Discovery Studio 2.5 program. The biplot shows the two analogous 95% and
99% confidence ellipses corresponding to the human intestinal absorption (HIA) and the blood-brain
barrier (BBB) models. Polar surface area (PSA) had an inverse relationship with percent HIA, and thus
with cell wall permeability [13]. Although a relationship between PSA and permeability has been
demonstrated, the models usually do not consider the effects of other descriptors. Despite the
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general use of log P to estimate a compound’s lipophilicity, log P raises concerns about using log P
to estimate hydrophilicity and hydrophobicity because it is a ratio [14]. Thus, the hydrogen bonding
characteristics obtained by calculating the PSA could be considered along with the log P calculation [15].
Consequently, a model with descriptors Atom-based Log P98 (ALogP98) and two-dimensional PSA
(PSA_2D) with a biplot comprising 95% and 99% confidence ellipses was used for the accurate
prediction of the compounds’ cell permeability [16]. The 95% confidence ellipse represents the region
of chemical space where we can expect to find well-absorbed compounds (≥90%) 95 out of 100 times.
The 99% confidence ellipse represents the region of chemical space containing compounds with
excellent absorption through cell membranes. According to the model, a compound with optimum
cell permeability should follow the criteria PSA < 140 Å2 and AlogP98 < 5 [15]. All of the compounds
showed PSA < 140 Å2, and all compounds, except ZINC23333900 and ZINC64873003, had AlogP98 < 5
(Figure 4).
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Figure 4. Plot of the two-dimensional polar surface area (PSA_2D) vs. the calculated ALogP98 for
tested compounds showing the 95% and 99% confidence limit ellipses corresponding to the blood-brain
barrier (BBB) and the human intestinal absorption (HIA) models.

According to the ADMET prediction, six of the 30 compounds possessed high penetration capacity
and 10 compounds possessed medium penetration capacity. Four of the 30 compounds were outside
the 99% BBB confidence ellipse, which meant that the quality of the results was unknowable (undefined
level of 4). All 30 compounds were inside the 99% absorption ellipse, so they were expected to possess
good HIA. The solubility of tested compounds varied from very low to good. The aqueous solubility
of five of the 30 compounds was good (Table 1). Cytochrome P450 2D6 (CYP2D6) is involved in the
metabolism of a wide range of xenobiotics and its inhibition by a drug may lead to serious drug-drug
interactions [17]. Therefore, determining CYP2D6 inhibition is a vital part of the drug discovery and
development process. The compounds, except ZINC04724734, were classified as non-inhibitors of
CYP2D6. The hepatotoxicity model predicts the incidence of dose-dependent human toxicity [18].
According to the Discovery Studio 2.5 Hepatotoxicity model, 17 of the 30 compounds were classified as
non-hepatotoxic. The pharmaceutical activity is determined by the free drug concentration; therefore,
the possible plasma protein binding of compounds must be considered [19]. Six of the 30 tested
compounds were likely to be <90% binding, five were likely to be ≥90% binding, and 19 were likely to
be ≥95% binding (Table 1).
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Table 1. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions for 30 selected compounds.

Compounds BBB Level a Absorption Level b Solubility Level c Hepatotoxicity d CYP2D6 e PPB Level f AlogP98 PSA 2D

ZINC04497363 3 0 2 0 0 2 2.506 83.12
ZINC04497364 3 0 2 0 0 2 2.506 83.12
ZINC04724734 2 0 2 1 1 1 4.478 81.485
ZINC05196271 2 0 2 1 0 2 3.253 82.903
ZINC08614786 2 0 2 1 0 2 3.167 73.348
ZINC09502318 3 0 2 0 0 2 3.16 88.19
ZINC09743860 2 0 2 1 0 1 4.382 82.052
ZINC09833455 1 0 2 0 0 2 4.395 68.065
ZINC12249931 4 0 2 1 0 0 3.602 101.082
ZINC15858572 3 0 2 1 0 0 3.056 85.365
ZINC15865571 2 0 2 1 0 2 3.597 79.947
ZINC17149731 2 0 2 0 0 1 3.65 68.065
ZINC21100102 3 0 3 1 0 2 2.624 79.947
ZINC21100117 3 0 3 1 0 2 2.83 79.947
ZINC21884825 3 0 3 0 0 2 2.444 103.141
ZINC21884833 2 0 2 0 0 2 3.797 64.659
ZINC23333900 1 0 1 1 0 2 5.261 62.856
ZINC32996629 1 0 2 0 0 2 4.462 64.659
ZINC33123019 4 0 2 0 0 0 3.071 111.432
ZINC33257862 2 0 2 0 0 2 3.517 64.659
ZINC35480955 1 0 2 0 0 1 4.912 55.985
ZINC35511826 1 0 2 0 0 1 4.696 55.985
ZINC36159960 2 0 2 0 0 0 2.541 61.959
ZINC36159963 2 0 2 0 0 0 2.541 61.959
ZINC49421663 4 0 2 0 0 2 2.389 111.364
ZINC49421722 3 0 2 1 0 2 2.632 96.689
ZINC49421723 3 0 2 1 0 2 2.632 96.689
ZINC64873003 1 0 2 0 0 2 5.154 55.985
ZINC64890370 4 0 3 1 0 2 1.843 114.464
ZINC65318827 3 0 3 0 0 0 2.399 93.683

a 0, 1, 2, 3, and 4 denote very high, high, medium, low, and undefined, respectively. b 0, 1, 2, and 3 denote good absorption, moderate absorption, low absorption, and very low absorption,
respectively. c 0, 1, 2, 3, 4, and 5 denote extremely low, very low but possible, low, good, optimal, and too soluble, respectively. d 0 and 1 represent nontoxic and toxic, respectively. e 0 and 1
denote noninhibitor and inhibitor, respectively. f 0, 1, and 2 indicate <90% binding, ≥90% binding, and ≥95% binding, respectively.
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Due to the ADMET predictions, the docking studies, and chemical structures (refers to
structural modification), ZINC09833455 and ZINC32996629 are suitable for further in vitro and
in vivo evaluation.

In the docking study, ZINC09833455 formed hydrogen bond interactions with N of the His
132 residue. The COO- group of Asp 389 showed anion-π interactions with the phenyl ring of
ZINC09833455, which was surrounded by the hydrophobic groups of Trp230, Pro316, Phe320, Trp323,
and Leu363. The middle phenyl ring of ZINC09833455 showed hydrophobic interactions with the
corresponding parts of Lys134, Tyr314, Leu317, and Val365. ZINC32996629 formed hydrogen bonds
with His132 and Gln336. The chloro-substituted phenyl ring occupied the hydrophobic site formed by
Lys134, Tyr314, Leu317, Val365, Lys367, and Phe369. The cation-π interaction between Lys418 and the
1,2,4-oxadiazole ring of ZINC32996629 is shown in Figure 5. Thus, ZINC09833455 and ZINC32996629
could be used as potential hits for further in vitro and in vivo evaluation.
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Figure 5. Docking study of ZINC09833455 and ZINC32996629 in DprE1 shown by Pymol 0.99. Panel
(A): Chemical structure and molecular modeling of ZINC09833455. ZINC09833455 is shown as the cyan
stick structure and the surrounding residues are gray. Hydrogen bond interactions are yellow dotted
lines and anion-π interactions are green dotted lines; Panel (B): Chemical structure and molecular
modeling of ZINC32996629. ZINC32996629 is shown as the cyan stick structure and the surrounding
residues are gray. Hydrogen bond interactions are yellow dotted lines and cation-π interactions are
purple dotted lines.
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3. Materials and Methods

3.1. Preparation for Virtual Screening

The ChemDiv dataset containing 1.96 million compounds was downloaded from the ZINC
database [11]. The Protein Drug Bank (PDB) structure of DprE1 protein (PDB Code: 4P8K) was
retrieved from the PDB (http://www.rcsb.org/pdb/home/home.do).

3.2. First Round of Screening Based on Oprea’s Lead-Likeness Criteria

The ChemDiv dataset, containing 1,962,494 compounds, was filtered to exclude compounds that
did not follow Oprea’s lead-likeness criteria [12] (150 < MW < 450, −3.5 < C log P < 4.5, 0 < number of
rings < 4, 0 < rotational bonds < 10, 0 < donors < 5, 0 < acceptors < 8). The filtered database contained
941,361 compounds.

3.3. Second Round of Screening Based on Pharmacophore Models

We composed queries based on pharmacophores identified from the crystal structure of PDB Code
4P8K [10]. Based on the analysis of the interactions within the binding pocket, the UNITY module in
SYBYL-X 2.1 was used for the virtual screening by default (at least four out of three features and three
constraints in the pharmacophore model had to be matched). From the second round virtual screening,
135,755 compounds were obtained. The pharmacophore features for the second round of screening
were two hydrophobic groups and one hydrogen bond donor with three distance constraints (5.63 ±
0.1, 7.21 ± 0.1, and 10.5 ± 0.1 Å) (Figure 2).

3.4. Third Round of Screening Based on Docking

AutoDock Vina (Scripps Research Institute, San Diego, CA, USA) was used to screen 135,755
compounds in the database by docking [20]. For the docking studies, the X-ray crystallographic
structure of the DprE1 complex with Ty38c (PDB Code: 4P8K) from the Protein Data Bank (PDB)
was used. The PDB protein and molecules were prepared by adding hydrogen and missing residues
in Sybyl-X 2.1 and converted to pdbqt format by Openbabel [21]. A grid box with dimensions of
30 × 30 × 30 Å (38.972, 12.580, 10.750) with a spacing of 0.375 Å was constructed around the docking
area using Autogrid 4.2 software [22]. Molecules were docked using Vina with exhaustiveness
grade 8, with up to nine poses saved per molecule. The docking procedure was carried out for the
unchanged conformation of the receptor and flexible ligand molecules. Ty38c was redocked in the
4P8K model to validate the docking algorithms of AutoDock Vina (the root-mean-square deviation
value is 0.844). The lowest energy conformations were selected and the ligand interactions with DprE1
were determined. Accelrys Discovery Studio Visualizer 4.0 (Accelrys, San Diego, CA, USA) was
used for interaction visualization. Through inspection of the top docking poses, 30 compounds were
selected from the top 200 compounds based on the binding affinity (Table S1).

3.5. ADMET Prediction

To estimate the drug-likeness of the compounds, in silico absorption, distribution, metabolism,
excretion, and toxicity (ADMET) prediction was carried out [23]. We investigated the ADMET
properties of the 30 selected compounds using the ADMET Protocol in the Discovery Studio 2.5
software package (Accelrys, San Diego, CA, USA). These studies were solely based on the chemical
structure of the molecule. Some of the parameters that were calculated included Atom-based Log
P98 (ALogP98), ADME 2D Fast Polar Surface Area (ADME 2D FPSA), Blood Brain Barrier (BBB),
Cytochrome P4502D6 (CYP2D6), and Hepatotoxicity (HEPATOX).

http://www.rcsb.org/pdb/home/home.do


Molecules 2018, 23, 524 8 of 9

4. Conclusions

DprE1 is the flavoprotein subunit of decaprenylphosphoryl-D-ribose epimerase involved in cell
wall synthesis in M. tuberculosis and catalyzes the conversion of DPR to DPA. We identified DprE1
inhibitors from the ChemDiv dataset through virtual screening based on pharmacophore and molecular
docking. ADMET prediction was performed on 30 selected compounds with the Discovery Studio
software package. Compounds ZINC09833455 and ZINC32996629 were obtained as hits for inhibiting
the DprE1 activity of TB and may be suitable for further in vitro and in vivo evaluation.

Supplementary Materials: The following are available online, Table S1. Top 200 compounds and their
binding affinity.
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