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Abstract

Background: Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that
obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other
metabolic complications. Thrombospondin 1 (TSP1) is a multifunctional extracellular matrix protein that is up-regulated in
inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and
insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we
investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout
mice.

Methodology/Principal Findings: Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF) or a high-fat
(HF) diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and
WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity.
However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild
type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese
TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also
decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had
decreased mobility and a reduced inflammatory phenotype.

Conclusion: TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency
reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin
resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating
obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a potential therapeutic
target to improve the inflammatory and metabolic complications of obesity.
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Introduction

The worldwide obesity epidemic is a major risk factor for type

2 diabetes and cardiovascular disease. Obesity is now recognized

as a state of chronic low-grade systemic inflammation which

promotes the development of insulin resistance and other

metabolic complications [1]. Obesity is associated with macro-

phage infiltration into adipose tissue and the dysregulated

production of adipokines [2]. Adipose tissue macrophages

(ATMs) are the primary source of inflammatory cytokine

production in adipose tissue and play a key role in obesity-

induced chronic low-grade inflammation and insulin resistance

[2]. Although there have been some advances in the study of

ATMs in obese conditions [2,3,4], the mechanisms underlying

inflammatory cell recruitment and activation are not completely

understood.

Thrombospondin1 (TSP1) is a major component of platelet

alpha granules [5,6]. TSP1 acts as an immediate early response

gene, exhibiting rapid but transient induction by growth factors

and stress in many cell types including adipocytes and macro-

phages [7,8,9,10]. TSP1 exists as both a component of the

extracellular matrix and as a soluble molecule found in various

body fluids and in the cell culture conditioned medium. TSP1 is a

420–450 kDa homotrimer with individual subunits of approxi-

mately 145 kDa. The diverse biological activities of TSP1 have

been mapped to specific domains of the molecule by interaction

with different cell surface receptors [11,12,13,14,15,16]. TSP1

is a major regulator of latent TGF-b activation, a well-known

endogenous angiogenesis inhibitor, and a regulator of cell

proliferation and adhesion [9,11,17,18,19,20,21]. TSP1 also plays

a role in inflammation and obesity. TSP1 has been shown to be

expressed in visceral adipose tissue of rats and humans [22,23]. Its
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expression is markedly regulated during the differentiation of

preadipocytes into mature adipocytes [24,25]. TSP1 is up-regulated

in developing adipose tissue of mice with diet or genetically induced

obesity [26]. In obese, insulin resistant humans, TSP1 was recently

reported to be up-regulated and associated with adipose inflamma-

tion and insulin resistance [27]. However, in vivo studies examining

the role of TSP1 in regulating macrophage function and obesity-

associated inflammation and insulin resistance are lacking.

In the current study, we utilized TSP1 knockout and wild type

mice to investigate the role of TSP1 in high fat diet induced

obesity, inflammation, and insulin resistance. Using this diet-

induced obesity paradigm, we demonstrated that TSP1 deletion

had no effect on obesity development. However, these obese TSP1

deficient mice had improved glucose tolerance and insulin

sensitivity. This improved glucose-insulin homeostasis was found

to be associated with significantly decreased macrophage accu-

mulation and inflammation in the adipose tissue. In vitro studies

further supported the effect of TSP1 on macrophage mobility and

function. Together, these data demonstrate that TSP1 may play

an important role in obesity-associated insulin resistance partially

through regulating macrophage function and inflammation.

Materials and Methods

Ethics Statement
All experiments involving mice conformed to the National

Institutes of Health Guide for the Care and Use of Laboratory

Animals and were approved by the University of Kentucky

Institutional Animal Care and Use Committee. This protocol was

approved under application number 00966M2005.

Experimental animals and protocols
Eight week old male TSP1-/- mice (on C57BL6/J background,

purchased from Jackson Laboratory) and age-matched littermate

controls were used in the study. Mice were housed in a

temperature controlled room with a 12 hour light/dark cycle.

Mice were fed a LF (10% kcal as fat; D12450B; research Diets,

Inc, NJ) or a HF diet (60% kcal as fat; D12492, research Diet, Inc,

NJ) for 16 weeks. Each group contained 10–15 mice.

Metabolic measurements
The blood was collected from animals after 6 hr fasting. Plasma

glucose levels were measured using a Glucometer. Plasma total

cholesterol and triglyceride levels were measured using kits from

Wako Chemicals. Plasma insulin, leptin, IL-6, MCP-1, TNF-a,

PAI-1, resistin and adiponectin concentrations were measured

using a mouse adipokine assay kit (Millipore).

Glucose tolerance and Insulin sensitivity tests
After 15 weeks of LF and HF-feeding, glucose tolerance was

analyzed in animals after 6 h fasting. Following an intraperitoneal

injection of glucose (1 g/kg body weight), blood glucose

concentrations were measured using a Glucometer at 0, 15, 30,

60, and 120 minutes after injection. For insulin sensitivity

assessment, Insulin (0.5 unit/kg body weight) (Novolin R, Novo

Nordisk InC.) was injected into mice intraperitonealy. Similarly,

blood glucose levels were measured at 0, 15, 30, 60, and 120

minutes after injection to assess insulin’s effect.

Assessments of body composition, food intake and
energy expenditure

At 15 weeks, mice were put in TSE LabMaster chambers (TSE

systems) individually for 5 days for measurement of food intake,

water intake and indirect calorimetry. In addition, EchoMRI

(Echo Medical System) was used to evaluate body fat and lean

content in mice after 16 weeks of LF or HF feeding.

Real-time PCR
Total RNA was isolated from epididymal fat tissue of TSP1-/-

and wild type control mice using TRIZOL reagent (Invitrogen,

Carlsband, CA) and treated with DNaseI (Roche, Indianapolis,

IN). The treated RNA was cleaned up using RNeasy kit (Qiagen,

Valencia, CA). Total RNA of 2 mg was used for cDNA synthesis

using High Capacity cDNA Reverse Transcription Kit (Invitro-

gen, Carlsband, CA). Real-time PCR analyses were performed

using SYBR Green PCR Master Mix kit with a MyiQ Real-time

PCR Thermal Cycler (Bio-Rad). All reactions were performed in

triplicate in a final volume of 25 ml. Dissociation curves were run

to detect nonspecific amplification and we confirmed that single

products were amplified in each reaction. The quantities of each

test gene and internal control 18S RNA were then determined

from the standard curve using the MyiQ system software and

mRNA expression levels of test genes were normalized to 18S

RNA levels. The primer sequences are shown in Table 1.

Immunohistochemical staining
Epididymal adipose tissue was fixed and embedded in paraffin.

Paraffin fixed adipose tissues were cut into 4–5 mm sections and

placed onto slides. Sections were deparaffinized in xylene, and

were rehydrated in graded mixtures of ethanol/water. Endoge-

nous peroxidase activity was blocked with 3% H2O2 for 30 min at

room temperature (RT). The slides were placed in PBS buffer

containing 5% BSA for 30 min. A rat anti-mouse F4/80 antibody

(AbD Serotec, Raleigh, NC) was applied for 1 hour at RT. A

negative control was included by substituting control IgG for the

primary antibody. After washing with PBS, biotinylated secondary

antibody was applied for 30 min. After another 15 min washing,

an avidin-biotin-peroxidase complex was applied to the slides for

30 min. The slides were washed once again with PBS before color

development with DAB using Vectastain ABC system (Vector

Lab).

Macrophage function studies
Studies using bone marrow derived cells. Bone-marrow

derived cells were isolated from femurs and tibias of male WT and

TSP1-/- mice as described previously [3]. For seven days, these

cells were cultured in RPMI-1640 media containing 20% FBS,

25 ng/ml M-CSF (Sigma), and penicillin/streptomycin to allow

Table 1. Sequences of primers used in the study.

Genes Forward (59-39) Reverse (59-39)

18 sRNA AGTCGGCATCGTTTATGGTC CGAAAGCATTTGCCAAGAAT

IL-6 CTG CAAGAGACTTCCATCCAGTT GAAGTAGGGAAGGCCGTGG

TNF-a AGCCGATGGGTTGTACCT TGAGTTGGTCCCCCTTCT

MCP-1 CAGCCAGATGCAGTTAACGC GCCTACTCATTGGGATCATCTTG

F4/80 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG

CD11c CTGGATAGCCTTTCTTCTGCTG GCACACTGTGTCCGAACTC

TGF-b1 ACTGCTTCCCGAATGTCTGACGTA TAAAGAGGTCACCCGCGTGCTAAT

PAI-1 GCG TGTCAGCTCGTCTACAG GTACTGCGGATGCCATCTTT

iNOS CCAAGCCCTCACCTACTACTTCC CTCTGAGGGCTGACACAAGG

doi:10.1371/journal.pone.0026656.t001
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proliferation and differentiation into mature macrophages.

Macrophages were then plated and treated with or without

lipopolysaccaride (LPS: 100 ng/ml) for 3 hr. After treatment, cells

were harvested and expression of proinflammatory cytokines was

determined by real-time PCR.

Macrophage migration and adhesion assay. Mice (male

TSP1-/- , CD36 -/-, and wild type control mice) were sacrificed

and macrophages were harvested by lavage of the peritoneal

cavity with sterile PBS [28]. The cells were washed once with

serum-free DMEM media, counted and used immediately in a

migration or cell adhesion assay. For migration assay: Peritoneal

macrophages (16106) from male WT mice or TSP1-/- mice

were loaded into the upper chambers, while the lower chambers

were filled with DMEM media containing either purified TSP1

(5 mg/ml, from R&D system) or MCP1 (50 ng/ml). Transwell

plates were then incubated at 37uC for 5 hours. Media was

removed from the upper chamber, and the cells in the bottom

chamber were then fixed in methanol and stained with Giemsa

solution (Dade Behring, Marburg, Germany). Cell counts were

performed by two different observers who were blinded to the

study design.

For adhesion assay. To assess cell spreading, macrophages

were plated into four-chambered LAB-TEK slides (Nalge Nunc

International; Naperville, IL) uncoated or precoated with purified

TSP1 or fibronectin for 6 hours. The cells were then washed with

PBS, fixed with 4% par formaldehyde, permeabilized with 0.1%

Trixton X-100, and blocked with 1% BSA for 30 min before

staining with Alexa-Fluo 568-conjugated or FITC conjugated

phalloidin (molecular Probes, Eugene, OR). The slides were

mounted in prolong anti-fade reagent (Molecular Probes).

Random images of at least 25 cells from three or more

independent experiments were digitally captured using a Leica

TCS SP confocal microscope (UK imaging center). Individual cells

were outlined and total cell area was quantified using Metamorph

software.

Statistical analysis
Data are the mean6SE. Differences between groups were

determined by ANOVA followed by Turkey’s post hoc tests or

Student’s t-test as appropriate. The significance level was p,0.05.

Results

TSP1 deficiency does not affect the development of diet
induced obesity

To determine whether TSP1 deficiency affects the development

of obesity, male TSP1-/- mice and wild type controls were fed

with a low fat (LF, 10% fat) or high fat (HF, 60% fat) diet for 16

weeks. The body weight was measured weekly. Prior to the end of

the study, body composition was analyzed using EchoMRI. The

results showed that body weight and fat mass were similar between

the TSP1-/- and wild type control mice under LF or HF feeding

conditions (Figure 1). In addition, high fat feeding significantly

increased plasma triglyceride levels in WT and TSP1-/- mice.

However, plasma triglyceride levels were less in HF-fed TSP1-/-

mice than those in HF-fed WT mice (Table 2). Total cholesterol

levels were similarly increased in both HF-fed WT and TSP1-/-

mice (Table 2). We also measured metabolic parameters such as

food intake, oxygen consumption and physical activity, and did

not observe a difference between HF-fed WT mice and HF-fed

TSP1-/- mice (data not shown). Together, these data suggest that

TSP1 deficiency does not affect the development of obesity.

TSP1-/- mice exhibit improved glucose tolerance and
increased insulin sensitivity as compared to WT controls
under HF feeding conditions

Recent studies suggest that adipose TSP1 levels are inversely

associated with insulin sensitivity in obese subjects [27]. Although

our data indicates that TSP1 deficiency does not affect the

development of obesity, it is not known whether TSP1 deficiency

affects obesity associated insulin resistance. Therefore, fasting

blood glucose and insulin levels were measured. Glucose tolerance

test (GTT) and insulin sensitivity assay (ITT) were performed in

LF and HF fed mice. The results showed that fasting blood glucose

levels were similarly increased in both HF feeding TSP1-/- and

wild type control mice. HF feeding also increased the insulin levels

in both genotypes. However, the insulin was increased to a

significantly lower extent in TSP1-/- mice (Table 2). Further-

more, GTT and ITT tests demonstrated that HF-fed TSP1-/-

mice had improved glucose tolerance (Figure 2A) and insulin

sensitivity (Figure 2B).

Figure 1. TSP1 deficiency had no effect on obesity development in a high fat diet induced obese mouse model. Male TSP1-/- mice and
wild type littermate controls were fed LF or HF diet for 16 weeks. A): Graphs showing the increase of body weight over time on diets. B): Fat and lean
mass of different groups of animals. Data are represented as mean6SE (n = 10 mice/group).
doi:10.1371/journal.pone.0026656.g001
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HF-fed TSP1-/- mice have decreased macrophage
accumulation in adipose tissue and decreased
inflammation

Recent studies suggest that adipose tissue macrophages (ATMs)

play a critical role in obesity associated chronic inflammation and

insulin resistance [29]. Therefore, we determined the effect of

TSP1 deficiency on ATM accumulation in adipose tissue using

both immunohistochemical staining and real-time PCR. As shown

in Figure 3, high fat feeding significantly increased F4/80 positive

macrophage accumulation and crown like structure (CLS) in

adipose tissue of wild type mice. However, ATM accumulation

was increased to a lower extent in the HF-fed TSP1-/- mice. This

immunohistochemical staining result was confirmed by real-time

PCR showing that F4/80 mRNA levels were increased to a

significantly lower extent in HF-fed TSP1-/- mice (Figure 4). We

also observed this relationship in the expression of CD11c in the

adipose tissue of two genotypes. Again, obese TSP1-/- mice had

significantly lower CD11c levels in adipose tissue as compared to

obese WT control (Figure 4). CD11c is a marker for a subset of

proinflammatory immune cells that have been shown to play an

important role in obesity-induced insulin resistance [30]. Other

inflammatory cytokines such as iNOS, IL-6, TNF-a, PAI-1 and

TGF-b were also reduced in the adipose tissue from the obese

TSP1-/- mice (Figure 4). Furthermore, in WT mice, plasma PAI-

1 levels were significantly increased and IL-6 levels had a trend in

increase in HF-fed WT mice as compared to LF-fed WT mice.

However, in TSP1-/- mice, neither plasma PAI-1 levels nor IL-6

levels were changed in HF-fed TSP1-/- mice as compared to LF-

fed TSP1-/- mice. In addition, as compared to HF-Fed WT mice,

both PAI-1 and IL-6 levels were significantly decreased in HF-fed

TSP1-/- mice (Figure 5). Together, the data indicate that obese

TSP1-/- mice have significantly decreased macrophage accumu-

lation in adipose tissue and reduced systemic and local

inflammatory cytokine levels.

Macrophages from TSP1-/- mice have a reduced
inflammatory phenotype and migratory ability

Obesity is associated with increased systemic concentrations of

fatty acids and endotoxin (lipopolysaccharide) that are able to induce

an inflammatory response [31]. To further determine the role of

TSP1 in macrophage function, bone marrow derived cells were

isolated from wild type and TSP1-/- mice. These cells were

differentiated into macrophages and treated with lipopolysaccharide

(LPS) for 3 hr. Inflammatory cytokine gene expression was

determined by real-time PCR. There was a significant decrease in

the gene expression of IL-6, TNF-a, MCP-1 and PAI-1 in LPS

treated macrophages from TSP1-/- mice (Figure 6). This suggests

that the macrophages from TSP1-/- mice had a reduced

inflammatory phenotype. We also determined the effect of TSP1

on macrophage migration and adhesion. As shown in Figure 7A
and B, addition of purified TSP1 significantly increased migration

and adhesion of wild type macrophage cells. Macrophages from

TSP1-/- mice showed decreased migration and adhesion ability

compared to WT macrophages (Figure 7 C and D). The effect of

TSP1 on macrophage migration might be MCP-1 independent since

we did not find difference of MCP1 levels either in plasma or in

adipose tissue between WT and TSP1-/- mice (Figure 8). In

addition, CD36, a receptor of TSP1, may not be involved in TSP1

mediated macrophage migration (Figure 9). Together, the data

suggests that TSP1 is an important regulator of macrophage function.

Discussion

TSP1 is a multifunctional matricellular protein that is up-

regulated in inflamed adipose tissue of obese mice and humans

Table 2. Metabolic parameters of LF and HF feeding mice.

Parameters WT (LF) TSP1-/-(LF) WT (HF) TSP1-/- (HF)

Glucose(mg/dl) 13169.3 12269.5 163612* 16867.8‘

Insulin (ng/ml) 0.49960.03 0.42760.02 3.6461.13* 1.7260.25‘#

TG(mg/dl) 15.560.7 14.0362.32 34.1361.96* 24.5861.9‘#

TC (mg/dl) 102.162.7 77.166.9 151.5626.2 140.6614.5‘

NEFA (mEq/L) 1.0660.1 0.7861.08 0.7960.13 0.6460.02

TG: triglycerides; TC: total cholesterol. Data are means6SE; n = 6 mice/group.
*P,0.05 vs. WT (LF).
‘P,0.05 vs. TSP1-/- LF.
#P,0.05 vs. WT (HF).
doi:10.1371/journal.pone.0026656.t002

Figure 2. Obese TSP1-/- mice had improved glucose tolerance and insulin sensitivity. Male TSP1-/- mice and wild type littermate controls
were fed LF or HF diet for 16 weeks. Intraperitoneal glucose tolerance (A) and insulin sensitivity test (B) were measured. Changes in blood glucose
levels were monitored over time. Data are represented as mean6SE (n = 10 mice/group). *P,0.05 vs. WT HF group. AUC: area under the curve.
doi:10.1371/journal.pone.0026656.g002
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[26,27,32]. Previous studies suggest that TSP1 plays a role in

obesity and insulin resistance [27]. In the present study, we

examined the effect of TSP1 deficiency on the development of

obesity and insulin resistance in a high fat diet induced obese

mouse model. Using this diet-induced obesity paradigm, we first

demonstrate that TSP1 deletion reduces inflammation and

improves whole body insulin sensitivity in the obese state. The

improved glucose-insulin homeostasis is associated with signifi-

cantly decreased macrophage accumulation in adipose tissue and

decreased adipose inflammation. In vitro studies further support

the effect of TSP1 on macrophage mobility and function.

Together, these data demonstrate that TSP1 is a key regulator

of macrophage function and influences the inflammatory state,

contributing to obesity-associated insulin resistance.

Our current study demonstrates that TSP1 deficiency does not

affect the development of high fat diet induced obesity, which is in

agreement with the report from Voros et al [32]. However, in

contrast to their study, we found that the obese TSP1-deficient

mice have significantly improved glucose tolerance and insulin

sensitivity as compared to obese wild type control mice. This

discrepancy may be due to several factors including differences in

the length of feeding, age of mice, high fat diet composition, and

methods to measure glucose tolerance and insulin sensitivity. In

our study, we fed eight week old male TSP1deficient mice and

wild type littermates with low fat diet (LF, 10% kcal as fat;

D12450B; Research Diets, Inc, NJ) and a high fat diet from

Research Diet (HF, 60% kcal as fat; D12492, Research Diet, Inc,

NJ) for 16 weeks; whereas Voros et al fed five week old male TSP1

deficient mice or wild type mice with a high fat diet from Harlan

(TD 88137, containing 42% Kcal as fat) for 15 weeks. In addition,

we performed glucose tolerance and insulin sensitivity tests on

animals after 6 hr fasting followed by an intraperitoneal injection

of glucose (1 mg/g body weight) or insulin (0.5 unit/kg body

weight); whereas Voros et al performed these tests in mice after

overnight fasting followed by an intraperitoneal injection of

glucose at 3 mg/g body weight. A recent report from Andriko-

poulos et al indicated that different fasting periods and varying

concentrations of glucose injections can dramatically affect the

results of glucose tolerance test in mice [33]. Moreover, they

demonstrated that blood glucose concentrations after 6 hr fasting

are a better representation of blood glucose levels throughout the

day. Therefore, varying fasting times and/or glucose concentra-

tions may explain the difference between our study and Voros’

report.

One important finding of our study is that the obese TSP1

deficient mice have improved glucose tolerance and insulin

sensitivity. Importantly, improvement in glucose-insulin homeo-

stasis in obese TSP1 deficient mice was observed even though mice

exhibited similar levels of obesity as wild type controls. Moreover,

our results suggest that the improved metabolic profile of TSP1

deficient mice is partially due to the effect of TSP1 gene deletion

on inflammation. We found that systemic and adipose tissue

inflammation is significantly reduced in obese TSP1 deficient mice

compared to obese wild type controls. This is associated with

Figure 3. Obese TSP1-/- mice had decreased macrophage accumulation in adipose tissue. Representative images of epididymal fat tissue
from four groups of mice stained with anti F4/80 antibody to identify macrophage accumulation in fat tissue. The blue arrow head indicates a crown
like structure. The positive staining showed brown color. The scale bar represents 100 mm.
doi:10.1371/journal.pone.0026656.g003
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decreased accumulation of macrophages in fat tissue. Rodent and

human studies suggest that adipose tissue macrophages play a

critical role in obesity associated chronic inflammation and insulin

resistance [29]. Other studies found that obesity is strongly

associated with the accumulation of proinflammatory macrophag-

es (F4/80+ cells) that express CD11 c (a dendritic cell marker) in

adipose tissue [4]. These F4/80 + CD11c+ cells are bone marrow

derived adipose tissue macrophages that selectively localize to the

crown like structure surrounding dead adipocytes. These cells play

an important role in obesity associated metabolic profiles [30,34].

Our data suggest an important role of TSP1 in regulating CD11c

+ macrophage infiltration and inflammation based on the

following observations: 1) Immunohistochemical results showed

that the frequency of the crown like structure and F4/80 +
macrophages were dramatically decreased in adipose tissue of

obese TSP1 deficient mice; 2) Gene expression of F4/80 and

CD11c were significantly decreased in adipose tissue of obese

TSP1 deficient mice; 3) mRNA levels of proinflammatory

Figure 4. Obesity-induced inflammation was reduced in adipose tissue from TSP1-/- mice. Relative mRNA expression of macrophage and
inflammatory markers in epididymal fat tissue from WT or TSP1-/- mice fed a LF or HF diet was determined by real-time PCR. Data are represented as
mean6SE (n = 3 mice/group). *P,0.05 vs. WT HF group. **p,0.01 vs. WT HF group.
doi:10.1371/journal.pone.0026656.g004

Figure 5. Obesity induced systemic inflammation was reduced in TSP1-/- mice. Plasma IL-6, TNF-a, and PAI-1 levels were measured as
described in Material and Methods section. Data are represented as mean6SE (n = 6 mice/group). *P,0.05 vs. WT HF group.
doi:10.1371/journal.pone.0026656.g005

TSP1 Regulates Inflammation and Insulin Resistance
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Figure 6. Macrophages from TSP1-/- mice had a reduced inflammatory phenotype. Bone marrow derived macrophages (BMDM) from WT
or TSP1-/- mice were treated with or without LPS (100 ng/ml) for 3 hr. After treatment, the cells were harvested and relative gene expression of
inflammatory cytokines was determined by real-time PCR. Data are represented as mean6SE (n = 3 experiments). *P,0.05 vs. WT LPS group.
doi:10.1371/journal.pone.0026656.g006

Figure 7. Effect of TSP1 on macrophage migration and adhesion. Peritoneal macrophages were isolated from WT or TSP1-/- mice as
described in Materials and Methods Section. (A). Ability of WT macrophages to migrate toward purified TSP1 (5 mg/ml) or MCP-1 (50 ng/ml) using
modified Boyden Microchemotaxis Chamber. (B). Ability of WT macrophages to spread on LAB-TEK slides precoated with purified TSP1 (5 mg/ml) was
determined as described in Materials and Methods section. Cell surface area was quantified. (C). Migration of WT or TSP1-/- macrophages toward
MCP-1 (50 ng/ml) was determined. (D). Spreading of WT or TSP1-/- macrophages on fibronectin coated slides was determined and cell surface area
was quantified. The graph depicts the mean6SE of three separate experiments. * p,0.05.
doi:10.1371/journal.pone.0026656.g007
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cytokines such as IL-6, TNF-a, and PAI-1 were significantly

decreased in adipose tissue of obese TSP1 deficient mice; 4) Bone

marrow derived macrophages from TSP1 -/- mice exhibited a

reduced inflammatory phenotype.

Furthermore, our in vitro data demonstrate that TSP1

stimulates macrophage migration and adhesion. This result is in

agreement with previous studies showing that TSP1 can act as a

monocyte chemoattractant [20,21]. Previous studies have shown

that TSP1 did not stimulate MCP-1 release from differentiated

U937 human monocytic cells. However, they found that PAI-1

levels in monocytes or murine macrophages were significantly

increased by TSP1 [21], suggesting that the effect of TSP1 on

macrophage migration might be MCP-1 independent but PAI-1

dependent. Consistently, we did not find a difference of MCP1

levels in either plasma or adipose tissue between WT and TSP1-/-

mice (figure 8). By using CD36 deficient macrophages, we

demonstrate that CD36 (a receptor of TSP1) may not be involved

in TSP1 mediated macrophage migration (figure 9). In addition to

regulating macrophage migration, another study demonstrated

that TSP1 deficient murine macrophages exhibit an increased

capacity for FccR-mediated phagocytosis [35]. Therefore, in an

obese state, it is possible that TSP1-/- deficient macrophages could

rapidly clear dead adipocytes contributing to decreased inflam-

mation. TSP1 may also influence other immune cells such as T

cells contributing to obesity-induced adipose tissue inflammation.

Future studies will explore this possibility.

TSP1 is a major regulator for latent TGF-b activation in vitro as

well as in vivo [36,37,38,39,40]. Studies have demonstrated that

increased TGF-b activity and its downstream target PAI-1 are

associated with obesity, inflammation and insulin resistance

[41,42,43]. In this study, we found that TGF-b downstream

molecular-PAI-1 levels in plasma and adipose tissue were

significantly decreased in the obese TSP1-/- mice. This suggests

that decreased TSP1 dependent TGF-b activity may contribute to

the reduced systemic and local inflammation and improved insulin

sensitivity that was observed in the obese TSP1-/- mice. An

ongoing in vivo study is currently exploring this mechanism using

an antagonist of TSP1-dependent TGF-b activation.

Figure 8. MCP-1 levels in plasma and in adipose tissue from four groups of mice. (A). Plasma MCP-1 levels were measured using a mouse
adipokine assay kit (from Millipore); (B). MCP-1 mRNA levels in adipose tissue from four groups of mice were determined by real-time PCR. Data ate
represented as mean6SE (n = 3 mice/group).
doi:10.1371/journal.pone.0026656.g008

Figure 9. Effect of TSP1 on macrophage migration and adhesion from WT and CD36 -/- mice. Peritoneal macrophages were isolated from
WT or CD36 -/- mice. (A). Ability of macrophages to migrate toward purified TSP1 (5 mg/ml) was determined using modified Boyden Chamber. (B).
Ability of macrophages to spread on LAB-TEK slides precoated with purified TSP1 (5 mg/ml) was determined. Data ate represented as mean6SE of
three experiments.
doi:10.1371/journal.pone.0026656.g009
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In summary, results from this study demonstrate an important

role for TSP1 in regulation of macrophage function and in obesity-

induced inflammation and insulin resistance. TSP1 depletion in an

obese state prevents the accumulation of macrophages in adipose

tissue and pro-inflammatory cytokine expression in peripheral

tissues, resulting in improved insulin sensitivity. A direct effect of

TSP1 on macrophage motility and function was also demonstrated

in our current studies. The results of this study together with the

report of increased TSP1 in human obesity [27] suggest that TSP1

may be a potential target of the inflammatory and metabolic

complications of obesity.
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