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A B S T R A C T   

Many pathogenic bacteria use type IV secretion systems (T4SSs) to deliver effectors (T4SEs) into the cytoplasm of 
eukaryotic cells, causing diseases. The identification of effectors is a crucial step in understanding the mecha
nisms of bacterial pathogenicity, but this remains a major challenge. In this study, we used the full-length 
embedding features generated by six pre-trained protein language models to train classifiers predicting T4SEs 
and compared their performance. We integrated three modules into a model called T4SEpp. The first module 
searched for full-length homologs of known T4SEs, signal sequences, and effector domains; the second module 
fine-tuned a machine learning model using data for a signal sequence feature; and the third module used the 
three best-performing pre-trained protein language models. T4SEpp outperformed other state-of-the-art (SOTA) 
software tools, achieving ~0.98 accuracy at a high specificity of ~0.99, based on the assessment of an inde
pendent validation dataset. T4SEpp predicted 13 T4SEs from Helicobacter pylori, including the well-known CagA 
and 12 other potential ones, among which eleven could potentially interact with human proteins. This suggests 
that these potential T4SEs may be associated with the pathogenicity of H. pylori. Overall, T4SEpp provides a 
better solution to assist in the identification of bacterial T4SEs and facilitates studies of bacterial pathogenicity. 
T4SEpp is freely accessible at https://bis.zju.edu.cn/T4SEpp.   

1. Introduction 

Gram-negative bacteria employ more than one dozen secretion sys
tems to transport proteins out of the cell envelope [1,2]. Among them, 
the type IV secretion system (T4SS) is a complex molecular machine 
spanning both the inner and outer membranes, which translocates 
substrate proteins into eukaryotic host cells in only one step [3–9]. 
Protein-translocating T4SSs can be divided into two major families ac
cording to the composition of component elements: type IVA, exempli
fied by the A. tumfaciens VirB/VirD4 T4SS and H. pylori Cag T4SS, and 
type IVB, exemplified by Legionella Dot/Icm T4SS [9]. Substrate proteins 
translocated by T4SSs, also called effectors, play important roles in 
bacterial infections and pathogenicity [1,10,11]. 

Effectors of T4SSs (T4SEs) are transported directly or as complexes 
with DNA in many pathogenic bacteria, such as Helicobacter pylori, 

Legionella pneumophila, Bordetella pertussis, Coxiella, Brucella, and Bar
tonella [12–17]. T4SS-mediated entry of effector proteins into recipient 
cells is contact-dependent [18]. Once they enter the eukaryotic host 
cytoplasm, they disrupt signal transduction and cause various host dis
eases. Identifying these effectors is crucial for understanding the 
mechanisms of infection and pathogenicity caused by these bacteria. 
However, because the composition and sequences vary significantly, it is 
challenging to identify new T4SEs experimentally. Although many 
T4SEs have been identified and characterized in a few model organisms 
[19–22], the exact mechanism remains unclear. 

Since 2009, when the first machine-learning algorithms were intro
duced [23], tens of computational models have been developed to pre
dict T4SEs [2,23,24]. Early algorithms were mainly species-specific, 
such as those predicting T4SEs in Legionella pneumophila, Anaplasma 
marginale, and Anaplasma phagocytophilum [23,25–27]. In another study, 
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Wang et al. developed an SVM-based model, T4SEpre, which exhibited 
good overall and cross-species performance [28]. However, T4SEpre 
only considers the features buried in the C-terminal 100 amino acids 
[28]. Notably, Esner Ashari et al. conducted a thorough study, gener
ating four datasets for L. pneumophila, Coxiella burnetii, Brucella spp, and 
Bartonella spp, comprising T4SE and non-T4SE sequences [29]. They 
computed 51 features for all protein sequences in each dataset, 
encompassing amino acid composition, position-specific scoring matrix 
(PSSM), and binary peptide composition [29]. Their findings under
scored that the optimal feature set for the four pathogens included 
vector features such as PSSM, amino acid composition, and dipeptide 
composition [29]. Several other studies, especially ensemble models 
recently developed with multi-aspect features, found features from 
full-length proteins to improve performance [30,31]. Deep learning al
gorithms have also been applied for the prediction of T4SEs. For 
example, CNN-T4SE integrated three convolutional neural network 
(CNN) models to learn the features of amino acid composition, solvent 
accessibility, and secondary structure of full-length T4SEs [32]. 
T4SEfinder is a multi-layer perception (MLP) model that learns the 
features generated by a pre-trained BERT model [33], which can predict 
T4SEs accurately [34]. Notably, BERT is a natural language processing 
(NLP) model that is appealing in biology and other fields [35–40]. NLP 
models have been successfully applied to the prediction of protein 
subcellular localization [36,37], secondary structure [37,38,40], and 
others [39]. Besides T4SEfinder, NLP-based pre-trained transformers 
have also been used for the prediction of bacterial type III secreted ef
fectors and Sec/Tat substrates, both achieving superior performance 
[41,42]. 

Although machine learning strategies have achieved some success in 
the identification of T4SEs [2,23,28], the high false-positive rate has 
been a major challenge. To reduce the false-positive rate in predicting 
type III effectors, Hui et al. proposed a strategy to combine machine 
learning models with homology searching and integrate multiple mod
ules, considering the multi-aspect biological features of the effector 
genes [43]. To improve model performance, other models have also 
considered multiple features and a combination of homology-based 
strategies in the prediction of type III effectors [44–46]. For T4SE pre
diction, homology searching has also been applied independently. For 
example, S4TE integrates 13 sequence homology-based features, 
including homology to known effectors, homology to eukaryotic do
mains, presence of subcellular localization signals, and secretion signals, 
and develops a scoring scheme to predict T4SEs mainly from α- and 
γ-proteobacteria [47]. A recent iteration, S4TE 2.0, introduced a new 
module dedicated to locating phosphorylation (EPIYA-like) domains. 
Notably, S4TE 2.0 boasts enhanced homology search efficiency [48]. 
Despite the high precision, the sensitivity could be influenced by the 
large diversity of T4SE composition and sequences. Therefore, it could 
be a better solution to take advantage of both machine learning ap
proaches, especially ensembles, and homology-based methods, 
designing an integrated T4SE prediction pipeline that combines various 
models and comprehensively considers various characteristics of 
effector sequences. 

In this study, we proposed a hybrid strategy for predicting T4SEs. 
First, a homology searching strategy scanned both the global homology 
of full-length proteins and the local homology of domains to known 
effectors. Additionally, we retrained a machine learning module 
T4SEpre [28] with updated T4SE data and hand-crafted amino acid 
composition features in the C-termini. Furthermore, a group of transfer 
learning models was developed based on the features generated by 
various pretrained transformers. For the transfer learning models, we 
utilized the deep context protein language models ESM-1b, ProtBert, 
ProtT5-XL, and ProtAlbert to represent protein sequence features [37, 
38]. These features can characterize the intrinsic but unclear properties 
of protein sequences and the interactions between positions. Based on 
these feature representations, application models were developed to 
classify T4SEs using a deep neural network architecture with an 

attention mechanism. Finally, we integrated the homology-based mod
ules, machine learning models based on traditional handcrafted fea
tures, and transfer learning models with transformer-generated features 
into a pipeline, namely T4SEpp, which assembles the individual mod
ules to generate a prediction score reflecting the likelihood of a protein 
to be a T4SE. A web application for T4SEpp is also available via the link: 
https://bis.zju.edu.cn/T4SEpp. 

2. Results 

2.1. Sequence homology among verified effectors and the integrated 
prediction framework 

Experimentally verified effectors were collected from literature and 
databases, and 644 proteins were obtained after removing redundant 
sequences, representing the latest and most comprehensive list of 
experimentally verified T4SEs [31,49] (see Materials and Methods). We 
conducted an analysis of amino acid occurrences at each position in the 
C terminus of T4SS effectors. Utilizing the kpLogo program [50], we 
identified 100 C-terminal positions of T4SEs and control proteins 
(non-T4SEs), examining differences in amino acid preferences (Supple
mentary Fig. S3). Remarkably, we observed substantial residue enrich
ment at the C-terminus of T4SEs, particularly concentrated in the 
terminal 50 amino acid residues. Notably, the − 15 to − 9 region of the 
T4SEs C-terminus exhibited a significant enrichment of glutamate resi
dues, consistent with prior studies [28,31]. 

We proceeded to perform pairwise sequence alignments of full- 
length (FL) effector proteins or their C-terminal peptides of 100 or 50 
amino acids (C100 or C50, respectively) (Fig. 1A). For the FL proteins, 
472 non-homologous clusters were identified after homology filtering 
for the proteins with > 30% identity and > 70% length coverage of the 
pair of proteins (FL_70%_30%_ID) (Supplementary Fig. S4). However, 
for the C100 sequences, 247 were homologous to others with an identity 
of > 30%, and 469 non-redundant clusters were retained from these 
sequences after homology filtering (C100_30%_ID) (Supplementary 
Fig. S4). The reduction in the number of clusters indicated that the C- 
terminal 100 amino acids showed more homology than the full-length 
effector proteins, but there were no significant differences between 
them (C100_30%_ID, 469/629 vs., FL_70%_30%_ID, 472/644, EBT P =
0.609). The C50 sequences further reflected the typical C-terminal ho
mology between effectors. A total of 339 peptides were found to have 
homology with the others, while 398 clusters remained for these pep
tides after homology filtering (C50_30%_ID, 398/644 vs. C100_30%_ID, 
469/629, EBT P = 6.50e-04) (Supplementary Fig. S4). Rigorous ho
mology filtering is a prerequisite for the application of machine learning 
to sequence analysis and effector identification. Sequence homology is 
often measured using similarity (SIM) rather than identity, with a cut-off 
of ≤ 30% for proteins. Therefore, we also employed a loose measure of 
homology, defined as > 30% similarity, to examine sequence similarity 
between validated effectors. Surprisingly, the homology network 
involved all the 629 C100 peptides (C100_30%_SIM) (Supplementary 
Fig. S4). The results demonstrated that the validated T4SEs showed 
unexpectedly significant homology, especially for the C-terminus. 

Taking full advantage of the fragmental similarity between T4SEs, 
combined with machine learning techniques, a comprehensive predic
tion pipeline (T4SEpp) was designed (Figs. 1B, C, and D). Several ho
mology searching modules have been developed to detect full-length 
(flBlast), effector domain (effectHMM), and C-terminal signal region 
(sigHMM) homologs of known T4SEs. The previous machine learning 
model, T4SEpre, predicted T4SEs based on manually crafted C-terminal 
features [28] and was retrained with an updated dataset. Using the 
generative features from pre-trained transformers, we also developed a 
deep learning module, T4attention, incorporated with the Bi-Conv 
attention mechanism. Fig. 1E shows the framework of T4SEpp, 
combining the prediction scores of the homology search module (flBlast, 
effectHMM, and sigHMM), T4SEpre, and T4attention into a model to 
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generate the final score, which reflects the likelihood of an input protein 
to be an effector. 

2.2. T4SE families of signal sequences and functional domains 

According to the homology of the C50 peptides, the effectors could 
be clustered into 398 signal sequence families, including 93 multi- 
member and 305 singlet families (Supplementary Table S3). After the 

signal sequences (C50) were removed, 635 effectors with a length of 
≥ 30 amino acids remained, of which 268 were classified into 105 multi- 
member families and 367 represented singlet families (Supplementary 
Table S4). The sequences within each multi-component family showed 
striking similarity, and multiple positions appeared conserved, as shown 
for one example, sigFAM49 (Fig. 2A). The amino acid composition 
(AAC) showed apparent preference in multiple positions, e.g., leucine in 
positions 9, 24, and 37, serine in position 18, 30, and 64, and asparagine 

Fig. 1. Sequence homology among T4S effectors and an integrated prediction framework. (A) The workflow of homology sequence family identification and the 
construction of corresponding Hidden Markov Models (HMMs) for full-length (FL) effector proteins or their peptide fragments. Homologous family HMM models are 
constructed for C-terminal signal sequence (sigHMM), and effector (effectHMM) domains. (B) Homology-based modules developed for T4SEpp, based on the full- 
length effector proteins (flBlast) or signal sequence (sigHMM), and effector (effectHMM) domains. (C) T4attention is a deep learning framework incorporating 
Bi-Conv Attention. It utilizes a pretrained protein language model as input for feature extraction. (D) Procedure and datasets used for training and evaluation of the 
models. (E) Flowchart of the T4SEpp prediction program. The weighted sum of the prediction scores from each individual module is incorporated into the probability 
that a protein is a T4SE. For T4SEpre, we retrain using the updated T4SE dataset. 
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in position 11, 26, and 48, of sigFAM49 (Fig. 2A). Effectors of the same 
signal sequence family may belong to different effector functional 
domain families and vice versa. For example, six cytotoxin-associated 
gene A (CagA) effectors and two Legionella proteins contained the 
signal sequences of the same family (sigFAM49, Fig. 2B; Supplementary 
Table S3), but they also fell into three different effector functional 
domain families (effectFAM72 for all the CagAs, and effectFAM18 and 

effectFAM56 for the other two proteins; Fig. 2B; Supplementary 
Table S4). This could be related to frequent domain reshuffling events 
that have been reported in Legionella [51]. 

Furthermore, we searched for homologs of known T4SEs from the 
representative bacterial genomes downloaded from UniProt (8761 ge
nomes; Supplementary Table S5). In total, 258 protein-translocating 
T4SSs were detected from 227 bacterial strains distributed in their 

Fig. 2. Search for T4SS and effectors in the UniProt reference proteome based on sequence homology. (A) Multiple-sequence alignment (MSA) of a homologous 
cluster (i.e., sigFAM50) of T4SE signal sequences. Then, utilize the sequence logo of position-specific Amino Acid Compositions (AAC) corresponding to the 
alignment. The height of the amino acid in each position indicated the AAC preference. (B) Family clustering of the corresponding full-length effectors (FL Family) 
and effector domain (effectFAM) of sigFAM50 members. (C) Using the core protein components of T4SS to construct a Hidden Markov Model (HMM) to predict the 
distribution of T4SS in the UniProt reference proteome. (D) Three homologous units (sigHMM, effectHMM, and flBlast) were used to predict the potential T4SE in the 
UniProt reference proteome containing T4SS, respectively, where 100%_ID represents a known verified T4SE. 
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phyla (Proteobacteria, Fusobacteria and Nitrospirae), six classes (Alphap
roteobacteria, Betaproteobacteria, Epsilonproteobacteria, Gammaproteo
bacteria Fusobacteriia, and Nitrospira), 117 genera and 227 species 
(Fig. 2C, Supplementary Table S6). In these strains with T4SSs, 10,253 
proteins were detected with full-length or local homology to the known 
T4SEs using the individual homology searching units, and 1034 were 
identified by all the three units (Fig. 2D, Supplementary Table S7). 

2.3. Prediction of T4SEs with pre-trained transformer-based models 

Recently, protein language models have been successfully applied for 
structural prediction and sequence classification. In this research, we 
used six pre-trained models, ESM-1b, ProtAlbert, ProtBert-BFD, Prot
Bert-UniRef100, ProtT5-XL-BFD, and ProtT5-XL-UniRef50, to generate 
features; based on this, we developed deep learning models (T4atten
tion) based on Bi-Conv attention to classify T4SEs and non-T4SEs. The 
T4attention models based on different sequence embedding features 
were compared for performance based on a five-fold cross-validation 
strategy (Table 1). Generally, T4attention_ESM-1b performed the best, 
followed by T4attention_ProtT5-XL-UniRef50, and T4attention_Pro
tAlbert showed the poorest performance, according to Matthew’s cor
relation coefficient (MCC) and F1-score (Table 1). T4attention_ESM-1b 
not only reached the highest MCC and F1-score (0.828 and 0.869, 
respectively), but required the lowest computational resources (Sup
plementary Fig. S5). It was also noted that, for the same protein lan
guage model architecture, ProtBert or ProtT5-XL, for example, the 
generation of features from models pre-trained from various volumes of 
protein databases required similar computational resources, but the 
smaller database-based pre-trained models always generated features 
for subsequent T4attention models with better performance (MCC of 
T4attention_ProtBert vs. T4attention_ProtBert-BFD, 0.817 vs. 0.793; 
T4attention_ProtT5-XL-UniRef50 vs. ProtT5-XL-BFD, 0.812 vs. 0.804) 
(Table 1, Supplementary Fig. S5). The redundancy of protein sequences 
in the BFD dataset might lead to biases in model training and further 
compromise the performance of models addressing downstream tasks. 

We also evaluated the performance and generalization abilities of 
these models on an independent validation dataset. T4attention_
ProtBert showed the overall best performance, for which the MCC, F1- 
score, and accuracy reached 0.887, 0.900, and 0.976, respectively 
(Table 2). T4attention_ESM-1b unexpectedly showed poor performance 
(Table 2). Consistent with the cross-validation results, the ProtBert and 
ProtT5-XL models, based on the features generated by transformers pre- 
trained from a smaller database (UniRef100/UniRef50), showed better 

performance (Table 2, Supplementary Fig. S6). 
Considering the performance of models based on both cross- 

validation results and the independent validation dataset, as well as 
the requirement of computational resources, we integrated three 
models, T4attention_ESM-1b, T4attention_ProtBert, and 
T4attention_ProtT5-XL-UniRef50, into the pipeline to predict T4SEs. 

2.4. An integrated pipeline predicting T4SEs with largely improved 
performance 

In addition to the models based on the features generated by the 
transformer, we tested traditional machine learning models based on 
hand-crafted features. To this end, we fine-tuned two models of T4SEpre 
models (T4SEpre_psAac and T4SEpre_bpbAac) to learn the amino acid 
composition features in the C-termini of T4SEs [28]. Both models 
showed a reasonable performance in the prediction of T4SEs according 
to the cross-validation results or the independent validation dataset, 
although they were not comparable to the T4attention models (Tables 1 
and 2). 

To further improve the accuracy and reduce the false-positive rate 
for T4SE prediction, we assembled a unified pipeline, T4SEpp, inte
grating the homology searching modules, machine learning models 
based on hand-crafted features, and models based on transformer- 
generated features (Fig. 1). The integrated pipeline showed strikingly 
better performance than the individual models, with MCC values of 
0.917, 0.914, and 0.913 for T4SEpp_ESM-1b, T4SEpp_ProtBert, and 
T4SEpp_ProtT5-XL-UniRef50 based on the cross-validation evaluation 
and 0.883, 0.913, and 0.942 for the validation dataset, respectively 
(Tables 1 and 2). 

T4SEpp was also compared to other state-of-the-art (SOTA) T4SE 
prediction models, such as Bastion4 [31], OPT4e [26], CNNT4SE [32], 
and T4SEfinder [34]. Among these other models, Bastion4 showed the 
best performance, which was close to that of the T4attention models but 
was far inferior to the integrated T4SEpp (Table 2). 

Furthermore, we extracted effector proteins from the positive data
set, specifically those associated with the L. pneumophila Philadelphia-1, 
resulting in a total of 297 T4SEs. Employing T4SEpp for predicting the 
L. pneumophila Philadelphia-1, we compared its performance with 
candidate effector proteins predicted by two earlier studies that were 
focused on the same bacterial strain [27,48]. Notably, T4SEpp identified 
a minimum of 98.99% of experimentally confirmed T4SEs in the 
L. pneumophila Philadelphia-1 (98.99% for T4SEpp_ESM-1b, 99.66% for 
T4SEpp_ProtBert, and 100% for T4SEpp_ProtT5-XL-UniRef50) 

Table 1 
Performance comparison of the models in T4SEpp on 5-fold cross-validation dataset.  

Method ACC SN SP PR F1 MCC rocAUC AUPRC 

T4attention_ESM-1b 0.937 
± 0.004 

0.854 ± 0.018 0.964 
± 0.008 

0.884 
± 0.022 

0.869 
± 0.007 

0.828 
± 0.010 

0.953 ± 0.013 0.895 ± 0.013 

T4attention_ProtBert 0.932 ± 0.011 0.862 
± 0.032 

0.955 ± 0.006 0.862 ± 0.019 0.862 ± 0.024 0.817 ± 0.031 0.955 
± 0.013 

0.895 ± 0.020 

T4attention_ProtBert-BFD 0.922 ± 0.018 0.858 ± 0.029 0.950 ± 0.009 0.843 ± 0.016 0.832 ± 0.043 0.793 ± 0.046 0.944 ± 0.012 0.874 ± 0.026 
T4attention_ProtT5-XL- 

UniRef50 
0.931 ± 0.009 0.852 ± 0.030 0.956 ± 0.010 0.863 ± 0.025 0.857 ± 0.018 0.812 ± 0.024 0.949 ± 0.014 0.896 ± 0.010 

T4attention_ProtT5-XL-BFD 0.928 ± 0.004 0.850 ± 0.016 0.953 ± 0.002 0.851 ± 0.065 0.854 ± 0.006 0.804 ± 0.013 0.945 ± 0.016 0.885 ± 0.030 
T4attention_ProtAlbert 0.922 ± 0.013 0.858 ± 0.038 0.942 ± 0.007 0.827 ± 0.021 0.842 ± 0.027 0.790 ± 0.035 0.951 ± 0.017 0.871 ± 0.053 
T4SEpre_psAaca 0.843 ± 0.020 0.816 ± 0.030 0.871 ± 0.028 0.864 ± 0.027 0.839 ± 0.023 0.688 ± 0.043 0.911 ± 0.015 0.886 ± 0.010 
T4SEpre_bpbAaca 0.854 ± 0.024 0.818 ± 0.042 0.891 ± 0.010 0.883 ± 0.020 0.849 ± 0.028 0.712 ± 0.046 0.925 ± 0.020 0.896 

± 0.017 
T4SEpp_ESM-1b 0.970 

± 0.006 
0.905 
± 0.016 

0.991 
± 0.005 

0.969 
± 0.015 

0.936 
± 0.013 

0.917 
± 0.017 

0.993 ± 0.004 0.957 ± 0.041 

T4SEpp_ProtBert 0.969 ± 0.007 0.905 
± 0.016 

0.986 ± 0.006 0.965 ± 0.017 0.934 ± 0.014 0.914 ± 0.018 0.994 
± 0.003 

0.964 
± 0.027 

T4SEpp_ProtT5-XL-UniRef50 0.968 ± 0.003 0.905 
± 0.016 

0.989 ± 0.003 0.963 ± 0.007 0.933 ± 0.008 0.913 ± 0.010 0.993 ± 0.003 0.946 ± 0.042 

ACC, Accuracy; SN, sensitivity; SP, specificity; PR, precision; F1, F1-score; MCC, Matthews correlation coefficient; rocAUC, area under the receiver operating char
acteristic curve; AUPRC, precision recall rate curve; a, re-trained the model; data in table are represented as mean ± standard deviation (SD). The upper and lower 
horizontal lines represent the single prediction model and the integrated prediction model respectively. 
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(Supplementary Fig. S7). In contrast, S4TE v2 managed to identify only 
94.61% of T4SEs [48], and Esna Ashari et al. exhibited the lowest pro
portion of experimentally verified T4SEs, at 93.60% (Supplementary 
Fig. S7) [27]. These findings strongly suggest that T4SEpp excels in 
predicting effector proteins of the L. pneumophila Philadelphia-1, posi
tioning it with significant potential in the realm of single-strain 
prediction. 

2.5. Genome-wide screening of T4SEs in Helicobacter pylori and other 
bacteria 

H. pylori is a Gram-negative, spiral-shaped bacterium that colonizes 
the stomach in approximately half of the world’s population [52]. 
Although most individuals do not experience any adverse health out
comes attributable to H. pylori, the presence of these bacteria in the 
stomach increases the risk of developing gastric diseases [53–57]. 
H. pylori infection is also the strongest known risk factor for gastric 
cancer, the third leading cause of cancer-related death worldwide [58]. 
T4SS plays an important role in H. pylori [54–57]. However, to date, 
only one T4SE, CagA, has been identified for the T4SS in H. pylori [59]. 
Here, we applied T4SEpp to screen T4SE candidates from the proteins 
derived from the genome of H. pylori 26695, a model H. pylori strain 
(NCBI accession number: NC_000915.1). The three T4SEpp integrated 
models, T4SEpp_ESM-1b, T4SEpp_ProtBert, and T4SEpp_ProtT5-XL 
-UniRef50, predicted 56, 27, and 44 T4SE candidates, respectively, 
and 13 were shared by the prediction results of all the three models 
(Fig. 3A-B; Supplementary Table S6, S8). The 13 potential effector genes 
were scattered throughout the genome (Fig. 3B). Notably, HP_RS02695, 
which encodes the only known effector CagA, was among the 13 can
didates (Fig. 3B). 

Gene co-expression was analyzed for the 13 T4SE candidate genes in 
H. pylori 26695 using an RNA-seq dataset sampled from the strain 
collected under 12 different conditions [60]. Except for HP_RS06290, 
HP_RS03730, HP_RS06295, HP_RS00300, and HP_RS02820, the 
remaining seven genes showed a strong expression correlation with cagA 
expression (Fig. 3C). The genes co-expressed with cagA also showed a 
significant correlation with the expression of the core component genes 
of the Cag T4SS (Fig. 3C). Furthermore, we annotated 12 human pro
teins that showed experimentally verified interactions with CagA by 
literature search, including ASPP2, c-Abl, c-Met, Crk, E-cadherin, GSK-3, 
PAR1, PRK2, SHP-1, SHP-2, TAK1, and ZO-1 [61–72]. The interaction 
network between the 13 potential H. pylori 26695 T4SEs and the 12 
human proteins was inferred (Fig. 3D). Eleven of the candidate T4SEs 
showed potential interaction with at least one of the human proteins 

(Fig. 3D). Similar to CagA, HP_RS02225, HP_RS02255, HP_RS00300, 
HP_RS06295, and HP_RS03730 interacted with all 12 human proteins 
(Fig. 3D). Taken together, the proteins predicted by T4SEpp could 
potentially represented new T4SEs or may be closely related to the 
pathogenicity of H. pylori 26695. 

We also used T4SEpp to screen the T4SE candidates from the ge
nomes of 227 bacterial strains bearing T4SSs. T4SEpp_ESM-1b, 
T4SEpp_ProtBert, and T4SEpp_ProtT5-XL-UniRef50 detected 16,729, 
19,781, and 18,176 T4SE candidates respectively, with 12,553 common 
candidates co-predicted by all three T4SEpp models (Supplementary 
Table S9, Supplementary Fig. S8). 

2.6. Web server and implementation of T4SEpp 

To facilitate the implementation of T4SEpp, we developed a user- 
friendly web application (https://bis.zju.edu.cn/T4SEpp). The three 
T4SEpp integrated models, T4SEpp_ESM-1b, T4SEpp_ProtBert, and 
T4SEpp_ProtT5-XL-UniRef50 can be chosen and implemented by users. 
Both the overall prediction results and the results of the individual 
modules are displayed in table format, which can be downloaded and 
filtered easily. 

3. Discussion 

T4SS plays a crucial role in bacterial pathogenicity by secreting ef
fectors into host cells. L. pneumophila can translocate more than 300 
known effectors into human cells via the Dot/Icm T4SS system, causing 
legionellosis [74,75]. In H. pylori, CagA is the only known T4SE that can 
hijack multiple signaling pathways in gastric epithelial cells, leading to 
gastritis, gastric ulcer, and even gastric cancer [76,77]. Identifying the 
full repertoire of T4SEs in a pathogen is important to understand its 
pathogenic mechanisms. Computational methods can assist with the 
effective identification of new effectors [24]. However, the currently 
available T4SE prediction tools still show high false-positive rates [2]. 
To address this issue, we developed a unified T4SE prediction pipeline, 
T4SEpp, which includes homologous search modules, traditional ma
chine learning modules, and natural language processing-based mod
ules. T4SEpp outperformed other SOTA methods for predicting T4SEs, 
with improved sensitivity and specificity. Furthermore, we created a 
web server that conveniently implements the T4SEpp pipeline, 
providing the prediction results for each module. 

Although the component modules of T4SEpp can be used for T4SE 
prediction, they often show higher false-positive rates when used alone. 
This could be related to the low power of the individual dimensions of 

Table 2 
Performance comparison of the models in T4SEpp and other tools on the independent dataset.  

Method ACC SN SP PR F1 MCC rocAUC AUPRC 

T4attention_ESM-1b 0.929 0.850 0.940 0.654 0.739 0.707 0.955 0.907 
T4attention_ProtBert 0.976 0.900 0.987 0.900 0.900 0.887 0.994 0.973 
T4attention_ProtBert-BFD 0.935 0.950 0.933 0.655 0.776 0.757 0.979 0.937 
T4attention_ProtT5-XLUniRef50 0.959 0.900 0.967 0.783 0.837 0.816 0.971 0.889 
T4attention_ProtT5-XL-BFD 0.941 0.900 0.947 0.692 0.783 0.758 0.977 0.941 
T4attention_ProtAlbert 0.959 0.850 0.973 0.810 0.829 0.806 0.979 0.926 
T4SEpp_ESM-1b 0.976 0.850 0.993 0.944 0.894 0.883 0.953 0.928 
T4SEpp_ProtBert 0.982 0.900 0.993 0.947 0.923 0.913 0.965 0.950 
T4SEpp_ProtT5-XL-UniRef50 0.988 0.900 1.000 1.000 0.947 0.942 0.963 0.932 
T4SEfinder-TAPEBert_MLP 0.958 0.850 0.973 0.810 0.829 0.806 0.959 0.805 
T4SEfinder-hybridbilstm 0.941 0.800 0.960 0.727 0.762 0.730 0.945 0.852 
T4SEfinder-pssm_cnn 0.906 0.800 0.920 0.571 0.667 0.625 0.923 0.759 
Bastion4 0.965 0.900 0.973 0.818 0.857 0.838 - - 
CNNT4SE 0.953 0.700 0.987 0.875 0.778 0.758 0.943 0.860 
OPT4e 0.865 0.200 0.953 0.363 0.258 0.201 - - 
T4SEpre_psAaca 0.888 0.700 0.913 0.519 0.596 0.541 0.921 0.740 
T4SEpre_bpbAaca 0.829 0.700 0.847 0.378 0.491 0.427 0.895 0.730 

ACC, Accuracy; SN, sensitivity; SP, specificity; PR, precision; F1, F1-score; MCC, Matthews correlation coefficient; rocAUC, area under the receiver operating char
acteristic curve; AUPRC, precision recall rate curve; a, re-trained the model. The upper and lower horizontal lines respectively represent the prediction model con
structed in this article and the prediction model constructed by previous researchers. 
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the features. Specifically, T4SE signal sequences were considered to 
contain important common features guiding T4SE secretion and trans
location, which were used for effective T4SE prediction using tools such 
as T4SEpre [28]. However, the computational models based only on the 
signal sequences showed performance inferior to other models based on 
multiple-aspect features extracted from full-length proteins [31]. In this 
study, we discovered high sequence similarity in the C-terminal signal 
region among the proteins, without apparent homology to full-length 
effectors. Such undetected homology could have introduced bias and 
led to overfitting of various established machine learning algorithms 
and the discrepancy between the reported and actual accuracy of these 
methods. However, the C-terminal homology could also suggest the 
independent evolution of the signal sequences, and it could potentially 
be applied to facilitate the identification of new effectors [47]. 

In this study, three types of modules were integrated to predict 
T4SEs. Homology searching-based modules provide more accurate re
sults, but they also show a lower capacity to detect new effectors with or 
without remote homology. The re-trained T4SEpre modules focused on 
the important features of the C-terminal signal sequences of T4SEs. 
T4attention learns from the full-length effector proteins the features 
generated by protein language models (pLMs) pre-trained with large- 
scale protein databases. These pLM-based models can learn new, pre
vious unknown features that may involve position-position interactions 
and have demonstrated outstanding performance in the prediction of 
proteins with various biological functions, such as subcellular localiza
tion and secondary structure. We used multiple pLMs to build transfer 
learning models, most of which exhibited excellent performance in T4SE 
prediction. Interestingly, we noticed that the pre-trained pLMs based on 

Fig. 3. Whole-proteome detection for T4SEs in pathogenic bacteria (H. pylori 26695). (A) Prediction of potential T4SEs in the H. pylori 26695 proteome using three 
T4SEpp models. (B) Use the circos diagram to show the distribution of potential T4SEs predicted by the three T4SEpp models on the H. pylori 26695 chromosome 
(NC_000915.1), where T4SEpp_prob represents the mean value of the prediction results of the three T4SEpp models, and the outer circle of the circos diagram 
represents the three T4SEpp model predictions were all positive. (C) Under 12 different expression conditions of H. pylori 26695, the expression correlation of Cag 
T4SS core components with 12 potential T4SEs and CagA (HP_RS02695) predicted by three T4SEpp models were positive. (D) Prediction of potential interactions 
between 12 potential T4SEs in H. pylori 26695 and 12 human proteins using DeepHPI [73]. These 12 human proteins are known to interact with CagA 
(HP_RS02695). Nodes represent H. pylori 26695 (V-shape) or human (ellipse-shape) proteins. Edges represent protein–protein interactions. The nodes are colored 
according to their degrees. 
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the larger datasets did not generate better prediction performance. pLMs 
pre-trained on smaller datasets are more efficient. Therefore, the 
transfer models were trained with the pLMs based on smaller non- 
redundant protein datasets. T4SEpp, which integrated all three types 
of modules, significantly outperformed both individual modules and 
other similar applications. 

Considering the comprehensive performance of T4SEpp_ESM-1b, 
T4SEpp_ProtBert, and T4SEpp_ProtT5-XL-UniRef50 across various as
pects, we offer these three models on our web server for user selection. 
T4SEpp_ESM-1b excelled in 5-fold cross-validation, while T4SEpp_
ProtBert and T4SEpp_ProtT5-XL-UniRef50 demonstrated excellent pre
diction performance in independent datasets (Tables 1 and 2). This 
balanced approach for overall model performance ensures our tool’s 
ability to provide users with reliable T4SE prediction results under 
diverse conditions. Additionally, the flexibility of model selection is 
provided to cater to different researchers’ preferences based on their 
research questions and dataset characteristics, aiming to ensure that 
T4SEpp meets a wide range of research needs and exhibits maximum 
applicability in practical scenarios. 

Using T4SEpp, we analyzed the potential new T4SEs in both H. pylori 
and other strains bearing a T4SS. We identified 12 new T4SEs in 
H. pylori. We also identified 12,138 new T4SEs and 420 known T4SEs 
from 227 strains bearing a T4SS. The results suggested that there are 
many new effectors yet to be identified. 

Despite the significant performance improvement of T4SEpp, there 
remains a need to further improve the prediction of T4SEs. Other fea
tures that have been known to contribute to the recognition of T4SEs, 
such as the GC content of genomic loci, phylogenetic profiles, amino 
acid composition, dipeptide composition, consensus regulatory motifs in 
promoters, physicochemical properties, secondary structures, hydropa
thy, homology to eukaryotic domains, and organelle-targeting signals, 
have not been integrated into the current version of the model [24,29]. 
Novel features that could be further integrated to improve the model 
performance remain to be disclosed. The different types (IVA and IVB) of 
effectors, chaperone-dependent or chaperone-independent effectors, or 
species-specific effectors can also be modeled and predicted separately 
to make more accurate prediction [24]. 

4. Conclusion 

In this study, we introduced T4SEpp, an advanced tool for identi
fying bacterial Type IV Secretion System effectors (T4SEs). T4SEs play a 
critical role in bacterial infections, and T4SEpp significantly out
performs existing methods. Achieving a sensitivity of ~0.85 with ~0.99 
specificity on an independent dataset, it marks a major advancement. 
Additionally, our comprehensive search across bacterial species un
veiled 227 species spanning 3 phyla and 117 genera with T4SSs. T4SEpp 
identified 12,138 new putative T4SEs, enriching our understanding of 
bacterial virulence mechanisms. While T4SEpp is a remarkable 
achievement, future work could involve integrating more features and 
creating specialized models for different effectors. Overall, T4SEpp 
empowers researchers in the fight against infectious diseases and 
microbial-host interactions. 

5. Materials and methods 

5.1. Datasets 

The 390 T4SEs used by Bastion4 as the positive training dataset [31] 
and 540 T4SEs annotated in SecReT4 v2.0 [49] were collected and 
merged. Subsequently, we filtered out fragment proteins, proteins 
originating from Gram-positive bacteria, and certain inaccurately an
notated T4SEs. In total we got 644 non-identical, validated T4SEs. 
CD-HIT [78] was used to filter homology-redundant proteins with 
sequence identity ≥ 60%, generating 509 non-redundant T4SEs, which 
were used as the positive training dataset (Supplementary Fig. S1A, 

Fig. 1D). For the negative training dataset, we collected 1112 and 1548 
non-T4SE protein sequences from Bastion4 [31] and PredT4SE-stack 
[79], respectively. The same procedure was used to eliminate the 
sequence redundancy among the non-T4SEs and between the non-T4SEs 
and T4SEs in the positive training dataset, generating 1590 
non-redundant non-T4SEs (Supplementary Fig. S1A, Fig. 1D). An inde
pendent validation dataset was also prepared, for which the T4SEs were 
collected from the testing dataset of Bastion4 (30) and others (74) an
notated from literature published recently (Supplementary Table S1), 
and the 150 testing non-T4SEs of Bastion4 were also used as negative 
ones. CD-HIT was used to filter the redundant proteins with ≥ 60% 
sequence identity to the training proteins and among proteins in the 
independent validation dataset, resulting in 20 non-redundant T4SEs 
and 150 non-redundant non-T4SEs (Supplementary Fig. S1B, Fig. 1D). 

5.2. Genome-wide screening of protein-translocation T4SSs 

The conserved core component proteins were collected from four 
representative protein-translocation T4SSs, including the Agrobacterium 
tumefaciens VirB/VirD4 T4SS (inner membrane complex proteins VirB3, 
VirB6, VirB8, the N-terminal region of VirB10, and VirD4, and outer 
membrane complex proteins VirB7, VirB9, and a C-terminal domain of 
VirB10) [16], the Bordetella pertussis Ptl T4SS (inner membrane complex 
proteins PtlB, PtlE and PtlH, and outer membrane complex proteins PtlF 
and PtlG) [80], the Helicobacter pylori Cag T4SS (inner membrane 
complex proteins Cagα, Cagβ, and CagE, and outer membrane complex 
proteins CagX, CagY, CagT, CagM, and Cag3) [18], the Legionella pneu
mophila Dot/Icm T4SS (inner membrane complex proteins IcmB, IcmG, 
and DotB, and outer membrane complex proteins DotC, DotD, DotG, and 
IcmK) [16]. Hidden Markov Model (HMM) profiles were built using 
HMMER 3.1 for the T4SS component protein families [81]. Protein se
quences derived from the 8761 reference bacterial genomes curated in 
UniProt were scanned with HMMER and the HMM profiles to determine 
the distribution of homologs of T4SS core component proteins (Sup
plementary Table S5). 

5.3. Homology networks of the T4SE peptide sequences 

The sequences of 653 non-identical verified T4SE proteins were used 
to construct the homology networks. JAligner implemented the Smith- 
Waterman algorithm to determine the similarity between any pair of 
full-length effectors or peptide fragments of designated length (htt 
p://jaligner.sourceforge.net/). The identity and similarity percentages 
between any pair of sequences were used as measures to determine the 
homology level [43]. Networks were built and visualized using Cyto
scope v3.9.1 [82]. 

5.4. Homology-based T4SE detection modules 

Diamond blastp was used to determine the homology and cluster the 
full-length effector proteins [83] and to screen new full-length homologs 
(flBlast). Two proteins showing ≥ 30% similarity for ≥ 70% of the full 
length of either protein were considered to be full-length homologs [43, 
84]. The C-terminal 50-aa signal sequences of the verified effectors were 
clustered according to homology networks with 30% identity for 70% 
length aligned by JAligner. HMM profiles were built for each signal 
sequence family, and a sigHMM module was developed to screen for 
proteins with C-terminal sequences homologous to the profiles of known 
T4SE signal sequence families. The homology cutoff for HMM searching 
was optimized for each family, ensuring that all or most of the known 
effectors recalled and maintained a higher specificity. For effectHMM, 
we removed the C-terminal 50-aa signal from each known effector 
sequence, and the remaining peptide fragment with > 30-aa length was 
used for domain clustering. Pairwise alignment was repeatedly per
formed with BLAST between the domain sequences, and the cutoff for 
homology was optimized based on the average coverage of the aligned 
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length multiplied by the identity, that is, ≥ 10 [43]. The HMM profiles 
were built for the effector domain families, and effectHMM was devel
oped using a similar procedure as sigHMM to screen the proteins with 
homologous T4SE effector-domains. We used EBT to compare general 
homology between proteins [43,85]. 

5.5. Re-trained T4SEpre models with updated datasets 

We retrained the T4SEpre models (T4SEpre_psAac and T4SEpre_bp
bAac) using the new training datasets of T4SEs and non-T4SEs. The 
original T4SEpre procedure was followed for feature representation, 
parameter optimization, and model training [28]. Briefly, sequential 
amino acid, bi-residue and motif composition features, and 
position-specific amino acid composition profiles for the positive 
training dataset were represented for each C-terminal 100-aa sequence 
for the psAac model. For the bpbAac model, position-specific amino acid 
composition profiles of both the positive and the negative training 
datasets (Bi-Profile Bayesian features) were represented for each C-ter
minial 100-aa sequence. Support vector machine (SVM) models were 
trained for feature matrices. The kernel functions, that is, linear, poly
nomial, sigmoid, and radial base function (RBF), and corresponding 
parameters (cost and gamma) were optimized using a 5-fold 
cross-validation grid search strategy. sklearn v1.0.1 was used for 
implementing SVM model training and kernel/parameter optimization. 

5.6. The deep learning architecture of T4attention based on pre-trained 
protein language models 

5.6.1. Input embeddings 
Frozen embeddings were extracted directly from protein language 

models (pLMs) without fine-tuning the training data. Four different 
basic LMs were used in this study, and six different pLMs were pre- 
trained with different datasets. The basic LMs include: (i) “ESM-1b” 
[38], which is a Transformer model, (ii) "ProtBert" [37], which is a 
BERT-based encoder model [35], generating two pLMs pre-trained on 
BFD [86] and UniRef100 [87] data, respectively, (iii) ProtT5-XL [37], 
which is an encoder model based on T5 [88], generating two pLMs 
pre-trained on BFD and UniRef50, respectively, and (iv) ProtAlbert [37], 
which is an encoder model based on Albert [89] and pre-trained only 
with UniRef100. 

5.6.2. Optimization strategy 
We used a BERT-like optimizer AdamW and a Cosine Warm-up 

strategy [35] to optimize the loss of the learning model. The initial 
learning rate was set to 0.0001, the batch size was set to 18, and the 
warm-up steps were set to 10. An early stopping strategy was applied to 
monitor the validation ACC with 30 epochs to prevent overfitting. To 
address the challenges of imbalanced positive and negative samples and 
the difficulty of training individual samples in deep learning model 
training, we adopted the Focal Loss method to mitigate the issue of 
gradient descent difficulty [90]. Focal Loss adjusts the hyperparameter γ 
(default γ = 2) based on the weighted cross-entropy loss, influencing the 
shape of the curve. 

FL(pt) = − αt(1 − pt)
γlog(pt)

αt: Weight of the sample t, 
pt: Binary cross entropy loss. 
Consequently, as pt approaches 1, the loss decreases, diminishing the 

impact of easily classifiable samples, whereas as pt approaches 0, the loss 
increases, amplifying the influence of hard-to-classify samples. In 
essence, Focal Loss diminishes the emphasis on easily classifiable sam
ples and amplifies the significance of challenging samples, enhancing 
the model’s capability to handle difficult instances. 

5.6.3. T4attention model 
The input to T4attention (Fig. 1C, Supplement Fig. S2) is a protein 

embedding E0 ∈ ℝn×d0 , where n is the sequence length and d0 is the size 
of the embedding (depending on the feature extraction model). 
T4attention is a model based on Bi-Conv attention. In the protein 
embedding direction, average pooling is performed directly, and the 
input is transformed by two separate 1D convolutions, where the 1D 
convolution serves as the attention coefficient e and value v for 
computing the embedding dimension, e, v ∈ ℝd1 . Thus, we obtained the 
feature representation of the embedding dimension x = softmax(e) × v. 
In the direction of the protein sequence, we randomly intercept the 
length of m in the length direction of the protein-embedding sequence 
such that the protein embedding becomes E1 ∈ ℝm×d0 . Similar to the 
convolutional attention calculation in the protein embedding direction, 
the attention coefficient e’ and value v’ are obtained, e′, v′ ∈ ℝm×d1 . The 
difference is that the direction of the convolution is in the direction of 
the sequence length, so that we can obtain the feature representation of 
the protein sequence direction and converge according to the sequence 
length direction by x′ = ∑m

i softmax(e′) × v′. The convolution attention 
results of the embedding direction and the protein sequence direction 
are merged and passed through the LayerNorm and the residual 1D 
convolution, and the class probabilities are obtained through the two- 
layer multi-layer perceptron (MLP), p(c|x) =

softmax(MLP(Conv(x+x′)+(x+x′) )), where c indicates the category of 
the output (i.e., T4SE or nonT4SE). 

T4attention was developed using PyTorch v1.10.1. The models were 
trained and evaluated with 24-GB of memory and an NVIDIA GeForce 
RTX 3090 GPU for acceleration. 

5.7. Integrated T4SE prediction model 

T4SEpp is a non-linear model that integrates multiple prediction 
modules developed or re-trained in this study, including homology- 
searching modules for full-length or fragmented effector proteins, 
traditional machine-learning modules with hand-crafted features, and 
the attention-based transfer learning modules using the features gener
ated by pre-trained protein language models. For any prediction mod
ule, the factor was set to 1.0 if there was a positive prediction result, and 
0 otherwise. We assigned initial weights to each module within the 
range of 0 to 0.5 based on empirical considerations. To determine the 
optimal combination of weights, we employed a grid search strategy 
during 5-fold cross-validation (Fig. 1D). The grid search involved sys
tematically exploring different weight combinations within predefined 
ranges, allowing us to evaluate the performance of the model across 
various configurations. This iterative process helped identify the set of 
weights that maximized the predictive accuracy of the T4SEpp inte
grated model. The early stopping strategy was similar to that used for 
T4attention. The final optimal parameters are shown in Fig. 1E. 

5.8. Assessment of model performance 

Measures including accuracy (ACC), sensitivity (SN), specificity (SP), 
precision (PR), F1-score, Matthew’s correlation coefficient (MCC), the 
area under the receiver operating characteristic curve (rocAUC), and the 
precision recall rate curve (AUPRC) were calculated to evaluate and 
compare the performance of models predicting T4SEs. Some of these 
measures are defined as follows: 

ACC =
TP + TN

TP + TN + FP + FN  

SN =
TP

TP + FN  

SP =
TN

TN + FP  
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PR =
TP

TP + FP  

F1 − score =
2 × TP

2 × TP + FP + FN  

MCC =
(TP × TN) − (FP × FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)

√

where TP, TN, FP, and FN represent the number of true positives, true 
negatives, false positives, and false negatives, respectively. 

5.9. RNA-seq analysis 

RNA-seq datasets of H. pylori 26695 under different conditions were 
downloaded from the NCBI GEO DataSets database with accessions 
GSE165055 and GSE165056 [60]. After removing the adapters and 
low-quality sequences with Trimmomatic v0.39 [91], the cleaned reads 
were mapped to the H. pylori 26695 reference genome (NC_000915.1) 
using READemption (Version 2.0.0) [92]. The annotated genes were 
then quantified and analyzed. Protein-Protein Interaction (PPI) net
works were built and visualized using Cytoscope v3.9.1 [82]. 

Availability 

The online version of the T4SEpp is freely accessible at https://bis. 
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