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Abstract: There is a rising incidence of non-alcoholic fatty liver disease (NAFLD) as well as of
the frequency of Hepato-Cellular Carcinoma (HCC) associated with NAFLD. To seek for putative
metabolic pathways specific of the NAFLD etiology, we performed comparative metabolomics
between HCC associated with NAFLD and HCC associated with cirrhosis. The study included
28 pairs of HCC tissue versus distant Non-Tumoral Tissue (NTT) collected from patients undergoing
hepatectomy. HCC was associated with cirrhosis (n = 9), normal liver (n = 6) and NAFLD (n = 13).
Metabolomics was performed using 1H-NMR Spectroscopy on tissue extracts and combined to
multivariate statistical analysis. In HCC compared to NTT, statistical models showed high levels
of lactate and phosphocholine, and low level of glucose. Shared and Unique Structures (SUS)
plots were performed to remove the impact of underlying disease on the metabolic profile of HCC.
HCC-cirrhosis was characterized by high levels of β-hydroxybutyrate, tyrosine, phenylalanine
and histidine whereas HCC-NAFLD was characterized by high levels of glutamine/glutamate.
In addition, the overexpression glutamine/glutamate on HCC-NAFLD was confirmed by both
Glutamine Synthetase (GS) immuno-staining and NMR-spectroscopy glutamine quantification. This
study provides evidence of metabolic specificities of HCC associated with non-cirrhotic NAFLD
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versus HCC associated with cirrhosis. These alterations could suggest activation of glutamine
synthetase pathway in HCC-NAFLD and mitochondrial dysfunction in HCC-cirrhosis, that may be
part of specific carcinogenic processes.

Keywords: hepato-cellular carcinoma; 1H-NMR spectroscopy; metabolomics; cirrhosis; NAFLD;
metabolites; biomarkers; glutamine synthetase

1. Introduction

Liver cancer is the sixth most frequently diagnosed cancer worldwide, and the second leading
cause of cancer death [1]. Hepatocellular Carcinoma (HCC) mostly develops in patients with cirrhosis,
a well-known precancerous condition.

Since the past 20 years, the increasing incidence of HCC is suspected to be related to the increasing
burden of Non-Alcoholic Fatty Liver Disease (NAFLD) [2,3]. NAFLD is closely linked to obesity, type 2
diabetes, dyslipidemia and insulin resistance, and considered as the liver manifestation of the metabolic
syndrome [4]. NAFLD refers to a body of liver diseases including simple steatosis, steato-hepatitis,
fibrosis and cirrhosis. NAFLD has become the most common liver disorder in industrialized countries,
affecting up to 20% of the adult population in western countries.

Several studies report a high proportion (up to 40%) of non-cirrhotic NAFLD, as the underlying
liver disease, in patients with HCC, at odds with the paradigm that cirrhosis is a necessary step in
carcinogenesis [2,5–7]. Indeed, recent epidemiological data suggest that carcinogenesis might occur in
NAFLD without being mediated by fibrosis [5].

Most of NAFLD patients are asymptomatic and early detection of HCC in this context is a major
challenge. More investigation is needed to identify pro-carcinogenic factors in NAFLD without fibrosis.

The putative pathways linking steatosis and steato-hepatitis to HCC have been little investigated.
Potential carcinogenic mechanisms include inflammation with increased release of tumor necrosis
factors (TNF)-alpha and interleukin 6, altered release of adipokines through insulin resistance and
inflammation, lipotoxicity inducing oxidative stress and DNA damage [8,9].

Metabolomics is being widely used to gain insights into carcinogenesis mechanisms. Most
metabolomics studies of HCC have been applied to serum and urine of patients, using Mass Spectrometry
or Nuclear Magnetic Resonance (NMR) spectroscopy [10–12]. At present, no metabolomics study has
investigated HCC histologically proved to be associated to NAFLD.

The aim of our study is to propose a specific metabolic profile of HCC depending of the underlying
disease: cirrhosis versus NAFLD.

In this study, we performed 1H-NMR spectroscopy-based metabolomics of HCC tissue in patients
with non-cirrhotic NAFLD or cirrhosis, to seek for specific features of HCC in both underlying diseases.

We show that HCC associated with cirrhosis specifically exhibits high levels of β-hydroxybutyrate
(β-HB), tyrosine (Tyr) and phenylalanine (Phe), histidine (His) whereas HCC associated with
non-cirrhotic NAFLD specifically exhibits high level of glutamine/glutamate. This data is correlated
with immunohistochemical expression of Glutamine Synthetase. All together, these observations may
reflect specific carcinogenic processes.

2. Results

2.1. Patients

Our HCC cohort (n = 28) included 23 males and 5 females with a mean age of 69 years. Among
the 28 HCC, 9 were associated with cirrhosis (HCC-cirrhosis), and 19 associated with non-cirrhotic
liver tissue (HCC-Non cirrhosis). Histological examination indicated that among the 19 patients with
HCC-Non-cirrhosis, 6 had a normal Non Tumoral Tissue (NTT) and 13 had NAFLD (HCC-NAFLD),
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including 7 steatosis and 6 Non Alcoholic Steato-Hepatitis (NASH). Clinical, biological, histological
features of the 2 groups (HCC-Cirrhosis and HCC-NAFLD) are reported in the Table 1 Serum AFP level
<20 ng/mL was found in 85% of patients with HCC-NAFLD versus 45% in patients with HCC-cirrhosis
(p = 0.047).

Table 1. Clinical, biological and pathological characteristics of 2 groups of patients.

Parameter HCC-Cirrhosis HCC-NAFLD p-Value

Number of patients - 9 13 -

Sex Male 8 (89%) 11 (85%) 0.77

Sex
Female 1 (11%) 2 (15%) 0.77
Median [IQR] 68 [64; 69] 67 [65; 71] 0.84
Hepatitis B and C Viruses 2 (22%) - -

Etiology Alcohol 0 (0%) - -

Etiology

Metabolic Syndrome 3 (33%) - -
Metabolic Syndrome + Alcohol 4 (45%) - -
Yes 7 (78%) 10 (77%) 0.96
Waist Circumference > 94 cm (M) > 80 cm (F) 8 (89%) 9 (69%) 0.28

Metabolic Syndrome *
(IDF/AHA/NHLBI 2009) Triglycerides > 1.5 g/L or treatment 2 (22%) 3 (23%) 0.96

Metabolic Syndrome *
(IDF/AHA/NHLBI 2009)

HDL-cholesterol < 0.4 g/L (M) < 0.5 g/L(F) 5 (56%) 7 (54%) 0.94
Blood Pressure > 135/80 mmHg or
hypertension treatment 5 (56%) 10 (77%) 0.29

Fasting Glucose > 1 g/L or diabetes treatment 8 (89%) 9 (69%) 0.28
18.5–24.9 1 (11%) 1 (8%) 0.78
25–29.9 5 (56%) 7 (54%) 0.94
30–34.9 3 (33%) 5 (38%) 0.81

Body Mass Index 35–40 0 (0%) 0 (0%) -

Body Mass Index

<20 ng/mL 4 (45%) 11 (85%) 0.047
20–200 ng/mL 3 (33%) 2 (15%) 0.96
>200 ng/mL 2 (22%) 0 0.075
Well 2 (22%) 5 (38%) 0.42

Serum AFP level Moderately 7 (78%) 7 (54%) 0.25

Serum AFP level Poorly 0 (0%) 1 (8%) 0.39

Differentiation
(WHO Classification) - - - -

Significant differences: p < 0.05 (Fisher test or Mann–Whitney test). * Metabolic syndrome: No Data for 3 patients.
AFP: Alpha foeto protein; HDL: high density lipoprotein cholesterol.

2.2. Metabolomics Comparison of HCC to NTT

We compared the overall metabolic profile of HCC to NTT from aqueous and lipid extracts.
Tissue spectra of HCC and NTT groups were separated by OPLS-DA with aqueous extract data
and lipid extract data (Figure 1A,C respectively). Multivariate analysis showed that HCC tissue is
characterized by high level of lactate (Lac) (p (corr) > 0.7), phosphocholine (PC), phosphoethanolamine
(PE), glutamine (Gln) (p (corr) > 0.5) and low level of glucose (Glc) and monounsaturated fatty
acids (MUFA) (p (corr) > 0.7) (Figure 1B,D). Forty-five identified metabolites were quantified from
aqueous and lipid extracts, according a technique derived from [13]. Univariate analysis showed that
23 metabolites had a significant variation (Table 2). OPLS-DA was performed with the quantified
metabolites (data no shown). As expected, the S-plot confirmed the value of Lac as a biomarker of HCC.
Analysis of quantified metabolites has the advantage of applying the same weight to each metabolite.
By removing heavily contributive metabolites, such as lactate, the PC became a second biomarker of
HCC tissue (data not shown).
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of 0.97, predictability (Q2Y) of 0.50. The buckets are displayed according to the colored scale of 

correlation coefficient p (corr) (**: p (corr) > |0.7|; *: |0.5| < p (corr) < |0.7|).  

Table 2. Metabolites quantification, median variation in HCC tissue compared to NTT. Significant 

differences p < 0.005 (Wilcoxon Test). 

 
Metabolic 

Subset 

Range of 

Integrated 

Signal (ppm) 

Abbreviation Metabolite 
Median Change  

[IQR] HCC/NTT % 
p-Value 

AQUEOUS 

PHASE 

Glycolysis/ 

TCA Cycle 

Derivatives 
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1.43–1.49 Ala Alanine 11 [−18; 50] 0.49 

1.90–1.93 Ace Acetate 26 [−7; 135] 0.025 

2.38–2.41 Suc Succinic Acid −29 [−63; −6] 0.001 

4.61–4.67 Alpha-Glc -glucose −48 [−71; −25] 0.001 
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Figure 1. Discrimination of Hepato-Cellular Carcinoma (HCC) tissue from Non-Tumoral Tissue (NTT):
aqueous and lipid metabolites analysis. Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA)
score scatter plot and loading S-line plot of HCC versus NTT from aqueous extract data (A,B) and lipid
extract data (C,D). On the score plots, each dot corresponds to a spectrum colored according to histology
(black for HCC; White for NTT). The constructed model displays a good separation between HCC
and NTT. On the loading plot, variations of bucket intensities are represented from 0 to 9 ppm for
aqueous extract data and from 0 to 6 ppm for lipid extract data. Positive signals correspond to the
metabolites present at higher concentrations in HCC. While negative signals represent the metabolites
present at higher levels in NTT. The first model (A,B) was built with 1 predictive and 1 Y-orthogonal
components and exhibited an explained variance: (R2X) of 0.61, (R2Y) of 0.53, predictability (Q2Y)
of 0.40. The second model (C,D) was built with 1 predictive and 6 Y-orthogonal components and
exhibited an explained variance: (R2X) of 0.55, (R2Y) of 0.97, predictability (Q2Y) of 0.50. The buckets
are displayed according to the colored scale of correlation coefficient p (corr) (**: p (corr) > |0.7|;
*: |0.5| < p (corr) < |0.7|).
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Table 2. Metabolites quantification, median variation in HCC tissue compared to NTT. Significant
differences p < 0.005 (Wilcoxon Test).

Metabolic
Subset

Range of
Integrated

Signal (ppm)
Abbreviation Metabolite Median Change

[IQR] HCC/NTT % p-Value

AQUEOUS
PHASE

Glycolysis/TCA
Cycle

Derivatives

1.30–1.35 Lac Lactate 49 [19; 113] <0.0001
1.43–1.49 Ala Alanine 11 [−18; 50] 0.49
1.90–1.93 Ace Acetate 26 [−7; 135] 0.025
2.38–2.41 Suc Succinic Acid −29 [−63; −6] 0.001
4.61–4.67 Alpha-Glc α-glucose −48 [−71; −25] 0.001
5.20–5.28 Beta-Glc β-glucose −58 [−77; −23] <0.0001
5.38–5.43 Glycogen Glycogen −23 [−39; 41] 0.47
6.49–6.53 Fum Fumarate −11 [−37; 78] 0.99

Ketone bodies 1.18–1.21 β-HB β-hydroxybutyrate 8 [−19; 158] 0.2

Glutamine
Derivatives

2.28–2.39 Glu Glutamate 19 [−13; 170] 0.019
2.41–2.51 Gln Glutamine 70 [9; 112] 0.0001

Amino Acids

0.93–0.97 Leu Leucine 46 [15; 92] 0.007
1.02–1.04 Val Valine 52 [19; 102] 0.002
7.16–7.20 Tyr Tyrosine 50 [−2; 145] 0.007
7.39–7.44 Phe Phenylalanine 43 [−16; 85] 0.009
7.07–7.11 His Histidine 21 [−27; 155] 0.09

Amino Acid
Derivatives

2.98–3.07 Creat Creatine −18 [−51; 8] 0.052
2.70–2.73 Sar Sarcosine 27 [−2; 163] 0.011
2.50–2.54 GSX Total Glutathione −17 [−54; 86] 0.8
3.52–3.56 Gly Glycine −44 [−65; −18] 0.08
8.43–8.46 For Formate 27 [−12; 139] 0.071

Nucleotides 5.73–5.83 Uracil Uracil 138 [24; 381] <0.0001

Vitamines and
Co-factors

4.49–4.53 Asc A Ascorbic acid 16 [−16; 43] 0.047
8.40–8.43 NAD NAD 50 [−3; 86] 0.024

Phospholipid
Derivatives

3.18–3.20 Cho Choline 36 [−9; 110] 0.013
3.21–3.22 PC Phosphocholine 59 [−12; 96] 0.002
3.22–3.23 GPC Glycerophosphocholine 0 [−26; 24] 0.598
3.99–4.02 PE Phosphoethanolamine 88 [−25; 284] 0.01

LIPID
PHASE

Phospholipid
Derivatives

3.06–3.09 MethylPtEth Methyl-phosphatidylethanolamine 0 [0; 100] 0.19
3.12–3.18 PtEth Phosphatidylethanolamine 3 [−21; 33] 1

3.22–3.29 PtCho+SM Phosphatidylcholine +
Sphingomyeline 13 [−4; 46] 0.06

Cholesterol
0.70–0.75 T Chol CH3 Total cholesterol CH3 29 [−8; 116] 0.025
1.03–1.05 E Chol Esterified cholesterol −14 [−42;15] 0.07

Fatty Acids
0.86–0.96 T FA Total fatty acids (terminal CH3) 1 [−3; 6] 0.2
1.59–1.70 β-CH2 FA Fatty acids (β-CH2) −7 [−15; 2] 0.038
2.32–2.41 α-CH2 FA Fatty acids (α-CH2) −3 [−11; 10] 0.82

Saturated Fatty
Acids 1.24–1.44 Sat FA Saturated FA -(CH2)n- −1 [−4; 4] 0.9

Unsaturated
Fatty Acids

2.02–2.12 MUFA Allylic -CH2-CH=CH
Mono-Unsaturated fatty acids −13 [−27; −1] 0.002

5.23–5.53 UFA Olefinic -CH=CH- FA −6 [−15; 6] 0.2

1.70–1.74 Ara A CH2 arachidonic acid and
eicosapentaenoic acid −66 [−76; −35] 0.0001

2.77–2.83 Lin A CH2 linoleic acid −19 [−36; −7] 0.0001

2.85–2.95 PUFA Diallylic CH2 Polyunsaturated
fatty acids =CH-CH2-CH= 4 [−17; 21] 0.71

TAG 4.15–4.25 TAG Triacylglycerol −6 [−14; 6] 0.17

Glycero PL 3.99–4.10 GPL Glycerophospholipid backbone
CH2-OP −2 [−24; 30] 0.62

2.3. Metabolites Quantification

Metabolite signals were quantified in all tissue spectra. For quantitative metabolomics profiling,
spectra were imported into MestReNova and assigned signals were integrated. Quantification was
performed by relating metabolite signals to a residual protein signal (lysine at 2.99 ppm), according to
a technique derived from [13]. The Wilcoxon test was used to compare NTT and tumour tissues. In the
comparison of metabolites levels between the groups of HCC tissue, Kruskal–Wallis test with Dunn’s
correction was used (XLSTAT.V 2014.5.02, Addinsoft).
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2.4. Comparison of HCC-NAFLD to HCC-Cirrhosis

NMR spectra of aqueous extracts of HCC associated with non-cirrhotic NAFLD (n = 13) was
compared to those of HCC with cirrhosis (n = 9) (Figure 2A,B). Lac (1.30–1.35 ppm) and Glc
(4.61–4.67 ppm) did not contribute to the discrimination since these signals were common to both
HCC groups. Among signals contributing to the discrimination, 2 metabolites were identified: β-HB
(1.18 ppm) and Gln (2.45 ppm). β-HB (p (corr) = 0.58) was highly expressed in HCC-cirrhosis whereas
Gln (p (corr) = 0.45) was highly expressed in HCC-NAFLD (Figure 2B).
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Figure 2. Discrimination of HCC-NAFLD from HCC-Cirrhosis: aqueous metabolites analysis.
OPLS-DA discriminated HCC-NAFLD (HCC-NAF) from HCC-cirrhosis (HCC-CIR) with 1 predictive
and 5 Y-orthogonal components and exhibited an explained variance: (R2X) of 0.46, (R2Y) of 1,
predictability (Q2Y) of 0.30. (A) Score plot: each dot corresponds to a spectrum colored according
to histology (black for HCC-cirrhosis; Grey for HCC-NAFLD). The constructed model displays a
good separation between the spectra of the 2 groups. (B) Loading S-line plot: variations of bucket
intensities are represented using a line plot from 0 to 9 ppm with a color scale for correlation coefficient.
*: |0.5| > p (corr) > |0.4|; **: p (corr) > |0.5|.

Shared and Unique Structures (SUS) plots were performed to remove the impact of underlying
disease on the metabolic profile of HCC and thus, to reveal specific features of HCC-NAFLD and
HCC-cirrhosis. OPLS-DA models were obtained for HCC-cirrhosis and HCC-NAFLD and compared
with a NTT group (cirrhosis or NAFLD tissues). Two models were generated with HCC-NAFLD
and HCC-cirrhosis in comparison with their own control groups (NTT cirrhosis (n = 9) and NTT
NAFLD (n = 13)). HCC associated with normal tissue were excluded (n = 6). OPLS-DA discriminated
HCC-Cirrhosis from Cirrhosis tissue (R2X = 0.44, Q2Y = 0.18) and HCC-NAFLD from NAFLD tissue
(R2X = 0.35, Q2Y = 0.42) (Figure 3).
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Figure 3. Discrimination of HCC-NAFLD and HCC-Cirrhosis from their own NTT: aqueous metabolites
analysis. (A,B) OPLS-DA discriminated HCC-CIR from Cirrhosis tissue (CIR) with 1 predictive and
1 Y-orthogonal components and exhibited an explained variance: (R2X) of 0.44, predictability (Q2Y)
of 0.18. (C,D) OPLS-DA discriminated HCC-NAF from NAFLD tissue (NAFLD) with 1 predictive
and 2 Y-orthogonal components and exhibited an explained variance: (R2X) of 0.35, predictability
(Q2Y) of 0.42.

The SUS-plot comparing the scaled loadings p (corr) of the two OPLS models, visualizes the
shared metabolic contribution along the diagonal, and the unique metabolic contribution along the
orthogonal axes (Figure 4). Common metabolic features to HCC-NAFLD and HCC-cirrhosis included
the prominent high level of Lac (signals at 1.30–1.35 ppm) and low level of Glc (signals at 4.61–4.67;
5.20–5.28 ppm), displayed in the opposite corners of the plot. In contrast, metabolic specificities were
displayed in boxes on horizontal and vertical axis: (i) in HCC-Cirrhosis: a high level of β-HB (signals at
1.18 ppm with p (corr) > 0.5 and signals at 1.19–1.20 ppm with p (corr) = 0.45) (Figure 5A), Tyr (signals
at 3.94–3.95 ppm and 6.88–6.91 ppm with p (corr) > 0.5 ; signals at 7.17–7.18 ppm, with p (corr) = 0.45),
Phe (signal 7.34–7.37 ppm with p (corr) > 0.5; signal 7.40–7.44 ppm with p (corr) = 0.45) and His (signal
7.07–7.09 ppm with p (corr) > 0.5); signal 7.91 ppm with p (corr) = 0.45) (Figure 5B); (ii) in HCC-NAFLD:
high level of Glutamate (Glu) and Gln (signals at 2.11–2.17 ppm and 2.45 ppm with p (corr) > 0.5)
(Figure 5C).
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Figure 4. Common and specific metabolites of HCC-cirrhosis and HCC-NAFLD revealed by SUS-plot.
Shared and Unique Structures-Plot (SUS-Plot) of 2 models (shown in Figure 3): model A (Orthogonal
Partial Least Square-Discriminant Analysis (OPLS-DA) discriminated HCC-cirrhosis (HCC-CIR) from
Cirrhosis (CIR), and model C (OPLS-DA discriminated HCC-NAFLD (HCC-NAF) from NAFLD (NAF).
HCC-cirrhosis was characterized by increased level β-HB (β-hydroxybutyrate) (signal 1.18 ppm with
p (corr) > 0.5 and signal 1.19–1.20 ppm with p (corr) = 0.45), Tyr (tyrosine) (signals 3.94–3.95 ppm,
6.88–6.91 ppm with p (corr) > 0.5 ; signal 7.17–7.18 ppm with p (corr) = 0.45), Phe (phenylalanine)
(signal 7.34–7.37 ppm with p (corr) > 0.5 ; signal 7.40–7.44 ppm with p (corr) = 0.45) and His (histidine)
(signal 7.07–7.09 ppm with p (corr) > 0.5) ; signal 7.91 ppm with p (corr) = 0.45) (box on the right of
horizontal axis). HCC-NAFLD is characterized by increased level of Glu/Gln (glutamate/glutamine)
(signal 2.11–2.17 ppm and 2.45 ppm with p (corr) > 0.5) (top box on the vertical axis). These metabolites
had VIP (Variable Influence on the Projection) > 1. NI: Not Identified.

Taking together OPLS-DA models and SUS plots, comparing HCC-NAFLD and HCC-cirrhosis
provide evidence that HCC-cirrhosis involve increased contribution of β-HB and aromatic amino acids
(His, Tyr, Phe) and that HCC-NAFLD involve strong contribution of Gln/Glu.
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Figure 5. Focus on the loading S-line plot of Orthogonal Partial Least Square-Discriminant Analysis
(OPLS-DA) discriminated HCC-CIR from Cirrhosis tissue (CIR) (A,B) (focus on Figure 3B) and
OPLS-DA discriminated HCC-NAF from NAFLD tissue (NAFLD) (C) (focus on Figure 3D): variations
of bucket intensities are represented using a line plot with a color scale for correlation coefficient.

2.5. Glutamine Synthetase Immunostaining

To validate the increase of Gln in HCC-NAFLD, we analyzed Glutamine Synthetase (GS)
expression by immunohistochemical staining on tumor tissues. GS immunostaining was realized on
HCC-NAFLD tissues (n = 11), and HCC-Cirrhosis (n = 7) (Figure 6A,B). Intense immunoreactivity,
defined by a H-score ≥ 180, the median value, concerned mainly HCC-NAFLD (63%) versus
HCC-Cirrhosis (28%). In addition, in HCC-NAFLD, 34% had a GS staining H-Score equal to 300. This
observation is consistent with our metabolomics data, since Gln quantification was correlated with GS
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staining H-score (Figure 6C). OPLS-DA focusing on NMR spectra from 1.34 to 3 ppm shows a strong
discrimination between HCC with a GS H-score ≥ 180 and HCC with a GS H-score < 180 (Figure 6E).
Among signals contributing to the discrimination (p (corr) > 050), we identified and confirmed Gln
(2.45 ppm) in HCC exhibiting a high GS staining whereas GSX (2.55 ppm) and lysine (2.96 ppm) were
found in HCC with a weak GS staining (Figure 6D). This data is consistent with the fact that lysine is
a cetogenic amino acid involved in beta-oxydation of fatty acids; this metabolite might explain the
overexpression of β-HB found in HCC developed on cirrhosis.
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Figure 6. Glutamine Synthetase immuno-staining and correlation with NMR data. (A,B)
Immunohistochemical expression of glutamine synthetase (GS): diffuse and intense staining with
H-score = 300 (***); focal staining (**) and negative (*). X10. (C) correlation between quantification of
glutamine on 1H-NMR spectra and GS H-Score, correlation coefficient = 0.53, p = 0.009 (test of Pearson).
(D,E) Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) score scatter plot and loading
S-line plot of aqueous extract spectral data from 1.34 to 3 ppm of HCC with H-score < 180 (blue) versus
HCC with H-score ≥ 180 (red). n = 18. The model was built with 1 predictive and 6 Y-orthogonal
components and exhibited an explained variance: (R2X) of 0.69, (R2Y) of 1, predictability (Q2Y)
of 0.79. The buckets are displayed according to the colored scale of correlation coefficient p (corr)
(*: p (corr) > |0.5|).

However, we did not find a significant correlation between GS expression (H-score) and stage of
differentiation (well or moderately) (R2 = 0.44, p-value = 0.070, Spearman test) (data not shown).
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3. Discussion

3.1. Advantage and Limitation of Using Tissue Extract Instead of Intact Tissue in this NMR
Metabolomics Study

We performed our metabolic analysis on tissue extracts. Some NMR-based metabolomic studies
have used intact tissue and magic angle spinning techniques[14,15]. In these studies, both lipid and
water-soluble metabolites can be obtained in the same spectrum, and spectra are suited for comparison
with MR spectral imaging in vivo. In comparison, NMR analysis of tissue extracts requires sample
processing, separate analysis of lipid and water-soluble extracts, but has the important advantage
to have improved spectral resolution, thus allowing detect more metabolites, especially those with
a low concentration including succinate, fumarate, histidine, uracil, NAD in water-soluble extracts,
arachidonic acid, linoleic acid in lipid extracts. In this study, we privileged spectral resolution and the
number of detectable metabolites.

3.2. HCC Metabolic Profile Involves High Glycolysis and Impaired Phospholipids Metabolism

Few studies have investigated the metabolome of human HCC tissue by NMR-spectroscopy. Most
studies of HCC have used Mass Spectrometry [16–18]. Our metabolomics approach combined with
multivariate analysis reveals up-regulated levels of Lac, PC, PE, Gln, and Val and down-regulated
levels of Glc and MUFA in HCC tissue in comparison with corresponding NTT. High level of Lac with
low level of Glc confirms the well-known glycolytic shift found in cancer tissues, including human and
animal model of HCC [14,19,20]. This features the “Warburg effect”, where high lactate production
is observed even in the presence of oxygen and a low level of aerobic oxidation through the TCA
cycle [21]. As previously reported for human HCC tissue, our data showed a decrease of MUFA
content and a modification of phospholipids metabolism with an increased level of phospholipid
derivatives, suggested a need for synthesis of membranes [14,16].

3.3. Metabolomics Shows Differences between HCC-NAFLD and HCC-Cirrhosis

To our knowledge, this study is the first to investigate tissue metabolome of human HCC according
to the underlying pathology including histologically proven NAFLD. In contrast to others tumors
(prostate, esophagus, breast etc.), HCC has the particularity to develop on underlying disease such as
cirrhosis or NAFLD. As a way to “remove” the impact of the underlying liver disease on the metabolic
profile of HCC, a SUS-plot analysis was performed, which allows to highlight common and specific
metabolites of two groups of HCC associated with cirrhosis or with non-cirrhotic NAFLD.

This approach has revealed specific metabolites for each HCC, as an increased level of β-HB and
aromatic amino acids in HCC-Cirrhosis and overexpression of Gln/Glu in HCC-NAFLD.

β-HB constitutes 70% of ketone bodies and is produced by liver mitochondria from fatty acid
oxidation. β-HB was also reported to be increased in an animal model of HCC tissue [22]. Aromatic
amino acids, Phe and Tyr, are oxidized into the TCA cycle after conversion into fumarate. Therefore,
their accumulation in HCC-cirrhosis may indicate the impairment of the TCA cycle. Phe and Tyr
were also found increased in viral B HCC tissue [16] and in serum of cirrhotic patients versus
healthy controls [10]. An imbalance with decreased levels of branched-chain amino acids (BCAAs)
and increased levels of aromatic amino acids (Tyr, Phe) is commonly seen in plasma of patients
with advanced cirrhosis [23]. A recent study reported an association between the ratio of serum
BCAAs/aromatic amino acids and HCC risk [24]. In addition to β-HB, accumulation in aromatic amino
acids levels suggests impairment of mitochondrial function and inflammatory status in HCC-cirrhosis.

In our cohort, the group of HCC on non-cirrhotic tissue mostly included NAFLD. In particular,
there were as many HCC developed on steatosis without inflammatory damages than HCC developed
on NASH. Alexander et al. studied a large cohort of 157 HCC patients with non-cirrhotic fatty liver
disease and pointed out that only 15% of underlying tissue show steatohepatitis, raising the hypothesis
that HCC in NAFLD may arise in the absence of histologically evident inflammation [25]. It becomes
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necessary to identify metabolic specificities of HCC developed on NAFLD in absence of cirrhosis.
The main result of this study is that HCC associated with non-cirrhotic NAFLD specifically exhibited a
high level of Gln. This latter finding sustains the observations reported by Martinez-Granados et al.,
showing by tissue NMR that Gln levels were higher in non-cirrhotic tissue than in cirrhotic tissue [15].
In hepatocytes, Gln is implicated in ammonium detoxification, thus increased levels of Gln may
reflect preservation of ammonium detoxification ability in non-cirrhotic tissue. Moreover, in tumor,
Gln is a required substrate for biosynthesis and energy metabolism. Gln is a nitrogen donor for the
de novo synthesis of both purines and pyrimidines, and is essential for production of nucleotides
during cell proliferation. Oxidation of Gln carbon backbone in mitochondria is a major source of
energy for proliferating cells, including tumor cell lines [26]. Gln is produced from Glu by glutamine
synthetase (GS). The involvement of GS in liver tissue is wildly described associated with others
(Glypican 3, heat shock protein 70) as biomarkers of hepatocellular tumors, particularly overexpressed
in malignant tumors [27]. Indeed, Long et al., reported overexpression of GS in 70% of HCC versus
46.7% in cirrhosis and 38% in week fibrosis tissue, suggesting the role of GS in tumorigenesis and
malignant progression [28]. Wasfy et al., also pointed out overexpression of GS in HCC and showed
specificity and sensitivity of GS of 80% and 84% respectively [29]. The overexpression of GS is highly
correlated with β-catenin mutation, and GS is proposed as a reliable marker of β-catenin activation
secondary to its mutation [30]. Interestingly, low fibrosis was reported as an intriguing hallmark
of β-catenin mutated tumors [30,31]. Our study is the first one to suggest a relationship between
GS immunostaining and metabolic composition explored by NMR-spectroscopy. This observation
might indicate the interest of the use in vivo of spectroscopy combined to MRI to detect hepatic lesions
potentially β-catenin mutated. In our cohort, 63% of HCC-NAFLD has a diffuse GS immunostaining,
among which 57% have a H-score equal to 300, versus 28% of HCC-cirrhosis. There are few histological
data on GS labelling of HCC-NAFLD and actually, results from studies are conflicting [32,33].

4. Patients and Methods

4.1. Patients and Collection of Specimens

Liver tissue specimens were collected from 28 patients undergoing hepatectomy at the University
Hospital of Clermont-Ferrand since November 2011 to May 2014 (n = 21) and from the tumor bank
of the University Hospital of Saint-Etienne (n = 7). Written informed consent was obtained from
each patient.

HCC was diagnosed before surgery using either radiological Barcelona criteria or liver biopsy
histological analysis [34]. Diagnosis was established after surgery using pathological analysis. We did
not include patients with a history of a second cancer for the last 2 years or who have received
prior treatment for their HCC like chemoembolization. For each patient, tumor tissue (TT) and
corresponding distant Non-Tumoral Tissue (NTT) (>2 cm) were collected. Specimen were transported
in ice. The pathologists process to sampling on iced laboratory work plan. All tissue samples were snap
frozen in liquid nitrogen to immediately “quench” metabolism, and stored at −80 ◦C until extraction
to prevent metabolite destruction.

The study was approved by the Ethic Committee Sud-Est VI Clermont-Ferrand (Agreement
number AU887, 04/03/2011).

4.2. Histology

Tissues were fixed in 10% formalin and embedded in paraffin for light microscopy. Paraffin
sections with a thickness of 5 µm were stained with hematoxylin and eosin method. HCC type
and grade of differentiation (WHO Classification) were established. NTT was characterized by the
presence or not of lesions of chronic hepatitis, fibrosis, steatosis, steato-hepatitis and the METAVIR
Score. Immunohistochemical analysis of Glutamine Synthetase (GS) was done according to standard
procedures (Antibodies from BD Transduction Laboratories™, dilution at 1/400). To evaluate GS
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staining, a H-score (0–300) was calculated by multiplying staining intensity (0, negative; 1, weak;
2, moderate; 3, strong) with the positively stained area (0–100%) [32]. Immunohistochemical staining
was performed on 24 samples (HCC-NAFLD n = 11, HCC-Cirrhosis n = 7, HCC-Normal n = 6).

4.3. Sample Preparation for NMR-Spectroscopy

Tissue samples were processed to obtain aqueous and lipid extracts. A piece of tissue (250 mg)
was mixed with cold acetonitrile/water (1:1, v:v, 1.75 mL) and then homogenized, over ice, using
a polytron. Samples were centrifuged (17,000 g, 20 min, 4 ◦C) and the aqueous supernatant was
centrifuged (17,000 g , 15 min, 4◦C) twice and dried to obtain the water-soluble fraction of liver extracts.
The organic phase was dissolved in cold chloroform/methanol (2:1, v:v, 1.5 mL), homogenized,
centrifuged (17,000 g, 20 min, 4 ◦C), then, filtered and dried to obtain the lipid phase. All reagents are
conserved at 4 ◦C and all experiments are conducted in ice. All dried samples were stored at −20 ◦C.

4.4. 1H-NMR Spectroscopy

Spectroscopy was performed at room temperature using a Brucker Advance 400 spectrometer
operating at 400.13 MHz. The dried extracts were rehydrated in 500 µL of D2O containing Phosphate
Buffer (1%) (Aqueous extract) or 500 µL chloroform-d/methanol-d (2:1, v:v) (lipid extract) in 5 mm
diameter NMR tubes. For all samples, a one-dimensional 1H-NMR spectrum was acquired using a
ZGPRESAT sequence with water signal suppression at low power and the following parameters: 8 µs
−90◦ pulse length, 10 s relaxation delay, 10 ppm spectral width, 128 transients and 32 K complex
data points. Resonance assignment was carried out according to chemical shift values reported in the
literature [35] and the free access database Human Metabolome Database (HMDB). We performed
1H-1H COSY and 1H-13C HSQC 2 dimensions NMR experiments in a few samples to definitely assign
signals corresponding to phosphoethanolamine (PE) and succinate (Suc).

4.5. Data Processing

A line broadening factor of 0.3 Hz was applied to Free Induction Decay (FID) before Fourier
transformation. 1H-NMR spectra were manually corrected for phase and baseline using MestReNova
(Mestrelab Research chemistry software solutions). Peak referencing was done on the signal of creatine
at 3.035 ppm for aqueous extracts and phosphatidylcholine (Ptcho) at 3.26 ppm for lipid extracts.
The spectra were binned into 0.02 ppm width data samples (from 0 to 9 ppm for the aqueous phase
spectra and from 0.2 to 4.4 ppm for the lipid phase spectra), then normalized to the total area under
spectrum, after removing spectral regions containing solvent (water, methanol, chloroform) resonances.

4.6. Metabolites Quantification

Metabolite signals were quantified in all tissue spectra. For quantitative metabolomics profiling,
spectra were imported into MestReNova and assigned signals were integrated. Quantification was
performed by relating metabolite signals to a residual protein signal (lysine at 2.99 ppm), according to
a technique derived from [13]. The Wilcoxon test was used to compare NTT and tumour tissues. In the
comparison of metabolites levels between the groups of HCC tissue, Kruskal–Wallis test with Dunn’s
correction was used (XLSTAT.V 2014.5.02, Addinsoft).

4.7. Multivariate Data Analysis

Spectral data were imported from Excel into SIMCA (SIMCA 13.0 Umetrics, Sweden) and
preprocessed using Unit Variance scaling. Unsupervised (Principal Components Analysis, PCA)
and supervised multivariate statistical analysis were performed (SIMCA). An Orthogonal Projection
to Latent Structure-Discriminant Analysis (OPLS-DA) was run to discriminate groups. The model
performance was assessed by parameters R2X, R2Y, and Q2 related to the explained variance of data,
the predicted variance and the 7-fold cross validated predicted variance, respectively. For each analysis,
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a score plot is presented with the predictive (horizontal axis) and the first orthogonal component of the
model (vertical axis). Each point in the score plot represented the projection of an NMR spectrum and
thus a patient’s sample. The loading plot represented the covariance between the Y-response matrix
and the signal intensity of the various spectral domains. The S-plot was used to visualize both the
covariance (p (1)) and the correlation p (corr) (1) structure between the X-variables and the predictive
score t (1). The S-line plot was applied to NMR spectral data. It visualized the p (ctr) (1) loading colored
according to the absolute value of the correlation p (corr) (1). In addition, the difficulty to define a
specific metabolic tissue profile of the HCC is due to the fact that HCC develop on a pre-existing
pathologic liver having its own metabolic dysfunction. In this study, we proposed a multivariate
statistic method (Shared and Unique Structure-plot), as a way to “remove” the underlying liver disease
metabolic profile [36]. The SUS-plot consists in the projection of the scaled loadings p (corr) (1) from
two OPLS models and visualizes the shared metabolic contribution along the diagonals, and the
unique metabolic features along the respective axes, delineated by boxes in figures. Partial correlation
coefficients (p (corr) (1)) ≥ 0.45 were considered significant.

5. Conclusions

Our metabolomics analysis allows to discriminate HCC associated with non-cirrhotic NAFLD
from HCC associated with cirrhosis. These results should be considered as a preliminary study and
these findings should be confirmed in a larger cohort. The observed unique metabolic alterations
may be part of the specific carcinogenic processes in cirrhosis or non-cirrhotic NAFLD, and could be
checked as candidate biomarkers of malignant transformation. These first results may be a draft of
the metabolic background to epidemiological findings of non-cirrhotic NAFLD as a pre-cancerous
liver disease.
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Ace Acetate
AFP Alpha-Foeto-Protein
Ara A Arachidonic Acid
Asc A Ascorbic acid
BCAAs Branched-Chain Amino Acids
BMI Body Mass Index
Beta-Glc β-glucose
Cho Choline
Creat Creatine
E Chol Esterified Cholesterol
FID Free Induction Decay
For Formate
Fum Fumarate
Gln Glutamine
Glu Glutamate
Gly Glycine
GPC Glycerophosphocholine
GS Glutamine Synthetase
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HBV Hepatitis B Virus
HCC Hepatocellular Carcinoma
HCV Hepatitis C Virus
HDL High Density Lipoprotein
His Histidine
HMDB Human Metabolome Database
H-NMR Hydrogen-Nuclear Magnetic Resonance
HR-MAS MR High Resolution Magic Angle Spinning Magnetic Resonance
Lac Lactate
Leu Leucine
Lin A Linoleic Acid
MUFA Monounsaturated Fatty Acid
NAFLD Non-Alcoholic Fatty Liver Disease
NASH Non-Alcoholic Steato-Hepatitis
NTT Non Tumoral Tissue
OPLS-DA Orthogonal Partial Least Square-Discriminant Analysis
PC Phosphocholine
PCA Principal Components Analysis
PE Phosphoethanolamine
Phe Phenylalanine
PLS Partial Least Square
ppm part per million
Ptcho phosphatidylcholine
PUFA Polyunsaturated Fatty Acid
Sar Sarcosine
SM Sphingomyelin
Suc Succinate
SUS-Plot Shared and Unique Structures-Plot
T Chol Total Cholesterol
T FA Total Fatty Acid
TAG Triacylglycerol
TCA cycle Citric Acid Cycle
TNF tumor necrosis factor
TT Tumor Tissue
Tyr Tyrosine
Val Valine
VIP Variable Influence on the Projection
WHO World Health Organisation
β-HB β-hydroxybutyrate
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