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Simple Summary: The proximity extension assay (PEA) method enables the detection of proteins in
tissue lysates and plasma with high specificity and sensitivity. Knowledge regarding the immune
proteome profile in classical Hodgkin Lymphoma (cHL) tumor microenvironment (TME) is critical in
an era of emerging immunotherapies and precision medicine. This study identifies several important
immune markers that distinguish cHL tissue from reactive lymph nodes and introduces new potential
therapeutic targets in an era of personalized medicine.

Abstract: In classical Hodgkin Lymphoma (cHL), immunoediting via protein signaling is key to evad-
ing tumor surveillance. We aimed to identify immune-related proteins that distinguish diagnostic
cHL tissues (=diagnostic tumor lysates, n = 27) from control tissues (reactive lymph node lysates,
n = 30). Further, we correlated our findings with the proteome plasma profile between cHL patients
(n = 26) and healthy controls (n = 27). We used the proximity extension assay (PEA) with the OlinkTM
multiplex Immuno-Oncology panel, consisting of 92 proteins. Univariate, multivariate-adjusted
analysis and Benjamini–Hochberg’s false discovery testing (=Padj) were performed to detect signifi-
cant discrepancies. Proteins distinguishing cHL cases from controls were more numerous in plasma
(30 proteins) than tissue (17 proteins), all Padj < 0.05. Eight of the identified proteins in cHL tissue (PD-
L1, IL-6, CCL17, CCL3, IL-13, MMP12, TNFRS4, and LAG3) were elevated in both cHL tissues and
cHL plasma compared with control samples. Six proteins distinguishing cHL tissues from controls
tissues were significantly correlated to PD-L1 expression in cHL tissue (IL-6, MCP-2, CCL3, CCL4,
GZMB, and IFN-gamma, all p ≤0.05). In conclusion, this study introduces a distinguishing proteomic
profile in cHL tissue and potential immune-related markers of pathophysiological relevance.

Keywords: Hodgkin lymphoma; proteomics; proximity assays; tumor microenvironment; PD-L1;
LAG3 CCL17; biomarkers; Immunology

1. Introduction

In the tumor microenvironment (TME) of classical Hodgkin lymphoma (cHL), sparsely
distributed Hodgkin and Reed–Sternberg (HRS) cells are surrounded by an abundant
number of leukocytes and stromal cells [1–3]. Immunoediting of the TME by HRS cells
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is vital for escaping tumor immune surveillance [3]. With best-practice treatments, still a
significant proportion of patients with cHL relapse with subsequently poor prognosis [4].
In an era of personalized medicine, tailored therapeutic management of malignant disease
is highly biomarker-driven [5]. While gene expression profiling and mRNA quantification
studies in cHL have been reported [6–10], high throughput proteome studies in cHL are
restricted and based on commercial HRS cell lines [11–14]. Hence, there is an unmet
need to explore the proteome profile of cHL to identify key biomarkers and new potential
therapeutic targets in an era of precision medicine [15,16].

Methods for characterizing cancer proteome are rapidly evolving within cancer re-
search [17]. The proximity extension assay (PEA) enables high throughput detection and
quantification of a large number of biomarkers with high sensitivity and specificity [18,19].
The PEA technology has been widely used to analyze various body fluids including tissue
lysates and plasma [18,19]. The technology is believed to complement mass spectrophotom-
etry (MS) by a higher ability for sensitive detection of low abundance proteins in minute
sample volumes [20].

To deepen our knowledge of key components of the proteome profile in cHL, this
study aimed to identify distinguishing immune-related proteins in cHL tissues compared
with reactive lymph nodes and their association to plasma proteome profile in cHL.

2. Materials and Methods
2.1. Study Cohort and Study Samples

This study included patients from the biobank program U-CAN (Uppsala Umeå
Comprehensive Cancer Consortium). The U-CAN program has, since 2010, collected
data and created a biobank with blood and tissue samples with various cancer diagnoses
including lymphoma. The current cohort consisted of 88 patients included in U-CAN and
was confined to cHL patients with available plasma samples and frozen diagnostic biopsies
diagnosed between 2010 and 2019 (n = 27). One patient was included at relapse with a
first diagnosis in 1989 (Figure 1). As controls, 30 healthy study subjects with lymph nodes
classified histopathologically as reactive lymphadenopathy were used. The controls were
matched for age and gender.
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Figure 1. Flowchart of patients included in the current study: UCAN = Uppsala Umeå Comprehen-
sive Cancer Consortium biobank program, cHL = classical Hodgkin lymphoma, NLPHL = nodular 

Full UCAN Cohort with clinical data(2010-2019)  
n=91

Full UCAN Cohort with clinical data ( cHL) 
n=88

Patients(cHL) tumour tissue PEA 
n=30  

Immuno-ONC Panel

3 cases with NLPHL

Matched Lymph node 
Controls

(Immuno-ONC Panel)
n=30

Patients(cHL) plasma PEA 
n=27

Immuno-ONC Panel

Matched Controls
(Immuno-ONC Panel)

n=27

Patients(cHL) plasma PEA 
n=26

Immuno-ONC Panel

1 cases with NLPHL
0 cases failed QC

Patients(cHL) tumour tissue PEA 
n=27  

Immuno-ONC Panel

1 cases with NLPHL
2 cases failed QC

Figure 1. Flowchart of patients included in the current study: UCAN = Uppsala Umeå Comprehen-
sive Cancer Consortium biobank program, cHL = classical Hodgkin lymphoma, NLPHL = nodular
lymphocyte-predominant Hodgkin lymphoma, QC = quality control, PEA = proximity extension
assay, and Immuno-ONC = Immuno-Oncology.
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The diagnostic biopsies for patients with cHL (n = 27) were obtained from lymph
nodes in the axilla (n = 2), neck (n = 21), and mediastinum (n = 2). Two patients had
missing information on lymph node location. Biopsy location from non-malignant lymph
nodes (n = 30) were neck (n = 18), groin (n = 5), axilla (n = 5), and mesenterium (n = 1).
One patient had missing data on lymph node location. Of the cHL plasma samples
(n = 26), 25 were from the same patients as the tissue samples from cHL patients. Plasma
control samples (n = 27) were obtained after consent and matched for age and gender
as the tissue controls. Clinical data were obtained from patient hospital records. Stage
of disease was defined according to the Ann Arbor classification, and advanced stage
was defined as IIB-IVB [21,22]. Analysis of EBV infection in HRS cells was performed
using immunohistochemistry (IHC) for latent membrane protein 1 (LMP1) and in situ
hybridization (ISH) for Epstein–Barr virus (EBV)-encoded small RNAs (EBERs).

2.2. Tissue Lysates Preparation and Plasma Samples

The tissue samples were snap-frozen in liquid nitrogen and stored at −80 ◦C after
surgery. Tissue samples were cut into thin slices and were lysed as previously described [23].
Tissue lysate preparation was performed at Uppsala Biomedical Center (BMC), Uppsala
University, SciLifeLab. Tumor tissues and control lymph node tissues were mixed with
2 mm in diameter zirconium beads (Next Advance Inc., Troy, NY, USA) and lysis buffer
(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, pH 8, 1% Triton X-100, 0.1% sodium
deoxycholate, a protease inhibitor (Roche Complete Mini, Mannheim, Germany). The ratio
of sliced tissue mass: volume of lysis buffer: zirconium beads weight was 1:4:2. The tissues
were homogenized using Bullet Blender (BBX24B-CE, Next Advance, Inc.) according to the
manufacturer’s recommendation for lymphatic tissue. The mixtures were then centrifuged
at 13,000 rpm for 10 min at 4 ◦C, and the supernatants were transferred to new tubes. The
total protein concentration of tissue lysates was measured using PierceTM BCA Protein
Assay kit (ThermoFisher, Rockford, IL, USA).

To determine the optimal buffer condition and total protein concentrations for PEA
analysis, one tumor and one healthy lymph node sample were lysed, and total protein
concentrations were measured. For each sample, three different dilutions of 0.5, 0.125,
and 0.031 µg/µL total protein concentrations were prepared in PEA dilution buffer (Olink,
Uppsala, Sweden) and analyzed with multiplex PEA, using Immuno-Oncology panel (Olink
Proteomics™, Uppsala, Sweden), (Table S1), according to the manufacturer’s instructions
and as described by Shen et al. [24]. The optimal total protein concentration was determined
to 0.125 µg/µL. For the plasma samples, 1 µL of sample was analyzed using the same
Immuno-Oncology panel.

2.3. Proximity Extension Assay Overview, Plate Distribution, and Data Output

PEA relies on dual antigen recognition via matched antibodies linked with a unique
DNA oligonucleotide that undergoes hybridization upon target recognition. In this way,
the PEA method reduces antibody cross-reactivity similar to the proximity ligation assay
(PLA) [25]. The hybridized DNA oligonucleotides are subsequently subjected to enzy-
matic DNA extension and real-time PCR (qPCR) to quantify the DNA amplicons [18]. The
PEA steps include various internal controls and monitoring steps and allows quantifica-
tion of 92 proteins and four controls in femtomolar range, using only one microliter of
biofluids [18,24]. The workflow for normalization, quality controls, and the list of proteins
included in the panel are available elsewhere [26].

In the current study, tissue lysates and plasma samples were randomized within the
same but separate plates prior to the PEA analysis. Normalized Protein eXpression (NPX) is
a log2 arbitrary scale unit that was used as data outcome. One NPX difference corresponds
to a two-fold change in the concentration of the protein in the analyzed biosample. NPX
is based on the cycle threshold (Ct) value that corresponds to the total of PCR cycles
required for the fluorescent signal to surpass background levels for each protein, and
normalization algorithms are based on a so-called inter-plate controls (IPCs) described
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in detail elsewhere [18]. In PEA, the lower limit of detection (LOD) is determined by
comparing protein NPX with so-called “background” NPX values calculated via linear
regression and different algorithms [18]. Data values with levels under LOD were replaced
with a fixed value (=LOD).

2.4. Statistics

R version 3.3.3.vas used for all analyses. Missing data were replaced with mean
imputation for 4 of 2392 data point entries for plasma PEA analysis. Principal component
analysis (PCA) was used for dimension reduction and review of the associations between
controls and cHL cases. Comparison between a continuous variable and two groups was
analyzed using the two-sample Welch t-test and Wilcoxon rank–sum test. Adjustment for
age and sex was further conducted with multivariate linear regression and propensity score
matching, caliper = 0.2. Clinicopathological correlations were calculated based on NPX
values of cHL tissues. Pearson correlation analysis with correlation coefficient (=r) and
associated p-value was used to estimate the correlation between two continuous variables.
Receiver operating curves (ROC) with associated area under curve (AUC) were used to
estimate variable predictive values for cHL cases compared with controls. Benjamini-
Hochberg’s false discovery rate method was used for adjusting for multiple testing (=Padj).
All proteins (n = 92), including those below LOD frequency, were accounted for, when
adjusting for multiple testing. Padj-values < 0.05 were considered significant.

3. Results

Patient characteristics for the analyzed cohort are shown in Table 1, with comparable
demographics compared with the original cohort. All proteins and their abbreviations
are described in Table S1. In tissues, proteins with a high frequency of values below
LOD was IL-1 alpha (96%), ADGRG1 (95%), MUC-16 (81%), KIR3DL1 (79%), IL-10 (82%),
TNFRSF12A (91%), ARG1 (88%), and CXCL12 (93%). The distribution of values <LOD
frequency was evenly distributed between cHL tissues and control tissues in these cases
(see Table S2). Since all values <LOD were replaced with LOD they automatically did not
generate any significant differences between cHL and control cases when frequent values
of <LOD were observed for both cHL tissues and control tissues.

Table 1. Demographics.

Entire Cohort (cHL)
2010–2019

n = 88

Patient Plasma
PEA n = 26

Control:
Plasma PEA

n = 27

Patient:
Tissue PEA

n = 27

Controls: Tissue
PEA n = 30

Age (y): Median
(Range) 41 (12–85) 44 (21–85) 45 (20–78) 45 (21–85) 45.50 (22–83)

Age ≥ 60 (n) 23 (26%) 7 (27%) 8 (30%) 8 (30%) 7 (23%)

Male Sex (n) 58 (66%) 17 (65%) 18 (67%) 18 (67%) 21 (70%)

Follow-up time (y);
Median (range) 4.50 (0.36–26.00) 4.75 (0.66–9.26) NA 4.77 (0.66–26.00) NA

5 year OS probability 85% 87% NA 88% NA

2 year OS probability 91% 92% NA 93% NA

2 year EFS
probability 84% 81% NA 82% NA

Advanced stage (n)
(IIB-IVA) 56 (64%) 12 (46%) NA 12 (57%) NA

WHO 0–1 (n) 74 (95%)
Missing = 10 24 (92%) NA 25 (100%)

Missing = 2 NA
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Table 1. Cont.

Entire Cohort (cHL)
2010–2019

n = 88

Patient Plasma
PEA n = 26

Control:
Plasma PEA

n = 27

Patient:
Tissue PEA

n = 27

Controls: Tissue
PEA n = 30

IPS ≥ 2 (n) 44 (56%)
Missing = 10

17 (68%)
Missing = 1 NA 11 (49)

Missing = 4 NA

Treated with
BEACOPP at
first-line (n)

14 (16%)
Missing = 1 n = 4 (15%) NA 4 (15%)

Missing = 1 NA

Treated with ABVD
at first-line (n)

55 (63%)
Missing = 1 n = 18 (69%) NA 17 (65%)

Missing = 1 NA

ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine); BEACOPP (bleomycin, etoposide, doxoru-
bicin, cyclophosphamide, vincristine, procarbazine, and prednisone); IPS = international prognostic index;
EFS = event-free survival; OS = overall survival; WHO, performance status according to the World Health Orga-
nization (ECOG); Advanced stage = according to Ann Arbor; NA = not available.

3.1. Proteins Distinguishing Patients from Controls

After multivariate tests adjusting for age and gender, PS matched comparison, and
for adjusting for multiple testing, 17 out of 92 proteins levels (Table 2) were identified to
be significantly different in cHL tissues compared with control tissues (all Padj < 0.05).
All 17 proteins showed high predictive accuracy (AUC between 0.82–0.92) to differentiate
between cHL cases and controls. TIE2 and IL7 were significantly decreased in cHL tissues,
while all other proteins (n = 14) were increased in cHL tissues compared with control tissues.
PCA plot overview of the tissue protein pattern showed a modest separation between cHL
cases and control study subjects (Figure 2A).

Table 2. Proteins with significant differences in cHL tumor tissue versus control tissues.

Univariate Multivariate Predictive

Mean Difference. NPX p Padj Padj AUC Pw (adj)

TIE2 −0.645 <0.001 <0.001 <0.001 0.870 <0.001
IL7 −0.585 <0.001 0.001 0.002 0.833 <0.001
IL6 2.879 <0.001 <0.001 <0.001 0.922 <0.001

MCP-1 0.985 <0.001 0.001 0.002 0.825 0.001
MCP-4 2.089 <0.001 0.006 0.002 0.821 0.001
MCP-2 1.688 <0.001 0.001 0.001 0.823 0.001
CCL4 1.728 <0.001 <0.001 <0.001 0.878 <0.001
PD-L1 1.094 <0.001 0.001 <0.001 0.854 <0.001
CD70 0.799 <0.001 0.003 0.001 0.799 0.005
CCL3 1.291 <0.001 0.003 0.001 0.805 0.003

TNFRSF4 1.260 <0.001 <0.001 <0.001 0.835 <0.001
CCL17 3.800 <0.001 <0.001 <0.001 0.917 <0.001

IFN-gamma 2.363 <0.001 <0.001 <0.001 0.893 <0.001
MMP12 1.891 <0.001 <0.001 0.007 0.817 0.001
LAG3 2.119 <0.001 <0.001 <0.001 0.925 <0.001
IL13 2.382 <0.001 <0.001 <0.001 0.909 <0.001

GZMB 0.952 0.001 0.049 0.042 0.762 0.040

Comparing 29 cHL cases with 30 controls. Mean normalized protein expression (NPX) difference = mean NPX in the
cHL patients minus mean in the control group. One NPX in log2 difference corresponded to a two-fold difference
in protein concentration in the tissue. In univariate analysis: P = p-value was calculated with two-sample Welch
test; Padj = FDR-adjusted values corrected for multiple testing (all 92 proteins). In multivariate analysis = linear
regression adjusting for age and gender. AUC (area under curve) = accuracy for predicting between cHL cases and
controls. Pw (adjust) = p-value retrieved with Wilcoxon test and adjusted for multiple testing (FDR); CCL = C–C
motif chemokine ligand; PD-L = programmed death ligand; IFN = Interferon; IL = Interleukin; MCP = monocyte
chemotactic proteins; LAG = lymphocyte activating gene; Chl = classical Hodgkin lymphoma; GZMB = Granzyme-B;
CD = cluster of differentiation; TIE2 = tyrosine-protein kinase receptor Tie-1, also called angiopoietin receptor 1;
TNFRSF4 = TNF Receptor Superfamily Member 4; MMP12 = Matrix Metallopeptidase 12.
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Figure 2. Principal component analysis (PCA) and Venn diagram for the proteome profile: (A) PCA
plot for tissue. Dots demonstrate individual sample distribution of 27 cHL tumor tissues analyzed
with PEA (blue) and corresponding control (black) lymph nodes, n = 30. (B) PCA plots for plasma.
Dots demonstrate individual sample distribution of 26 cHL patients (blue) and controls (black),
n = 27; a total of 92 proteins were included. PC = principal component. (C) Schematic Venn diagram
showing the number of proteins with significantly higher levels in cHL cases than controls in both
tissue and plasma after univariate analysis and adjusted analysis.

The biological function annotation based on bioinformatics databases (Uniprot, Hu-
man Protein Atlas, Gene Ontology (GO) and DisGeNET) of the 17 identified proteins
were in the category of Chemotaxis/Inflammation (IL-6, IL-13, MCP1, MCP2, MCP4,
CCL3, CCL4, CCL17, IL-7, and IFN-gamma), and immune-suppression/promotion (PD-L1,
LAG-3, CD70, and TNFRSF4), apoptosis (Granzyme B), and extracellular matrix remodeling
(MMP12, TIE2).

Of all the identified 17 proteins, eight proteins (PD-L1, IL-6, CCL17, CCL3, IL-13,
MMP12, TNFRS4, and LAG3) were also significantly increased in plasma samples from
cHL patients compared with plasma from controls (Figure 2C). The obtained results and
biological annotation for all 17 proteins are summarized in Table 3. The discrepancy
between cHL patients and controls proteome profiles in plasma was apparent, with 30
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out of 92 proteins identified to be expressed significantly differently in cHL patients than
controls (Table S3). In addition, PCA plot overview of the protein pattern in plasma showed
an apparent separation between cHL cases and controls (Figure 2B).

Table 3. Summary of 17 proteins that distinguished cHL tissues from control tissues.

Protein Tissue Plasma Biological
Annotation *

Cellular
Annotation * Studies in cHL

LAG3 Increased in
cHL cases

Increased in cHL
cases

Suppressed tumor
immunity: Membrane

Mainly upregulated
in Tregs adjacent to
HRS cells but also

observed in
macrophages [27–29]

CCL17 Increased in
cHL cases

Increase in cHL
cases

Chemotaxis: Produced by
several leukocytes

including M2
macrophages

Secretory
Confirmed in HRS

cells, and monocytes
in the TME [7,8,14]

IL6 Increased in
cHL cases

Increase in cHL
cases

Inflammation/cell
Survival signaling.

Produced by several
leukocytes including

macrophages

Secretory
Confirmed in HRS
cells, and various
leukocytes [8,30]

IL13 Increased in
cHL cases

Increased in cHL
cases

Inflammation/cell
survival signaling Secretory

Confirmed in HRS
cells, and various

lymphocytes [31–34]

CCL4 Increased in
cHL cases

Non-significantly
increase in cHL

cases
Chemotaxis. Recruit Tregs Secretory

Higher levels in
TAMs, HRS cells

mainly negative [35]

IFN-gamma Increased in
cHL cases

Non-significantly
increase in cHL

Inflammation, cell
survival signaling Secretory Confirmed in HRS

cells [8,9,36]

TIE2 Decreased in
cHL

Non-significantly
decreased in cHL

Vascular remolding.
Migration/permeability

Membrane. and
secretory No data available

TNFRSF4 Increased in
cHL cases

Increased in cHL
cases

Chemotaxis/Cell signal
survival. Induced host
antitumor immunity

Membrane and
intracellular

Confirmed in T-cells
in cHL. Status in
HRS cells limited

[37–39]

PD-L1 Increased in
cHL cases

Increased in cHL
cases

Suppressed host tumor
immunity Cell membrane

Confirmed in HRS
cells and

surrounding
leukocytes [40,41]

MCP-1 Increased in
cHL cases

Non–significantly
increase in cHL Chemotaxis for monocytes Secreted

Confirmed in
Monocytes and HRS

cells [42]

MCP-2 Increased in
cHL cases

Non-significantly
increase in cHL

Chemotaxis for various
leukocytes Secreted Confirmed in HRS

cells [6]

IL7 Decreased in
cHL Increased in cHL Promoted immune host

response Secreted Confirmed in HRS
cells [43,44]

CD70 Increased in
cHL cases

Non-significantly
increase in cHL

Cell survival signaling
primarily for T-cells Plasma membrane Confirmed in HRS

cells [45,46]

CCL3 Increased in
cHL cases

Increased in cHL
cases

Inflammation, cell
survival signaling, and

chemotaxis
Secreted Confirmed in HRS

cells [9]
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Table 3. Cont.

Protein Tissue Plasma Biological
Annotation *

Cellular
Annotation * Studies in cHL

MCP-4 Increased in
cHL cases

Non-significantly
increase in cHL

Chemotaxis and
inflammation for

monocytes and T-cells
Secreted Confirmed in HRS

cells [7]

MMP12 Increased in
cHL cases

Increased in cHL
cases

Modulating extracellular
matrix. Produced by

macrophages

Secreted, mainly
extracellular

matrix
No data available

GZMB Increased in
cHL cases

Non-significantly
increase in cHL Apoptosis/cytotoxic Secreted

Confirmed in HRS
cells and cytotoxic
lymphocytes [47]

Functional and cellular annotation is based on a variety of public-access bioinformatic databases including UniProt
(https://www.uniprot.org, accessed on 14 November 2021), Human Protein Atlas (http://www.proteinatlas.org,
accessed on 14 November 2021), DisGeNET (http://geneontology.org, accessed on 14 November 2021), and
cBioportal (https://www.cbioportal.org/, accessed on 14 November 2021). Cases with a significant congruent
difference in tissue and plasma are marked in bold (n = 8). * HRS = Hodgkin Reed–Sternberg cells, cHL = classical
Hodgkin lymphoma, TAM = tumor-associated macrophages.

3.2. Clinicopathological Correlations

The cohort was too small to generate significant correlations between protein NPX
levels in patient tissues and clinical features after multiple testing (all Padj > 0.05), but
the unadjusted p-values are presented in Table S4. CCL17 NPX levels in cHL tissues were
higher in cHL nodular sclerosis subtype cases (p = 0.029). In cHL tissue, higher PD-L1
NPX levels correlated with EBV+ cases (p = 0.020) and male sex (p = 0.005). CCL3 NPX
levels in cHL tissues were higher in EBV+ cases (p = 0.011). Unadjusted for multiple testing,
correlations between proteins distinguishing cHL tissues are available in Table S5. PD-L1
NPX levels in cHL tissues correlated with NPX tissue levels of; CCL3 (r = 0.79 (p < 0.001)),
CCL4 (r = 0.82 (p < 0.001)), IFN-gamma (r = 0.63 (p < 0.001)), MCP-2 (r = 0.67 (p < 0.001)),
IL-6 (r = 0.38 (p = 0.05)), and GZMB (r = 0.061 (p = 0.001)).

4. Discussion

By implementing PEA analysis on tumor tissues and plasma, we identified 17 proteins
in cHL tissues and 30 proteins in plasma, significantly distinguishing cHL cases from
controls. Eight (IL-6, PD-L1, CCL17, MMP12, TNFRSF4, CCL3, IL-13, and LAG3) of
the identified 17 proteins in cHL tissues were also significantly elevated in cHL plasma
compared with controls. In addition, six of the 17 distinguishing proteins in cHL tissue
were often positively correlated to PD-L1 expression in cHL tissue (IL-6, MCP-2, CCL3,
CCL4, GZMB, and IFN-gamma).

Reports reviewing and investigating gene expression profiling and mRNA quantifica-
tion studies in cHL [6–10] and high throughput proteome studies in cHL [11–14] will be
discussed next in regard to overlaps and similarities between our markers individually for
each protein, focusing on our findings in cHL tissues.

4.1. Immunobiomarkers Elevated in cHL Tissues and Plasma Samples (n = 8)

IL-6 is a pluripotent cytokine produced by macrophages and lymphocytes with pro-
tumorigenic signaling abilities across different malignancies [48]. In cHL, IL-6 can be
found in various cells, including HRS cells confirmed by IHC and ISH methods [8,30]. We
have previously reported that the presence of >1% of IL-6 + non-malignant cells in the
tumor microenvironment is associated with poor prognosis in cHL [30], hence aligned with
current study result, identifying IL-6 as a distinguishing cHL protein increased in cHL
tissues. The weak correlation between PD-L1 and IL-6 observed in the current study is
further aligned with studies reporting that IL-6 can induce PD-L1 expression in tumor cells
and immune cells [30,49,50].

https://www.uniprot.org
http://www.proteinatlas.org
http://geneontology.org
https://www.cbioportal.org/
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CCL17 (also known as TARC) is produced by macrophages (M2 type), and dendritic
cells in the TME, and is mainly believed to recruit CCL4+ regulatory T-cells, promoting
an anergic TME [51]. CCL17 is a well-known biomarker in cHL and elevated in serum of
pretreated cHL patients [52], with predominance in patients with nodular sclerosis [53].
In cHL, CCL17 is expressed by HRS cells [7,8,14]. Our findings show an increase in cHL
tissue predominantly in patients with nodular sclerosis and a significant increase in plasma,
congruent with previous studies [53] of CCL17 in cHL, supporting the central role of CCL17
in the pathophysiology of cHL.

PD-L1 is a vital checkpoint ligand in several malignancies, with extensive evidence
regarding its expression on HRS cells and surrounding leukocytes in the TME of cHL [40,41].
Hence a critical finding in the current study was the increased PD-L1 levels in cHL tissues
compared with control tissues. We did not observe any significant differences for other
PD-L1 related proteins (PD-L2 and PDCD1) in plasma or tissues between cHL cases and
controls. However, PD-L1 levels correlated with several identified proteins increased in
cHL tissues, CCL4, CCL3, MCP-2, IL-6, GXMB, and IFN-gamma. Further, higher PD-L1
expression was observed in EBV+ cases, congruent with studies indicating that EBV can
drive increased expression of PD-L1 in cHL via complex mechanisms based on EBV-
associated proteins like LMP-1 [54,55]. The PD-L1 correlation with male sex found in the
current study has also been seen in non-small cell lung cancer but, to our knowledge, lacks
biological explanation [56].

LAG3 (Lymphocyte-activation gene 3) is a cell surface protein expressed on multiple
immune cells, including macrophages and T cells [57]. LAG3 is a critical checkpoint
inhibitor in the TME, described in various cancer forms, including cHL, with ongoing
clinical trials (ClinicalTrials.gov identifier: NCT02061761). IHC studies show that HRS
cells rarely express LAG-3 (5.2% of the cases). However, LAG-3+ leukocytes are frequently
found in the proximity of HRS cells [27,28]. In addition, a study by Abro et al. [29] found
that levels of LAG3 mRNA were 5–10-fold higher in cHL tissues compared with control
tissues and correlated with infiltration of CD4+-, CD8 +T cells and macrophages. In the
current study, we found an increase of LAG3 cHL tissues and plasma compared with
controls, aligned with previous evidence [29].

CCL3 (also known as MIP-1 alpha) is a protein with inflammatory properties that
recruit immunosuppressive phenotypes of macrophages to the TME [58,59]. In cHL, CCL3
mRNA is increased in cHL tissues compared with control tissues, especially in EBV +
cases [9]. Further, CCL3 is upregulated in tumor-associated macrophages (TAMs) [35].
In the current study, we found increased levels of CCL3 in both cHL tissues and plasma
compared with tissues and plasma from controls. Moreover, EBV+ cases had higher tissue
CCL3 levels in line with previous findings elsewhere [9]. Furthermore, we observed a strong
linear correlation between PD-L1 levels and CCL3, which has previously been observed in
other malignancies [60,61]. This may reflect a phenotypical subpopulation in the TME of
CCL3+, PD-L1+ immune cells or indicate that CCL3 mainly recruits immunosuppressive
PD-L1+ immune cells in the TME of cHL.

In the current study, IL-13, TNFSF4, and MMP12 were also observed to be elevated
in both cHL tissues and plasma compared with controls. However, studies on these
proteins are limited in cancer and particularly cHL. IL-13 is elevated in HRS cells [32,33]
and hypothesized to act as an autocrine growth factor for HRS cells [31,34]. TNFSF4
(also known as OX40L) is elevated and expressed by subtypes of T-helper cells in the
TME of cHL [37,38], but HRS lack expression [39]. MMP12, (also known as macrophage
metalloelastase, MME) is mainly involved in tissues remodeling and extracellular matrix
organization and is primarily produced by macrophages but lacks studies in cHL [62].

4.2. Proteins with Decreased levels in cHL Tissues (n = 2)

TIE2 (also known as angiopoietin-1 receptor) was decreased in cHL tissues compared
with control tissues. TIE2 interacts with ANPT1 and partially with ANPGT2 [63,64].
ANGPT2-TIE2 activation increases endothelial permeability and angiogenesis, favoring
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tumor progression, while ANGPT-1-TIE2 maintains membrane permeability and quiescent
vascular remodeling affecting tumor survival negatively [63,64]. Moreover, even if not
significant in present study, we observed that ANGPT1 was decreased in cHL tissues, while
ANGPT2 was increased (Table S2). To our knowledge, there is a lack of reports regarding
TIE-2 expression in cHL tissues.

IL-7, which is known to be produced by stromal cells as well as dendritic cells, plays
an essential role in the early stages of B-cell maturation [65] and T-cell maturation [66].
In cHL, IL-7 gene transcripts and proteins are elevated in HRS cells and in cHL patient
plasma [43,44] postulated to act as an autocrine growth factors. However, IL-7 can promote
survival of effector and memory T-cells [67], hence the role of IL-7 in cHL remains to
be determined.

4.3. Immunobiomarkers Elevated in cHL Tissues but Not Plasma (n = 7)

CCL4 (also known as macrophage inflammatory protein beta (MIP-1 beta)) is a se-
cretory protein with chemokine and inflammatory functions. Studies investigating CCL4
expression in cHL are limited [68]. CCL4 lacks expression in HRS cells but is upregulated in
TAMs found in cHL [35]. We observed a strong correlation between CCL4 and PD-L1 levels,
which may indicate that CCL4 plays an important role in recruiting PD-L1+ immune cells.

IFN-gamma is an inflammatory protein attributed to possessing antitumor effects
like recruiting effector T-cells [69]. However, effects such as modulating STAT signaling
systems and suppressing effector T-cells in the TME are also described, favoring tumor
progression [69]. Elevated levels of IFN-gamma in cHL have been reported using various
methods [8,9,36]. We observed that cHL tissues levels were higher in EBV+ cases. The
association between IFN-gamma and EBV+ cases remains unexplained but has been seen in
other malignancies as well [70]. Reports that IFN-gamma may induce PD-L1 expression are
widely emerging in different malignancies and seen in various tumor cell lines and immune
cells [49,71,72]. This is congruent with our observed correlation between IFN-gamma levels
and PD-L1 in cHL. MCP1 (also known as CCL2) is a monocyte-attracting cytokine in cancer
associated with TAMs [73]. The presence of MCP1 genome has been observed in cHL [42];
however, IHC studies are limited. MCP-2 (also known as CCL8) stimulates chemotactic
activity for various immune cells. In cHL, MCP2 gene expression is upregulated in HRS
cells [6]. In the current study, we observed an association between MCP2 and PD-L1 levels
in cHL tissues suggesting that MCP-2 recruits PD-L1 immune cells. MCP-4 (also known as
CCL13) is involved in several biological processes such as chemotactic activity for T-cells,
monocytes, and eosinophils [74]. In cHL, MCP-4 is expressed by macrophages, dendritic
cells, and HRS cells [7]. There are currently limited studies on MCP4 roles in cancer and
particularly in cHL. GZMB [47] and CD70 [45,46] were further two proteins identified
distinguishing cHL tissue from controls, their pathophysiological role in cHL is unknown
and warrants further investigation.

4.4. General Comments Regarding the Identified Proteome Profile

Since plasma protein patterns are more prone to be affected by multiple organs and
are unclear in their implication in the TME, the focus of this study has been centralized
regarding the proteome profile in cHL tissue. However, the study failed to identify an
apparent correlation of why some proteins were expressed differently in both tissue and
plasma while others were not (see Table 3).

However, the discrepancy in the numbers of identified proteins in plasma compared
with tissue could be explained by the tissue controls, which were lymph nodes diagnosed
with reactive lymphadenopathy. A reactive inflammation in these lymph nodes may
increase several inflammatory proteins that overlap with the pathophysiology in the TME
of malignancies and contribute to the reduced differences in protein levels compared with
cHL tissue. This particularly resonates with the fact that most pre-selected proteins in the
current study have known functions in the natural immune response. In addition, plasma
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protein levels could be affected by other sources in the body, as discussed above, and hence
not completely reflect the protein composition of the tissues.

Most of the identified proteins in the current study have been studied across different
malignancies and to a certain degree in cHL, but we also identified several markers with
limited studies in cHL (MMP12, CD70, IL-7, MCP-4, TIE2, IL-13, TNFSF4, and GZMB,
Table 3). In addition, several proteins identified distinguishing cHL tissues from control
tissues are known to be associated with macrophages in either their source of production
or ability to recruit macrophages (MCP-1, MCP-2, MCP-4, IL-6, MMP12, CCL3, and CCL4).
This could be expected since macrophages are a source for chemokines and cytokines, and
several studies reports an adverse prognostic outcome for high proportions of TAMs in
the TME of cHL [75–77]. Moreover, six proteins (CCL3, MCP-2, IFN-gamma, Granzyme
B, IL-6, and CCL-4) were correlated with PD-L1 levels in cHL tissues, which is congruent
with the extensive evidence regarding the role of PD-L1 in cHL [40,41].

4.5. Study Limitations and Strengths

Most of the 17 identified distinguishing proteins in cHL tissues have been investigated
to different degrees in cHL, while others have been studied to a lesser extent (see Table 3).
Adding additional IHC analysis to the current study would help re-validate many of these
proteins and shed light on their spatial distribution in the TME. Another limitation is that
we used lymph nodes diagnosed with reactive lymphadenopathy, hence similar biological
mechanisms could be involved in reactive lymph node and malignant processes, and as
mentioned before, would explain why plasma discrepancies between cHL and controls were
more apparent (30/92) compared with tissues (17/92). On the other hand, this could also
be a strength since it would identify the most specific biomarkers for malignant processes
compared with benign inflammation processes. However, it would be of additional value
to include healthy lymph nodes.

Moreover, the limited number of patient biofluids, n = 27 (tissues) and n = 26 (plasma)
make the study results vulnerable. The unique character of this study is the usage of
multiplex PEA, with several advantages as described previously [21], including its accuracy
to detect low abundance proteins. Moreover, a strength of the study is the usage of reactive
lymph nodes as controls. The handling of values below LOD can be addressed in different
ways, replacing values below LOD with LOD, LOD/SQRT2, or using actual data, even
though below LOD [78]. All three methods were used in the current study (data only shown
for the first method) and did not show any difference in the outcome of study results.

5. Conclusions

We found 17 proteins that separate cHL tissues from control tissues, eght of these pro-
teins (PD-L1, IL-6, CCL17, IL-13, CCL3, TFNSF4, MMP12, and LAG3) were also increased
in plasma. In addition, several identified immune biomarkers (IL-6, MCP-2, CCL3, CCL4,
GZMB, and IFN-gamma) correlated with PD-L1 levels in cHL tissues. Our results thus
deepen our insights regarding proteome profile of immune-markers in cHL and introduce
new potential targets in an era of personalized medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14010009/s1, Table S1: Abbreviations for biomarkers in the Olink Immuno-Oncology
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plasma; Table S4: Clinical correlations; Table S5: Correlations among cHL tissue distinguishing proteins.
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