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Abstract: Evidence has shown that protein supplementation following resistance exercise training
(RET) helps to further enhance muscle mass and strength. Studies have demonstrated that collagen
peptides containing mostly non-essential amino acids increase fat-free mass (FFM) and strength in
sarcopenic men. The aim of this study was to investigate whether collagen peptide supplementation
in combination with RET influences the protein composition of skeletal muscle. Twenty-five young
men (age: 24.2 ± 2.6 years, body mass (BM): 79.6 ± 5.6 kg, height: 185.0 ± 5.0 cm, fat mass (FM):
11.5% ± 3.4%) completed body composition and strength measurements and vastus lateralis biopsies
were taken before and after a 12-week training intervention. In a double-blind, randomized design,
subjects consumed either 15 g of specific collagen peptides (COL) or a non-caloric placebo (PLA)
every day within 60 min after their training session. A full-body hypertrophy workout was completed
three times per week and included four exercises using barbells. Muscle proteome analysis was
performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). BM and FFM increased
significantly in COL compared with PLA, whereas no differences in FM were detected between
the two groups. Both groups improved in strength levels, with a slightly higher increase in COL
compared with PLA. In COL, 221 higher abundant proteins were identified. In contrast, only 44
proteins were of higher abundance in PLA. In contrast to PLA, the upregulated proteins in COL were
mostly associated with the protein metabolism of the contractile fibers. In conclusion, the use of RET
in combination with collagen peptide supplementation results in a more pronounced increase in BM,
FFM, and muscle strength than RET alone. More proteins were upregulated in the COL intervention
most of which were associated with contractile fibers.
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1. Introduction

Skeletal muscle is a dynamic tissue that adapts to external conditions and reacts to acute and
long-term physical activity and feeding conditions [1]. Maintenance of muscle mass is not only
important for athletes, but also for health and aging [2]. In particular, resistance training using a
repeated high-weight stimulus optimizes the preservation of muscle mass that is correlated with body
strength [3]. The underlying mechanism of adaptation is an increase in muscle protein synthesis
(MPS) stimulated through mechanical load, which can be further augmented by additive protein
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supplementation [4]. Amino acids are required for protein synthesis. Leucine, a branched-chain amino
acid (BCAA), has been shown to be a prerequisite stimulator of the mammalian target of rapamycin
(mTOR) signaling pathway, which plays a critical role in MPS [5,6].

Besides the contractile muscle components, passive tissues like bone, cartilage, ligaments, and
tendons also adapt to resistance training [7]. In this context, Mackey et al. [8] showed that the synthesis
of collagen in fibroblasts behaves similarly to MPS after a single bout of resistance training. Collagen is
the most represented protein in the human body (30% of the protein concentration). It is an important
element of the extracellular matrix (ECM) of skeletal muscle and tendons and is mainly responsible for
their functionality in terms of force transmission, flexibility, and adaptation [9]. Thus, to ensure muscle
fiber strength transmission, the ECM structures need to adapt in response to resistance training.

The benefit of collagen supplementation on collagen synthesis regarding tendon architecture has
been demonstrated by various studies through the analysis of injured participants [10,11]. Studies
have reported less joint pain perception after collagen peptide supplementation in healthy active
participants and in patients with osteoarthritis [12–17], which could be of interest for those involved
in elite sport. Clifford et al. [18] reported a faster recovery from jumping exercise and a tendency to
reduce muscle soreness after collagen supplementation.

The beneficial effects of collagen supplementation on passive structures are associated with higher
muscle strength following an improvement in force transmission. A study by Zdzieblik et al. [19] was,
to the best of our knowledge, the first study to find a positive effect of collagen supplementation on
strength and body composition. In a double-blind controlled trial, 53 elderly men (age: 72.2 ± 4.7
years) completed a 12-week resistance training intervention in combination with supplementation
with 15 g of collagen or a placebo, resulting in significantly higher gains in fat-free mass (FFM) and
muscle strength in the collagen peptide group. However, the underlying mechanism by which collagen
peptides act on muscle protein metabolism remains unclear. Collagen is rich in non-essential amino
acids, like proline and glycine, and relatively poor in essential amino acids like leucine, the main
trigger for MPS.

Proteomic analysis methods have been increasingly developed and used to provide insight into
molecular pathways and analyze responses to physical activity or nutrients [20–23]. The advantage
of proteomic analysis based on mass spectrometry is the large number of proteins identified, which
provides information about all processes with no need to select specific pathways.

To obtain novel information about long-term adaptations and changes in protein content in
response to collagen hydrolysate supplementation in combination with hypertrophy resistance
training, we designed a double-blind, randomized, placebo-controlled trial and analyzed muscle
proteome before and after a 12-week intervention.

2. Materials and Methods

2.1. Experimental Design

The purpose of this double-blind, randomized, placebo-controlled trial was to investigate the
effects of 12 weeks of hypertrophy resistance training combined with collagen supplementation on the
proteome of the skeletal muscle. As this was part of a larger investigation project, other parameters,
like immune histochemical or transcriptome analysis, were analyzed but will be the content of future
publications [24]. In this trial, participants completed a 12-week progressive hypertrophy training
intervention period with three controlled training sessions per week. All supervised training sessions
included the following exercises in different orders: squat (SQ), dead lift (DL), bench press (BP), rowing
(R) with barbells, and knee extensions. After a standardized warm-up, one set of 10 repetitions at 50%
of the participant’s 1-repetition maximum (RM) was performed followed by three sets of 10 repetitions
at 70% 1-RM with a 2 min break between sets.

Before and after each intervention period, which contained at least 32 training sessions over
12 weeks, three standardized test days were completed. The test protocols included anthropometric
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measurements, isokinetic strength testing, 1-RM-testing, and muscle biopsies. A timeline of the test
days including muscle biopsies is shown in Figure 1.
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Figure 1. Flow chart describing the experimental design. Pre- and post-testing consisted of three test
days (TD1–3) separated by a 12-week intervention period with collagen or placebo supplementation
each day and hypertrophy resistance training three days per week. MViC: Maximal voluntary isometric
contraction; RM: Repetition Maximum.

During the intervention period, a three-day self-reported nutrition diary was used to evaluate the
nutritional intake of the participants. The documentation included three consecutive days, including
one day on the weekend and two days during the week. The diaries were evaluated to assess daily
calories, carbohydrate, fat, and protein intake with PRODI® 6.0 (Nutri-Science GmbH, Freiburg,
Germany).

2.2. Participants

Twenty-five healthy sports students participated in the study. To be included in the study,
participants had to have basic knowledge of the technical skills required for barbell use, and they had
to reach a squat performance of at least 100% of their own body weight. Participants were randomly
assigned either to the collagen peptide (COL) (n = 12) or placebo (PLA) (n = 13) group.

The sample size of n = 25 (COL: n = 12, age: 24.4 ± 2.3 years, body height: 185.8 ± 5.0 cm, body
mass: 81.4 ± 6.6 kg; PLA: n = 13, age: 23.9 ± 2.9 years, body height: 184.3 ± 5.0 cm, body mass: 77.9 ±
4.1 kg) was used for the experimental trial proteome analysis. Subjects were informed about the study
design and possible risks and provided their written informed consent. None of them had any health
restrictions that were expected to influence the results. The Ethical Advisory Committee of the sport
science faculty of the Ruhr-Universität Bochum approved the study protocol.

2.3. Supplementation

The supplement administered to the intervention group (n = 12) contained 15 g collagen hydrolysate
provided by GELITA AG (Bodybalance™, Eberbach, Germany), whereas the subjects in PLA (n = 13)
received a non-caloric silicon dioxide supplement. The participants consumed the collagen supplement
or placebo daily during the 12-week intervention period. On training days, the supplement was
consumed dissolved in 250 mL water under observation immediately after each training session.
Participants were instructed not to consume additional caloric foods and beverages within 60 min after



Nutrients 2019, 11, 1072 4 of 18

finishing training to avoid any cross interactions. On days without training, the supplement was taken
at a similar time point to distribute the intake and allow about 24 h between ingestions.

2.4. Test Protocols

Three different test days were absolved in the same order and on the same weekday before and
after the intervention period (Figure 1). Following a 12-h fasting period, total body mass (BM), fat-free
body mass (FFM), and fat mass (FM) were determined using a bioelectrical impedance analysis system
(InBody 770, JP Global Markets GmbH, Eschborn, Germany). After a small self-prepared breakfast,
1-RM testing was performed using the method described by Kreamer et al. [25] for SQ, DL, BP, and R.

After a familiarization session, leg extension maximal voluntary isometric contraction (MViC)
testing was performed using only the right leg with a 60◦ knee flexion angle on a dynamometer (Isomed
2000, D and R GmbH, Hemau, Germany).

Before the participants completed the last test day, three training sessions were performed at 50%
1-RM to learn the training procedures. The first training session at 70% 1-RM was completed on the
third test day combined with muscle biopsies.

After a 12-h fasting period, participants provided a venous blood sample and then consumed a
standardized breakfast provided by the investigators. To detect non-responders, a venous blood sample
was again taken 2 h after supplement ingestion to determine the concentration of hydroxyproline, an
amino acid that frequently appears in collagen hydrolysate [10,26]. Next, a muscle biopsy was taken
standardized percutaneously from the vastus lateralis muscle of the right leg under local anesthesia
(Xylocitin® 2% with Epinephrine, mibe GmbH, Brehna, Germany) with a 5 mm Bergstrøm needle,
as described previously [27]. Muscle samples were cut into a coherent piece of approximately 30 mg
and immediately frozen as native tissue in cooled liquid nitrogen and stored at −80 ◦C until proteome
analysis. Immediately after the muscle biopsies, the participants performed a training session at 70%
1-RM followed by ingestion of the collagen or placebo supplement. Two hours later, another blood
sample was collected and a muscle biopsy was performed. The second muscle biopsy was taken 3 cm
proximal to the previous cut from the same leg. The proteome analysis was performed with the muscle
sample collected before training in the fasted state to analyze longitudinal differences.

2.5. Proteomics

Muscle samples (25–50 mg) were pulverized in liquid nitrogen and homogenized on ice and
resuspended in urea buffer (7 M urea, 2 M thiourea, 20 mM Trisbase pH 8.5) to produce an accurate
lysis. Resuspended samples were sonicated 6 times for 10 s each, with 10 s rest on ice to support the
lysis process. The protein concentration was determined using the Bradford assay.

In solution, digestion with trypsin was conducted as described in Winter et al. [28]. Briefly, samples
were reduced with dithiothreitol (DTT) for 20 min at 56 ◦C and alkylated at room temperature (RT)
using iodoacetamide (IAA). Trypsin was added in a sample/enzyme ratio of 1:40. Digestion occurred
overnight at 37 ◦C and was stopped by acidification. The peptide concentration was determined by
amino acid analysis.

We used 200 ng of peptides from each sample for label-free quantitative liquid
chromatography-mass spectrometry (LC-MS) analysis. Liquid chromatography was performed
on an UltiMate 3000 RSLC nano LC system (Dionex, Idstein, Germany), as described in Winter et
al. [28]. The high-performance liquid chromatography (HPLC) system was online-coupled to the
nano electrospray ionization (ESI) source of a Q Exactive mass spectrometer (Thermo Fisher Scientific,
Schwerte, Germany). In the ESI-tandem mass spectrometry (MS/MS) analysis, full MS spectra and
MS/MS scans were recorded, as described in Chen et al. [29].

Progenesis Software (Progenesis QI for Proteomics, Nonlinear Dynamics Ltd., Newcastle upon
Tyne, UK) was used for the quantification of peptides. The data were analyzed as described in Winter
et al. [28]. Spectra were identified by the Mascot search engine (version 2.5, Matrixscience, London,
UK) using the SwissProt part of the UniProtKB [30] for homo sapiens (release 2017_6, containing
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20,206 entries and decoys). Decoys were generated by the DecoyDatabaseBuilder for each protein [31].
The mass tolerance was set to 5 ppm for precursor ions and 20 mmu for fragment ions. Due to the
sample preparation steps, carbamidomethylation of cysteine was set as a fixed modification, and
oxidation of methionine was set as a variable modification. Two tryptic miscleavages were considered
in the analysis. The peptide identifications were imported into Progenesis (Nonlinear Dynamics Ltd.,
Newcastle upon Tyne, U.K.) and assigned to the respective features. Progenesis uses the principle of
protein grouping, when one peptide cannot unambiguously be assigned to one single protein, but
is unique for a group of proteins. In the case of protein grouping, only the first accession was used
for protein assignment and for the evaluation of the results. Nevertheless, all assigned accessions are
reported in the respective tables and materials.

False discovery rate (FDR) was estimated separately for each search using the Protein Inference
Algorithm (PIA) [32–34]. Here, the Mascot Ion Score thresholds for 1% FDR were determined and
taken as cut off values for peptide identification. Proteins quantified with an ANOVA p value ≤ 0.05
were considered to be significantly differently expressed and were used for further evaluation.

2.6. Statistical Analysis

Data are presented as means and standard deviations. Statistical analyses were performed using
the statistical program SPSS Statistics 25 (IBM, Armonk, New York, USA). The Kolmogorov–Smirnoff

test was used to test the normal distribution of variables (differences). A two-way ANOVA with
repeated measurements (time × treatment) was used to analyze significant differences between groups
over time. If the ANOVA showed a significant effect (p ≤ 0.05), post-hoc tests were performed using
paired t-tests (pre vs. post), and t-tests were used for independent samples to detect differences
between groups. The level of statistical significance was set at p ≤ 0.05 and this was alpha-adjusted
(Bonferroni correction).

Cut-off values for proteins that were significantly regulated between the two groups were
determined by a fold change (FC) of at least 1.5 and a q value ≤ 0.05 (corrected ANOVA p value in
accordance with Benjamini Hochberg) [35,36]. For further analysis, PANTHER (http://www.pantherdb.
org/) (University of Southern California, Los Angeles, CA, USA) free analysis tools were used for Gene
Ontology categorization and pathway analysis [37].

3. Results and Discussion

The analysis of the blood samples revealed significant increases in hydroxyproline for each
participant in COL two hours after ingesting the collagen peptide (pre: 33.3 ± 19.7 µmol/L, post: 95.8 ±
27.1 µmol/L; p ≤ 0.0125) compared to participants in the PLA group (pre: 14.4 ± 6.4 µmol/L, post: 14.3
± 11.3 µmol/L; p = 0.956), indicating that all subjects were able to absorb the hydrolyzed collagen [10].

The dietary assessment showed no differences in caloric intake or macronutrients between the
groups. The average protein intake over three days including the supplement was 135.1 ± 29.0 g/day
in COL and 145.8 ± 52.7 g/day in PLA (p = 0.557), representing an adequate and equal protein intake of
1.66 g/kg/day (COL) and 1.86 g/kg/day (PLA).

At the beginning of the 12-week intervention period, no statistical differences existed between
COL and PLA for any anthropometric or strength parameter (Table 1). From pre to post (main effect p ≤
0.05) the whole cohort increased significantly in all parameters. ANOVA with repeated measurements
showed significant interaction effects (p ≤ 0.05) for BM, FFM, and R, and trends for an interaction effect
for SQ (p = 0.073), BP (p = 0.099), and MViC (p = 0.066), which increased slightly more in COL than in
PLA, respectively. FM and DL showed no interaction effect between groups. Post-hoc t-tests with the
Bonferroni correction (to p ≤ 0.0125) revealed no significant differences between groups in BM, FFM,
and R after 12 weeks. FFM only increased in COL, whereas no difference was found in PLA.

http://www.pantherdb.org/
http://www.pantherdb.org/
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Table 1. Results for body mass (BM), fat mass (FM), fat free mass (FFM), the squat test (SQ), dead
lift (DL), bench press (BP), rowing (R), and isometric strength testing (MViC) before and after the
12-week intervention period. Data are presented for the collagen and placebo groups (means ± SD) as a
pre- and post-test comparison. Statistical significance for interactions as determined by ANOVA was
considered as p ≤ 0.05, and the level of significance for the post-hoc t-tests was set at p ≤ 0.0125 after
Bonferroni correction.

Characteristic
Collagen Group (n = 12) Placebo Group (n = 13) Interaction Post-Test Difference

between Groups

Pre Post Pre Post p Value p Value

BM (kg) 81.4 ± 6.6 84.4 ± 6.3 * 77.9 ± 4.1 79.4 ± 5.1 * 0.035 n.s. (0.039)
FM (kg) 10.3 ± 3.6 10.9 ± 4.1 * 8.4 ± 2.2 9.4 ± 2.4 * n.s. (0.534) -

FFM (kg) 71.2 ± 5.7 73.8 ± 5.3 * 69.6 ± 4.0 70.3 ± 4.3 * 0.014 n.s. (0.080)
SQ (kg) 114.3 ± 20.2 140.8 ± 24.3 * 108.7 ± 8.3 126.3 ± 13.9 * n.s. (0.073) n.s. (0.084)
DL (kg) 131.7 ± 19.6 156.3 ± 21.2 * 128.0 ± 15.6 143.9 ± 10.6 * n.s. (0.234) -
BP (kg) 80.4 ± 14.0 94.4 ± 15.6 * 84.4 ± 13.9 94.2 ± 10.2 * n.s. (0.099) n.s. (0.987)
R (kg) 85.0 ± 11.3 98.3 ± 12.6 * 91.2 ± 8.9 97.3 ± 8.1 * 0.025 n.s. (0.812)

MViC (nM) 294.3 ± 56.3 323.6 ± 72.1 * 260.7 ± 25.0 275.2 ± 31.3 * n.s. (0.066) n.s. (0.059)

* significantly different to pre-test (post-hoc paired t-test with Bonferroni correction to p ≤ 0.0125). n.s. =
not significant.

Considering the differences between groups, delta values from pre to post are given in Table 2.
Individuals in COL gained significantly more BM and FFM in contrast with those in PLA. Individuals
in COL had a significantly higher strength increase in R compared to those in PLA (Table 2).

Table 2. Differences (mean ± SD) in post-test values between the collagen (COL) group and placebo
(PLA) group in body mass (BM), fat mass (FM), fat free mass (FFM), the squat test (SQ), dead lift
(DL), bench press (BP), rowing (R), and isometric strength testing (MViC) before and after the 12-week
intervention period. Unpaired t-tests were used to detect differences between both groups after the
intervention (level of significance was set to p ≤ 0.05).

Exercise
Collagen Group Placebo Group Unpaired t-test

Delta Delta p value

BM (kg) 3.01 ± 2.01 1.50 ± 1.29 0.035
FM (kg) 0.58 ± 1.47 0.90 ± 1.09 n.s. (0.534)
FFM (kg) 2.56 ± 2.22 0.70 ± 1.14 0.014
SQ (kg) 26.5 ± 13.2 17.6 ± 9.9 n.s. (0.073)
DL (kg) 24.5 ± 19.1 15.9 ± 13.9 n.s. (0.234)
BP (kg) 14.0 ± 6.6 9.8 ± 5.5 n.s. (0.099)
R (kg) 13.3 ± 8.7 6.1 ± 5.8 0.025
MViC (nM) 29.4 ± 22.9 14.5 ± 14.3 n.s. (0.066)

n.s. = not significant.

The study by Zdzieblik et al. [19] showed a clear improvement in isokinetic quadriceps strength,
a greater loss in FM and higher gains in FFM in 26 sarcopenic older men supplementing 15 g collagen
peptides per day during a 12-week training intervention compared with a placebo group (n = 27). In our
study, FFM also increased to a higher extend in COL compared with PLA, while strength only slightly
increased further in COL compared with PLA, suggesting that mechanisms are more pronounced in
the elderly populations than in younger healthy men. Because collagen has a high impact on tendon
tissues [10,11], it is possible that exercises that stimulate reactive power of the tendons would have
shown clearer effects of collagen peptide supplementation [18]. The strength tests used in this study
only slightly depend on reactive forces and might therefore have underestimated possible effects of the
supplement on tendon tissues. Another part of our study analyzed the muscle fiber cross-sectional
area and showed no differences between groups [24], underpinning the hypothesis that adaptations
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induced by collagen supplements do not affect the muscle cell per se but structural components of
muscle tissue surrounding the cells.

Overall comparisons of 1377 proteins or protein groups (proteins and protein groups are referred
to as “proteins” in the following text for better readability) were quantified in our analysis using
Progenesis QI for proteomics.

The baseline data of the two groups were compared against each other to identify any differences
on the proteomic level due to the cohort composition itself, to prevent possible data misinterpretation
due to cohort variability. In total, three proteins were significantly increased in PLA compared with
COL prior the intervention due to biological variability (Table 3). In COL, no higher abundant proteins
could be identified compared with PLA. In order to avoid possible influences of the different baseline
values, these proteins were excluded from further data analysis.

Table 3. Upregulated proteins in the collagen (COL) and placebo (PLA) group showing baseline
differences before the intervention.

UniProt Gene Name Protein Description Fold Change (FC)
Collagen Placebo

Only upregulated in COL before 12 weeks

- - -

Only upregulated in PLA before 12 weeks

P10636 MAPT Microtubule-associated protein tau - 1.63
P02144 MB Myoglobin - 1.71
P09493 TPM1 Tropomyosin alpha-1 chain - 1.52

The distribution of regulated proteins before and after 12 weeks of resistance training and
supplementation differed; there were 17 downregulated proteins in COL compared to 18 downregulated
proteins in PLA, of which 9 proteins appeared in both groups (Figure 2a). We found that 293 proteins
were highly regulated in COL after the 12-week intervention, of which 72 were also of higher abundance
in PLA. These changes thus resulted from the hypertrophy training intervention. Hence, 221 proteins
were only upregulated in COL compared to 44 proteins in PLA, showing a pronounced difference
in the number of upregulated proteins between the two groups (Figure 2). The direct comparison
between COL and PLA after 12 weeks of supplementation and resistance exercise training revealed no
significant different proteins.
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For a deeper proteomic characterization of our data set Gene Ontology (GO) categorization was
performed using PANTHER (default settings using Fisher’s exact and FDR-correction) in respect to
three different aspects: Cellular components, biological processes, and molecular functions [37]. To
provide a better overall view of the large number of hits, the REVIGO tool [38] was used to sum classes
ranked by FDR (Figure 3a–c). The downregulated proteins (Figure 2a) were not considered because
the low number (PLA = 9; COL = 8) of hits was not appropriate for group allocations.
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Higher abundant proteins in the intersection (Figure 2b) were assigned to GO categories often
found in response to resistance training. For example, upregulated proteins in the GO category
“biological processes” (Figure 3a) included the response to cytokines or protein modifications, which
are in line with other study outcomes [39,40]. No subclass of the aspects “molecular functions” and
“cellular components” showed specific categories associated with skeletal muscle. Upregulated proteins
in PLA showed no direct association with the skeletal muscle system, although the upregulated proteins
in PLA in the biological processes category that could be classified into organonitrogen compound
metabolic processes and nitrogen compound metabolic processes indicated some responses to an
amino acid stimulus (Figure 3c).

In contrast, annotation of upregulated proteins of COL included those associated with GO
biological processes related to the skeletal muscle (muscle contraction and muscle system process) and
protein modifications (protein ubiquitination, protein modification by small protein conjugation or
removal) (Figure 3b).

The annotated GOs for cellular components were similar in COL and PLA: extracellular parts,
cytoplasm, intracellular, and vesicles. However, PLA contained a higher number of upregulated
proteins associated with the terms mitochondria and mitochondrial matrix (Figure 3c), and COL had
a few upregulated proteins related to the GO category supramolecular fibers, which are superior to
contractile fibers (Figure 3b).

The GOs belonging to molecular function in COL also included categories directly related to
the skeletal muscle fiber structure, like cytoskeletal protein binding and the structural constitution of
muscle. Upregulated proteins in PLA were assigned with general categories, such as catalytic activity
and coenzyme binding, with respect to their molecular function.

Overall, COL showed a strong association with annotations spanning contractile muscle fiber
(sarcomere or cytoskeleton) in all three GO categories, whereas PLA showed none of them or not enough
regulated proteins to form a category. To summarize, we observed considerable differences in the
protein response due to collagen supplementation, as both groups performed the same training protocol.

A pathway analysis was performed using PANTHERs overrepresentation test with default
settings and the “Reactome pathways” annotated data set. The main categories of significant regulated
pathways (Cut off values: FDR ≤ 0.01, fold enrichment score ≥ 2.00 and at least three or more proteins
assigned) are presented in Figure 4. Most pathways were annotated to cell cycle, signal transduction,
metabolism of proteins and immune system. Selected pathways that are relevant in the context
of exercise training and adaptation according to the literature are listed in Table 3 (complete list
in supplemental Table S1). COL showed 192 pathways that are significantly overrepresented. In
comparison, only one pathway was assigned to PLA according to the cut-off criteria, which was
“metabolism” (fold enrichment = 3.70; FDR = 4.75 × 10−3).
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Overrepresented pathways in COL showed many responses characteristic to exercise training and
adaptation (Table 4). Of 192 significant pathways, 31 pathways were assigned to signal transduction.
Several mitogen-activated protein kinases (MAPK) pathways were overrepresented that have been
reported before in human skeletal muscle, after cycling or running exercise [41,42]. MAPK cascades
are activated through cellular stress such as muscle contraction and exercise. In particular, MAPK1 and
MAPK3, also known as extracellular-signal regulated kinase (ERK) 2 and 1, are the key components
of the MAPK/ERK cascade, which regulates cell growth and differentiation through influencing
transcription, translation, and cytoskeleton structure [43]. Furthermore, signal transduction through
protein kinase B (Akt) is upregulated in COL. The Akt/mTOR pathway is one of the most researched
pathways on cell growth and is regarded as the main regulator of hypertrophy [44]. As expected after
exercise, the immune system response increased cytokine signaling through interleukins to improve
the regeneration process [45]. The metabolism of proteins belongs mainly to translational processes
and protein folding, especially for cytoskeletal proteins. Overrepresented metabolic pathways are
mainly glycolytic energy metabolism associated pathways as expected according to the chosen training
stimulus [46].

Table 4. Overrepresented pathways in the collagen (COL) group after 12 weeks of resistance training
and supplementation. Main categories are shown with the number of annotated pathways and
downstream pathways with the calculated fold enrichment and false discovery rate (FDR).

Pathway Number of
Pathways Fold Enrichment FDR

Cell Cycle 47

Signal Transduction 31
PIP3 activates AKT signaling 3.98 3.56 × 10−3

MAPK family signaling cascades 5.22 7.42 × 10−6

MAPK6/MAPK4 signaling 9.65 1.47 × 10−5

MAPK1/MAPK3 signaling 6.09 1.63 × 10−6

RAF/MAP kinase cascade 6.22 1.37 × 10−6

Regulation of RAS by GAPs 12.63 2.48 × 10−6

Immune System 27
MAP kinase activation 7.57 7.58 × 10−3

Cytokine signaling in immune system 3.71 7.00 × 10−7

Signaling by Interleukins 4.25 2.51 × 10−6

Interleukin-1 family signaling 7.66 8.30 × 10−6

Interleukin-1 signaling 10.39 8.47 × 10−7

MAP3K8 (TPL2)-dependent MAPK1/3 activation 17.89 9.74 × 10−3

Interleukin-12 family signaling 6.70 3.23 × 10−2

Metabolism of Proteins 23
Translation 3.91 1.13 × 10−3

Eukaryotic translation elongation 9.14 2.11 × 10−5

Eukaryotic translation initiation 6.42 7.41 × 10−4

Eukaryotic translation termination 6.16 6.39 × 10−3

Protein folding 7.63 2.41 × 10−4

Post-chaperonin tubulin folding pathway 17.35 1.79 × 10−3

Cooperation of prefoldin and TriC/CCT in actin
and tubulin folding 17.89 3.86 × 10−5

Formation of tubulin folding intermediates by
CCT/TriC 19.09 1.90 × 10−4

Prefoldin mediated transfer of substrate to
CCT/TriC 21.21 1.74 × 10−5

Post-translational protein modification 2.61 1.89 × 10−6

UCH proteinases 11.93 1.04 × 10−7

Deubiquitination 5.08 1.00 × 10−5
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Table 4. Cont.

Pathway Number of
Pathways Fold Enrichment FDR

Metabolism 15
The citric acid (TCA) cycle and respiratory electron

transport 8.27 1.08 × 10−7

Pyruvate metabolism and citric acid (TCA) cycle 8.84 4.29 × 10−3

Pyruvate metabolism 12.72 4.76 × 10−3

Respiratory electron transport, ATP synthesis by
chemiosmotic coupling, and heat production by
uncoupling proteins

7.76 2.13 × 10−5

Respiratory electron transport 7.63 2.42 × 10−4

Metabolism of amino acids and derivatives 6.8 4.19 × 10−11

Histidine, lysine, phenylalanine, tyrosine, proline
and tryptophan catabolism 10.37 2.29 × 10−3

Glyoxylate metabolism and glycine degradation 12.31 5.25 × 10−3

Gluconeogenesis 11.57 6.32 × 10−3

Cellular Response to external stimuli 11
Cellular responses to stress 6.31 1.04 × 10−10

Cellular response to hypoxia 12.72 7.28 × 10−7

Oxygen-dependent proline hydroxylation of
HIF-1α 14.46 3.37 × 10−7

Cellular response to heat stress 13.16 5.52 × 10−8

HSF1 activation 39.77 1.15 × 10−5

HSF1-dependent transactivation 31.81 9.12 × 10−8

Attenuation phase 34.08 1.98 × 10−5

Regulation of HSF1-mediated heat shock response 7.12 9.56 × 10−3

HSP90 chaperone cycle for steroid hormone
receptors (SHR) 13.63 6.36 × 10−6

Metabolism of mRNA 11

Developmental Biology 6

Gene Expression 6

Muscle Contraction 3
Striated muscle contraction 23.86 8.26 × 10−8

Smooth muscle contraction 10.91 7.55 × 10−3

Others 12
CREB phosphorylation through the activation of

CaMKII 19.09 5.28 × 10−3

Cellular response to external stimuli pathway, showed downstream cascades responding to
stress, hypoxia and heat stress. Hypoxia inducible factor alpha 1 (HIF-1) is regulated through muscle
oxygen concentration that decreased during exercise or injury. HIF-1 stimulates via erythropoietin
(EPO) myoblast proliferation and muscle recovery after injury and is important for muscle repair
and regeneration [47]. Furthermore, heat shock transcription factor 1 (HSF1) is present in multiple
pathways. HSF1 acts as the major transcription factor in human muscle cells in response to stress.
Striated and smooth muscle contraction pathways are also significantly overrepresented after 12 weeks
of strength training and collagen supplementation.

To create an initial understanding of the related mechanisms, proteins belonging to the term
contractile fibers (assigned according to PANTHER) were further analyzed, since proteins of this
category were detected in both groups. Only two proteins from 44 differentially upregulated proteins
of PLA were assigned to this type, in COL 26 out of 221 higher abundant proteins were annotated
to the term contractile fibers (Table 5 and Table S2). One of the upregulated proteins in PLA was
alpha-crystallin B chain, which often increases to protect the cytoskeleton and myofibril structure after
muscle damage caused by eccentric exercise [48]. The other protein belonging to this term detected
in PLA was leiomodin-2, which promotes the polymerization of actin filaments in skeletal muscle
cells [49].
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Table 5. Upregulated proteins belonging to the GO category “contractile fibers” in the collagen (COL) and placebo (PLA) groups.

UniProt Gene Name Protein Description Fold Change FDR

Only upregulated in COL after 12 weeks of training

P35609 ACTN2 Alpha-actinin-2 1.57 0.006
Q9GZV1 ANKR2 Ankyrin repeat domain-containing protein 2 1.62 0.025
O95817 BAG3 BAG family molecular chaperone regulator 3 1.87 0.004
O00499 BIN1 Myc box-dependent-interacting protein 1 1.79 0.000
P17661; P07197 DESM Desmin 1.70 0.002
O00757 F16P2 Fructose-1,6-bisphosphatase isozyme 2 1.51 0.020

Q96A32 MLRS Myosin regulatory light chain 2, skeletal muscle
isoform 1.70 0.007

P13535 MYH8 Myosin-8 2.55 0.047
P05976; Q15111 MYL1 Myosin light chain 1/3, skeletal muscle isoform 1.61 0.009
Q9UBF9 MYOTI Myotilin 1.51 0.008
O14974 MYPT1 Protein phosphatase 1 regulatory subunit 12A 1.54 0.021
Q53GG5 PDLI3 PDZ and LIM domain protein 3 1.93 0.000
P60900 PSA6 Proteasome subunit alpha type-6 1.56 0.017
Q9UHP9 SMPX Small muscular protein 2.03 0.000
A8MU46 SMTL1 Smoothelin-like protein 1 2.05 0.003

P23327 SRCH Sarcoplasmic reticulum histidine-rich
calcium-binding protein 1.96 0.003

Q9H7C4 SYNCI Syncoilin 1.51 0.026
O15061 SYNEM Synemin 1.57 0.003
Q8N3V7 SYNPO Synaptopodin 1.82 0.016
Q9NZQ9 TMOD4 Tropomodulin-4 1.92 0.002
P02585; P27482 TNNC2 Troponin C, skeletal muscle 1.98 0.002
P48788 TNNI2 Troponin I, fast skeletal muscle 1.98 0.006
P07951; O75330 TPM2 Tropomyosin beta chain 1.88 0.000
P06753 TPM3 Tropomyosin alpha-3 chain 2.07 0.004
Q9BYV2 TRI54 Tripartite motif-containing protein 54 2.15 0.033

Only upregulated in PLA group after 12 weeks of training

P02511 CRYAB Alpha-crystallin B chain 2.01 0.037
Q6P5Q4 LMOD2 Leiomodin-2 2.80 0.014
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In COL several proteins with different myofibrillar function were identified as being in higher
abundance compared to PLA, e.g., myosin proteins (myosin regulatory light chain 2, myosin-8, myosin
light chain 1/3) and actin-binding proteins (alpha-actinin-2, synaptopodin, tropomodulin-4), including
tropomyosins (tropomyosin beta chain, tropomyosin alpha-3 chain). Many have already been observed
before in proteome analyses after resistance exercise [50]. Troponin C and I were also found to be
of higher abundance in COL. Troponin I is already known to be increased by chronic exercise and
regulates the interaction between actin and myosin filaments [51]. One of the upregulated proteins
belonging to the Z-disk (five proteins total) is myotilin, an important marker for remodeling the
myofibril structures after exercise. Myotilin binds alpha-actinin-2 and PDZ and LIM domain protein 3
to control Z-disk organization [52]. Five sarcolemmal proteins showed an increased fold enrichment,
including desmin, which has already been reported in other studies to be a responder to resistance
exercise, which is relevant for force transmission through the cytoskeleton [28]. The cytoskeleton is not
just a structural component but is also responsible for the communication between the muscle cells
and the ECM [9]. Small muscular protein and smoothelin-like protein 1 were also upregulated in COL.
These two proteins are associated with the costamere, being responsible for the force transmission,
which is generated in the myofibrils and transferred to the ECM [53].

COL induced a higher abundance in proteins being associated with resistance training adaptations.
These effects might be caused by the high hydroxyproline-peptide content of the collagen peptide
supplementation, as Kitakaze et al. [54] were able to show an increase myoblast differentiation and
myotube hypertrophy in murine skeletal muscle C2C12 cells by hydroxyproline-glycine-peptides.

The number of proteins belonging to relevant categories of the skeletal muscle (manually annotated)
was significantly different between both groups, resulting in more relevant proteins for adaptation
processes observed in COL compared with PLA.

Because participants in COL ingested 15 g collagen hydrolysate every day, collagen proteins
and collagen-associated proteins that were differently expressed after 12 weeks are shown in Table 6.
Collagen 6alpha2, fibronectin, and laminin subunit gamma 1 showed increased FC in both groups
after 12 weeks as a result of resistance training. Laminins, collagens, as well as fibronectins are the
main fibrous parts of the ECM. Fibronectin has many different functions, for example, organization of
ECM structures, cell migration, and adhesion and tissue repair through fibroblast migration [55]. The
increase in fibronectin after resistance training is consistent with other studies that reported increased
values 72 h after exercise [56]. An increase in laminin was associated with myogenic differentiation
in mice [57]. Consequently, both groups adapted their ECM protein production independently from
collagen supplementation.

Table 6. Upregulated proteins from the intersection, collagen (COL), and placebo (PLA) groups
belonging to collagen proteins or collagen-associated proteins.

UniProt Gene
Name

Protein Description Fold Change (FC) FDR
Collagen Placebo Collagen Placebo

Upregulated in both groups after 12 weeks

P12110 CO6A2 Collagen alpha-2(VI) chain 2.86 3.17 0.001 0.000
P02751 FINC Fibronectin 4.46 2.24 0.007 0.021
P11047 LAMC1 Laminin subunit gamma 1 1.90 1.71 0.023 0.022

Only upregulated in COL after 12 weeks

P20908 CO5A1 Collagen alpha-1(V) chain 108.74 - 0.018 -
P39059 COFA1 Collagen alpha-1(XV) chain 1.69 - 0.028 -

P39060 COIA1 Collagen alpha-1(XVIII)
chain 2.85 - 0.001 -

Only upregulated in PLA after 12 weeks

P51884 LUM Lumican - 1.59 - 0.001
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In contrast, collagen 5alpha1, collagen 15alpha1 and collagen 18alpha1 were only upregulated in
COL, whereas PLA showed a fold enrichment of the protein lumican. Collagen 5alpha1 is a fibrillar
collagen normally contained in collagen 1-rich regions, playing a critical role in fibrillogenesis and
fibril organization [58]. It is mostly associated with Ehlers-Danlos syndrome, which is caused by a
congenital mutation of the col5a1 gene and is characterized by hyperextensibility of skin and joints [59].
Baghdadi et al. [60] identified collagen 5alpha1 in muscle stem cells as a regulator of the notch signaling
pathway that is concerned with the prevention of satellite cell storage by repressing differentiation
process initiated by myoD (myogenic differentiation 1) to maintain quiescence, in addition to the main
function of organizing the structure of the ECM through collagen 1 formation. The FC of collagen
5alpha1, which is extremely high compared with all other proteins, should be considered with caution
because data validation (using immunoblotting) is still missing, and proteomic analysis itself struggles
with a high variability between individuals [61,62].

The other protein belonging to the collagen family that was upregulated in COL is collagen
18alpha1. Together with collagen 15, it forms a collagen category named multiplexins, which is
characterized by compounds with multiple triple-helix domains in containing non-collagenous parts.
Collagen 18alpha1 is located next to collagen 4 in the basement membrane, occurs nearly ubiquitously
in the human body, and seems to differ in function depending on the location [63]. It contains a
non-collagen domain called endostatin, which is known to be a suppressor of angiogenesis and tumor
growth [64]. Because of its inhibitory effect on tumor growth, endostatin has been well investigated in
contrast to the function of collagen 18alpha1 in different tissues. Its role in skeletal muscle has not been
directly investigated, but it is transferred from other tissues where it is the structural component of the
basement membrane, binding ECM proteins like laminin.

Lumican, which was upregulated in PLA, is also a component of the ECM that binds to collagen 1
and affects collagen fibrillogenesis and therefore, the matrix assembly [65].

Connective tissue remodeling has been studied in previous years, as collagen 1, 3, and 4 genes are
elevated after a single bout of exercise, but are unchanged after a second bout [66]. After 36 training
sessions, we would have expected a higher abundance in these proteins caused by adaptation, but
they were unaffected in both groups, and instead, other collagenous proteins were upregulated in both
groups. This shows their importance not only for contractile fibers but also for passive structures, like
the ECM around muscle cells, to adapt to the mechanical load [9]. The adaptation of the ECM seems to
occur even without collagen supplementation, although more collagenous proteins were upregulated
following COL supplementation.

4. Conclusions

In conclusion, after 12 weeks of hypertrophy resistance exercise training in combination with
collagen supplementation compared with a placebo, we found significantly higher BM and FFM and a
slightly more pronounced increase in strength in COL compared with PLA. Individuals in COL showed
a significantly higher number of upregulated proteins and significantly more pathways associated
with resistance exercise compared with PLA after the intervention, indicating stronger effects for the
combination of strength training and supplementation on the skeletal muscle proteome than strength
training alone. In contrast to these considerable effects on the proteome, increments in muscle strength
were not as clear. Further investigations are needed to clarify the role of collagen 5alpha1 in muscle
adaptations to resistance training and collagen supplementation and its possible impact on strength.
Furthermore, it would be interesting to compare different protein sources with regard to their metabolic
effects and strength training adaptations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/5/1072/s1,
Table S1: Complete list of pathways for the collagen (COL) and placebo (PLA) group analyzed by PANTHER.
Table S2: List of proteins showing mean and standard deviation in addition to Tables 5 and 6.

http://www.mdpi.com/2072-6643/11/5/1072/s1
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