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Abstract: Route planning considering terrain information is useful for the navigation of autonomous
ground vehicles (AGV) on complicated terrain surfaces, such as mountains with rivers. For instance,
an AGV in mountains cannot cross a river or a valley that is too steep. This article addresses a novel
route-planning algorithm that is time-efficient in building a sub-optimal route considering terrain
information. In order to construct a route from the start to the end point in a time-efficient manner,
we simulate two virtual vehicles that deploy virtual nodes iteratively, such that the connected node
network can be formed. The generated node network serves as a topological map for a real AGV,
and we construct the shortest route from the start to the end point utilizing the network. The route is
weighted considering the route length, the steepness of the route, and the traversibility of the route.
Through MATLAB simulations, we demonstrate the effectiveness of the proposed route-planning
algorithm by comparing it with RRT-star planners.

Keywords: fast route planner; collision avoidance; rough terrain; safe route planner; route length;
terrain information

1. Introduction

Route planning considering terrain information is useful for the navigation of au-
tonomous ground vehicles (AGV) on complex terrain surfaces such as mountains. For
instance, an AGV in mountains cannot cross a river or a valley. Moreover, the AGV may
have difficulty in maneuvering along a route that is too steep. In this article, we assume
that the AGV can plan its route while accessing a contour map, which shows the terrain
information of the environments. This article addresses a novel route-planning algorithm
that is time-efficient in building a sub-optimal route considering terrain information.

A simple 2D route planner cannot be applied on complex terrain surfaces, where there
are many environment constraints and uncertainties [1]. Route planners considering terrain
information are required, especially in complicated terrain surfaces such as mountains.

It is desirable that a route plan searches for a safe route in a time-efficient manner.
This paper proposes a novel route-planning algorithm that is fast in building a sub-optimal
route. Since our route-planning algorithm runs quickly, the proposed planner is useful for
the on-line planning of an autonomous robot with cheap embedded systems.

There are many papers on route planning for robots [1,2]. A∗ [3], Theta∗ [4,5], Ant
Colony Optimization (ACO) [6], and Voronoi graph [7] have been applied as route planners
of various AGVs. ACO, A∗, and Theta∗ require that the entire region is already completely
covered by multiple grid cells. ACO has advantages such as good feedback information and
better distributed computing. However, it has some problems such as slow convergence
and prematurity [6]. A∗ or Theta∗ work to find a minimum-cost route from the start to the
end point through graph searching [1]. As one increases the size of the entire region, the
number of grid cells covering the entire region also increases. Therefore, calculating a route
under ACO, A∗, or Theta∗ on a large terrain surface may not be viable due to the large
computational load.

There are many papers on route planning considering terrain information [8–12]. The
authors of [8] presented a control architecture for fast quadruped locomotion over rough
terrain. The goal of the high-level planner in [8] was to determine a set of feasible footsteps
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across the terrain, ideally one that is robust to minor deviations and slips of the robot. The
first step in the high-level planning of [8] was to build a “foot cost map” that indicates
the desirability of stepping at any given point in the terrain. Using the map, ref. [8]
applied a Dynamic Programming (DP) algorithm to plan a minimum-cost path across the
terrain. The authors of [9] addressed using different resolution terrain passability maps
to construct graphs, which allow for the determination of the optimal route between two
points. The routes were generated using two path planners: Dijkstra’s and A∗. In [10], a
modified approach of the D∗ algorithm was proposed. In addition to the distance to be
traveled, terrain slope estimate was also used in the computation of the cost function to
plan the route. Reference [11] addressed a traversability assessment method and a trajectory
planning method considering a rough terrain surface. The planners in [11] find an initial
route through the non-holonomic A∗ planner. Then, the initial route is optimized in terms
of the traversability utilizing Lagrange multipliers.

The route planner in [12] starts offline by computing several potential paths to the end
using A∗ such that each path can later provide suitable options to the AGV if replanning is
required due to unexpected mobility difficulties. The AGV in [12] gains information about
its environment as it drives and updates the map locally if major discrepancies are found.
If an update is made, the remaining driving time along the different options is recalculated,
and the most efficient path is chosen.

However, DP [8], A∗ [9,11,12], or D∗ [10] require that the entire region is already
completely covered by multiple grid cells. As one increases the entire workspace size,
the number of grid cells covering the workspace also increases. Therefore, calculating
a route under DP, A∗, or D∗ on a large terrain surface may not be feasible due to large
computational load.

Reference [13] addressed traversability analysis and route-planning algorithms for
tethered rovers operating on steep terrains. Reference [13] ignored the fact that as the
elevation angle of a route increases, the vehicle has more difficulty in traversing the route.
In our paper, we set a route weight, which increases proportionally to the elevation angle of
the route. In this way, we considered the fact that as the elevation angle of a route increases,
the vehicle has more difficulty in traversing the route.

Considering a region without grid cells, RRT planners in [14–16] utilized random
sampling to build a viable route. In RRT∗, random samplings generate a viable route, and
the route converges to an optimum one as infinite time is spent. In [17], a route planner
was proposed, which considered the rough terrain traversability of a vehicle during the
tree expansion of RRT∗. If a generated route is too steep, then it may be impossible to make
the vehicle traverse along the route. Considering this aspect, Ref. [17] set the maximum
elevation angle for a traversable passage. Through MATLAB simulations, we demonstrate
the effectiveness of our route-planning algorithm by comparing it with RRT∗ in [17].

We address the proposed route planner briefly. In order to construct a route from
the start to the end point in a time-efficient manner, we simulate that two virtual vehicles
deploy virtual nodes iteratively such that the connected node network can be formed. Our
vehicle starts from the start and finds a route to the end point. On the other hand, the
other vehicle starts from the end point and finds a route to the start point. The size of
every virtual vehicle is set considering the safety margin of the generated route. The node
network deployed by two virtual vehicles is utilized as the AGV’s topological map, and we
build the shortest route from the start to the end point utilizing the network. Each edge
in the route is weighted considering the route length, the steepness of the route, and the
traversibility of the route.

As one increases the size of the entire region in ACO [6], DP [8], A∗ [9,11,12], D∗ [10],
or Theta∗ [4,5], the number of grid cells covering the entire region also increases. Our paper
does not use grid cells to cover the entire region, and the shortest route is built using the
node network deployed by two virtual vehicles. The proposed route planning algorithm
runs quickly in building a sub-optimal route considering a cluttered region without grid
cells. This paper proves that our route planning considering terrain information is ensured
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to build a sub-optimal route from the start to the end point in finite time. Through
MATLAB simulations, we demonstrate the effectiveness of our route-planning algorithm
by comparing it with RRT∗ planners in [17].

The remainder of this article is organized as follows: Section 2 introduces assumptions
and definitions. Section 3 addresses a fast route-planning algorithm considering terrain in-
formation. Section 4 provides MATLAB simulation results of our route-planning algorithm.
Section 5 provides conclusions.

2. Assumptions and Definitions

This article addresses a novel route plan that is time-efficient in building a sub-optimal
route considering terrain information. We assume that the AGV can plan its route while
accessing a contour map indicating the terrain information of the environments. We solve
the following problem: construct a safe route from the start to the end point so that the AGV can
safely reach the end point in a time-efficient manner.

We construct a route considering the AGV, which is approximated as a circle with
radius r. We utilize two virtual vehicles, R1 and R2, for planning the route of the AGV. Ri
(i ∈ {1, 2}) is simplified as a circle with radius r centered at Ri ∈ R2.

We plan the route so that a virtual vehicle Ri (i ∈ {1, 2}) with radius r does not meet
with obstacles as it tracks the generated route. As we increase r, we increase the safety
margin of the vehicle. This increase improves the AGV’s safety.

In order to construct a route from the start to the end point in a time-efficient man-
ner, we simulate two virtual vehicles that deploy virtual nodes iteratively such that the
connected node network can be formed. Our vehicle R1 starts from the start and finds a
route to the end point. The other vehicle R2 starts from the end point and finds a route to
the start point. The node network generated by Ri (i ∈ {1, 2}) is utilized as a topological
map for the AGV, and the AGV builds the shortest route from the start to the end point
utilizing the network. Every edge in the route is weighted considering the route length, the
steepness of the route, and the traversibility of the route.

Note that Ri is utilized to construct a real AGV route under simulations. Since Ri
moves in simulated (virtual) environments, we can make it move with unbounded speed in
simulations. The term “virtual” implies that the vehicle exists in simulated environments.
Note that as a real AGV tracks the generated route, it cannot move with infinite speed due
to hardware limits.

In practice, an AGV cannot cross obstacles such as rivers. We assume that the AGV
can access the obstacle information in environments. We say that Ri meets with an obstacle
if the circle centered at Ri meets the interior of the obstacle. We plan the route of Ri so that
Ri with radius r does not meet with obstacles while traversing the generated route.

For convenience, let L(c1, c2) define a straight line segment connecting two points
c1 ∈ R2 and c2 ∈ R2. We say that L(c1, c2) is obstacle-free once the following requirement is
met: As Ri with radius r tracks L(c1, c2), Ri does not meet with obstacles.

In order to construct a route from the start to the end point in a time-efficient manner, Ri
deploys virtual nodes iteratively, such that the connected node network can be formed. We
then build the shortest route from the start to the end point utilizing the node network. The
route is weighted considering the route length, the steepness of the route, and traversibility
of the route.

Each virtual node has circular sensing coverage with radius rs. Let the footprint of a
node n define the circle whose center corresponds to n and the radius of which is rs. Let Sn
denote the footprint of n. Let n ∈ R2 indicate the 2D location of node n.

Recall that Ri deploys virtual nodes iteratively, such that the connected node network
can be formed. The connectivity graph I is defined as a set I = (V(I), E(I)). Here,
V(I) denotes the vertex set and E(I) denotes the directed edge set. Every vertex in V(I)
represents a deployed virtual node. Note that a virtual node can be deployed by R1 or R2.

Every directed edge, say {ni, nj} ∈ E(I), indicates a directed straight route from ni
to nj. Since an edge is directed, {ni, nj} 6= {nj, ni}. {ni, nj} ∈ E(I) implies that L(ni, nj) is
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an obstacle-free route and that ‖ni − nj‖ < rc such that rc > rs. Here, ni denotes the 2D
location of node ni. In MATLAB simulations (Section 4), we utilize rc = 3 ∗ rs.

For instance, Figure 1 depicts I, which is composed of five vertices n1, n2, n3, n4, n5.
There exists a rectangular obstacle in this figure. In addition, the length of rc is plotted
at the bottom of this figure. Each directed edge in I is plotted with dashed directed line
segments in Figure 1. Each edge length is shorter than rc, and every directed edge is an
obstacle-free route.

n1

n2
n3

n4

n5
obstacle

rc

Figure 1. I consists of five vertices n1, n2, n3, n4, n5. There exists a rectangular obstacle. Each directed
edge in I is plotted with dashed directed line segments. Each edge length is shorter than rc, and every
directed edge is an obstacle-free route.

Each directed edge, say e ∈ E(I), is weighted by w(e) : e → Z+. {ni, nj} ∈ E(I) is
directed from ni to nj. The weight of {ni, nj} is set as

w({ni, nj}) = ‖ni − nj‖+ Wh ∗ A(ni, nj) (1)

where

A(ni, nj) = tan−1 h(nj)− h(ni)

‖ni − nj‖
. (2)

In (1), h(n) defines the height of n, which is available utilizing contour maps. In (2),
A(ni, nj) indicates the elevation angle (steepness) of nj with respect to ni. As the steepness
A(ni, nj) increases, it gets more difficult to traverse from ni to nj.

In (1), Wh is the weight parameter for steepness of the route, compared to the route
length ‖ni − nj‖. A(ni, nj) > 0 implies that traversing the edge {ni, nj}make the vehicle
move up a hill. Furthermore, A(ni, nj) < 0 implies that traversing the edge {ni, nj}make
the vehicle move down a hill. In MATLAB simulations (Section 4), we use Wh = 1 when
A(ni, nj) > 0. Furthermore, we use Wh = 0.5 when A(ni, nj) < 0. In this way, we penalize
the case where the vehicle moves up a hill, compared to the case where the vehicle moves
down a hill.

If a route is too steep, then it may be impossible to make the vehicle traverse along the
route. Considering this aspect, we set the maximum angle for A(ni, nj). Let thres denote
the maximum angle for convenience. If ‖A(ni, nj)‖ > thres, then we set the associated
weight as w({ni, nj}) = ∞. In this way, the vehicle does not traverse along a route which is
too steep. In MATLAB simulations (Section 4), we use thres = 60 degrees.

The weight of an edge (1) is set, considering both the path length and the steepness
of the edge. In practice, an edge weight can be set considering the detailed traversability
condition as well. For instance, we can set the detailed traversability class as follows:
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benign, sandy, and rough [12]. As an edge contains rough terrain, the edge has larger
weight, compared to the case where the edge contains benign terrain.

Utilizing the definition of E(I), Ri does not meet with obstacles as it tracks an edge in
E(I). Hence, I is an obstacle-free topological map for the vehicle Ri. By accessing the weight
for every edge in I, Ri can build the shortest route from one node to every other node.

In simulations, Ri is virtual; thus, it can traverse along an edge in E(I) infinitely fast.
In our paper, R1 starts from the start and finds a route to the end. Furthermore, R2 starts
from the end and finds a route to the starting point. Let di ∈ R2 define the destination
point for Ri. d1 is the end point, and d2 is the start point.

Sn, the footprint of a node n, meets L(n, di) at one point. This point is termed the
destination-closest point, since it is closest to the destination among all points on Sn. See
Figure 2 for an illustration.

di

n

Sn

destination-closest point

Figure 2. Sn meets L(n, di) at one point, termed the destination-closest point.

An open boundary of a node n defines the set of points on Sn, such that every point in
this set is outside of every obstacle. A frontier of n is the subset of an open boundary, such
that every point on the frontier is outside the footprint of every other node.

We next introduce how to construct FrontierPoints that discretize a frontier with discrete
points. We randomly construct a point, called the randomFrontierPoint, on the footprint of
n. We then construct q points on the footprint of n so that they are evenly spaced on the
footprint. As q increases, we obtain densely spaced points on a footprint.

The destination-closest point, the randomFrontierPoint, and evenly spaced q points
are termed the ViableFrontierPoints of n. Among these q + 2 ViableFrontierPoints, we select
a set of FrontierPoints, f (n) on a frontier satisfying the following requirements:

1. A point in f (n) is outside the footprint of every other node.
2. The straight line segment connecting n and a point in f (n) is an obstacle-free route

for Ri.
3. The distance between every point in f (n) and an obstacle boundary is larger than r,

the radius of Ri.

In our route-planning algorithm, Ri utilizes a FrontierPoint as a “way-point” for
reaching its destination. The first requirement implies that a FrontierPoint is associated
with the border between a space covered by footprints and a space covered by no footprints.
If every node has no FrontierPoint, then the footprints of all nodes cover the entire region.
The second requirement indicates that as Ri moves from n to any point in f (n), Ri does
not meet with obstacles. The third requirement is applied to avoid the situation where Ri
meets with obstacles when Ri reaches a FrontierPoint. The second and third requirements
ensure that a FrontierPoint is outside of every obstacle.

Note that Ri utilizes a FrontierPoint as a “way-point” for reaching its destination. Due
to the generating of randomFrontierPoints, our approach is based on random sampling. In
other words, whenever we construct a new route, it is distinct from a route that has been
generated before.
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Figure 3 illustrates Ri, deploying a new virtual node iteratively. In this figure, Ri is
plotted with a circle. Ri moves inside a tunnel in this figure. The tunnel boundaries are
shown with red curves, and the trajectory of Ri is shown with a yellow curve. The large
dots on the trajectory of Ri indicate the virtual nodes deployed by Ri. The footprint of
every virtual node is plotted with a dotted circle. FrontierPoints are plotted with large dots
on the footprint of the rightmost node.

Ri

Figure 3. Ri keeps deploying a new virtual node. FrontierPoints are plotted with large dots on the
footprint of the rightmost node.

3. Fast Route-Planning Algorithm

The proposed route-planning algorithm is addressed in Algorithm 1. We discuss
Algorithm 1 in detail. Algorithms 2 and 3 are sub-algorithms of Algorithm 1.

At the initial phase of Algorithm 1, we construct two virtual vehicles R1 and R2. Initially,
Ri (i ∈ {1, 2}) deploys a virtual node at its location. Whenever Ri deploys a new virtual
node, the node is connected to the network, and we update I. Furthermore, the sensing
capability of the node is enabled. Recall that every virtual node has footprint radius rs.

Algorithm 1 route-planning algorithm

1: Generate R1 at the start location (location of a real AGV);
2: Generate R2 at the end location;
3: repeat
4: For all i ∈ {1, 2}, Ri deploys a new virtual node, say n, at its location;
5: Update I utilizing the newly deployed node n;
6: Enable the sensing capability of n.
7: FrontierGenerate(n) in Algorithm 2;
8: Every FrontierPoint within rs distance from n is removed;
9: Ri.MoveToFrontier in Algorithm 3;

10: until there exists an obstacle-free route from the start to the end;
11: Generate K shortest routes from the start to the end utilizing I;
12: Among K shortest routes, find a smoothest route;
13: The real AGV tracks the found route;

Algorithm 2 is utilized to construct ViableFrontierPoints. Furthermore, Algorithm 3 is
utilized to make Ri maneuver to a FrontierNode, say nc, that is closest to its destination di.
Here, we say that a node is a FrontierNode if the node has a FrontierPoint. Ri maneuvers to
a FrontierNode that is closest to di, since we need to build the shortest route to di. Note
that d1 6= d2.
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Algorithm 2 FrontierGenerate(n)

1: Generate the point closest to the destination of n and set the point closest to the
destination as the first ViableFrontierPoint;

2: Generate the randomFrontierPoint on the footprint of n, and set the randomFrontier-
Point as the second ViableFrontierPoint;

3: Generate evenly spaced q ViableFrontierPoints on Sn;
4: for i = 1:1:q + 2 do
5: if i-th ViableFrontierPoint satisfies the requirements for a FrontierPoint then
6: Store the ViableFrontierPoint as a FrontierPoint of n;
7: end if
8: end for

Algorithm 3 Ri.MoveToFrontier

1: Ri finds a FrontierNode, say nc, that is closest to di;
2: Ri maneuvers to nc;
3: for j = 1:1:q + 2 do
4: if j-th ViableFrontierPoint satisfies the requirements for a FrontierPoint then
5: Ri sets the j-th ViableFrontierPoint as fRi ;
6: Get out of this for loop;
7: end if
8: end for
9: Ri maneuvers to fRi ;

In Algorithm 3, nc is a FrontierNode, that is closest to di. In Algorithm 3, fRi is a
FrontierPoint of nc that will be visited by Ri after Ri maneuvers to nc.

Since the first ViableFrontierPoint is the point closest to the destination, Ri checks the
point closest to the destination of nc before checking other ViableFrontierPoints of nc. This
makes Ri head towards its destination if it is possible. This strategy is utilized for reducing
the route length to its destination.

Once Ri reaches fRi , it deploys a new node at fRi . Whenever a new node is deployed,
we enable the sensing capability of the node. Thereafter, every FrontierPoint within rs
distance from the node is removed.

Algorithm 1 iterates until the newly deployed node n builds an obstacle-free route
from the start to the end. We then find K shortest routes from the start to the end. Among K
shortest routes, we find a smoothest route and set it as the route for the real AGV. A smooth
route is desirable considering the traversibility of the AGV.

We discuss how to find a smoothest route among K shortest routes. Let route(k),
where k ∈ {1, 2, . . . , K}, denote the k-th route in the K shortest routes. Let route(k) =
[pk

1, pk
2, . . . , pk

end] denote the set of nodes along the route route(k). Let angle(pk
j ) denote the

angle formed by two vectors vj+1 = pk
j+1 − pk

j and vj = pk
j − pk

j−1. Mathematically, we use

angle(pk
j ) = acos(

dot(vj+1, vj)

‖vj+1‖‖vj‖
). (3)

Here, dot(vj+1, vj) denotes the dot product between vj and vj+1. Then, the sharpness
of route(k) is defined as

s(route(k)) = maxj∈{2,3,...,end−1}(angle(pk
j )). (4)

Among all K routes, we find a smoothest route using

k∗ = argmink∈{1,2,...K}s(route(k)). (5)

Then, the real AGV tracks the smoothest route route(k∗).
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Algorithm 1 iterates until the newly deployed node n builds an obstacle-free route
from the start to the end. We then find K shortest routes from the start to the end. We find a
smoothest route among K shortest routes and set it as the route for the real AGV. However,
when Algorithm 1 ends, we may have a case where we cannot find K routes from the start
to the end. Suppose that we can only find L < K routes from the start to the end, when
Algorithm 1 ends. In this case, we find a smoothest route among L routes by replacing K
in (5) by L. The smoothest route is set as the route for the real AGV.

The planning phase in [12] computed several potential paths to the end using A∗ such
that each path can later provide suitable options to the AGV if replanning is required due
to unexpected mobility difficulties. Similarly to [12], K routes in our paper can provide
suitable options to the AGV if replanning is required due to unexpected mobility difficulties.
The AGV gains information about its environment as it moves and updates the map locally
if major discrepancies are found. If an update is made, then the remaining driving time
along the different options (K routes) is recalculated, and the most efficient path is chosen.

Analysis

Algorithm 1 cannot proceed if Ri cannot find any FrontierNode. The following theorem
proves that if Ri cannot find any FrontierNode, then the entire open space is covered
by footprints.

Theorem 1. If Ri cannot find any FrontierNode, then the entire open space is covered by footprints.

Proof. Under the transposition rule, we prove the following statement: if an open space,
which has not been covered by footprints, exists, then Ri can find a FrontierNode.

Suppose that an open space, which has not been covered by footprints, exists. Let O
indicate this uncovered open space. Utilizing the definition of a frontier, at least one node
has a frontier on the boundary of O. Therefore, Ri can find this FrontierNode.

Theorem 1 implies that if Ri cannot find any FrontierNode, then the entire open space
is covered by footprints. Therefore, the route from the start to the end is generated before
Ri cannot find any FrontierNode. In this way, Algorithm 1 continues until a route from the
start to the end is found.

Theorem 2 proves that the real AGV does not meet with obstacles while moving along
the route constructed under Algorithm 1. This implies that Algorithm 1 generates a safe
route for the real AGV.

Theorem 2. As the real AGV tracks the route constructed under Algorithm 1, it does not meet
with obstacles.

Proof. The route from the start to the end is constructed utilizing I. Under the definition of
I, every edge, say {n1, n2} ∈ E(I), indicates that L(n1, n2) is an obstacle-free route. Since
the real AGV tracks I until meeting the end, the real AGV does not meet with obstacles
during the maneuver. We have proved this theorem.

4. Matlab Simulation

In this section, we demonstrate the effectiveness of our planning algorithm
(Algorithm 1) through MATLAB simulations. In Algorithm 1, we find K = 10 shortest
routes from the start to the end. We utilize q = 100. The footprint radius is rs = 2, and we
set rc = 3 ∗ rs. The radius of the AGV is r = 0.1 distance units. We use thres = 60 degrees
as the maximum elevation angle for the AGV. The end location is [5, 5]. The initial location
of the AGV is [47, 47].

To demonstrate the performance of Algorithm 1, we compare Algorithm 1 with the
RRT∗ in [17]. We implemented 20 Monte-Carlo (MC) simulations to demonstrate the
superiority of our planning method. Let Lt where t ∈ {1, 2, . . . , 20} denote the weighted
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route length constructed under the t-th MC simulation. Recall that the weight of each edge
is set using (1).

For rigorous comparison using MC simulations, we use the following evaluation
values. Let meanL denote the mean of Lt for all t ∈ {1, 2, . . . , 20}. Furthermore, let minL
denote the minimum value of Lt for all t ∈ {1, 2, . . . , 20}. Let maxL denote the maximum
value of Lt for all t ∈ {1, 2, . . . , 20}. Furthermore, let CT denote the computational time (in
seconds) to run one MC simulation using MATLAB 2016. Here, CT is used to analyze the
running time, which is relevant for real-time applications.

4.1. Cluttered Terrain Surfaces (Scenario 1)

We present the MATLAB simulation results of the proposed route-planning algorithm
(Algorithm 1). Considering Scenario 1, Figure 4 depicts 3D terrain surfaces considered
in our simulations. Figure 5 depicts the route constructed under one MC simulation of
Algorithm 1. The route is shown with blue line segments. In Figure 5, a non-convex
obstacle, such as a lake, is plotted, and we plot the contour map. Note that the AGV cannot
cross an obstacle.
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Figure 4. 3D terrain surfaces considered in simulations (Scenario 1).
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Figure 5. One route constructed under one MC simulation of Algorithm 1 (Scenario 1). A non-convex
obstacle is plotted, and we plot the contour map. The route is shown with blue line segments.
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Comparison with the RRT∗

Considering Scenario 1, we compare the performance of the proposed plan with the
RRT∗ in [17]. The RRT∗ ends when the distance between a sample point and the end
location is shorter than rs. Two sample points are neighbors if the relative distance between
them is shorter than rs. The step size (expansion of the tree within one sampling interval)
in the RRT∗ is set as rs. For fair comparison with the proposed route plan, (1) is used as
weights for an edge between two neighbors.

Once a route is constructed, we can further improve the route by smoothing it. The
Open Motion Planning Library (OMPL) library in https://ompl.kavrakilab.org/index.html
(accessed on 2 June 2022) has various smoothers. For fair comparison with the RRT∗, we
do not apply any smoothers.

Considering Scenario 1, Figure 6 depicts one route constructed under one MC simula-
tion of the RRT∗. The generated route is marked with blue line segments.

Obstacle
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Figure 6. One route constructed under one MC simulation of the RRT∗ (Scenario 1). The generated
route is shown with blue line segments.

The MC simulation results are summarized in Table 1. In this table, [pro] presents
the proposed route planner. [rrt] presents the RRT∗. Table 1 shows that Algorithm 1 is
comparable to the RRT∗, considering the weighted route length. Furthermore, Algorithm 1
runs much faster than the RRT∗ (see CT in Table 1). This implies that Algorithm 1 is
superior to the RRT∗, considering both the route length and the computational load.

Table 1. MATLAB simulation results (scenario 1).

Alg. MeanL MinL MaxL CT

[pro] 93 73 107 19.5
[rrt] 93 80 110 27.7

4.2. Cluttered Terrain Surfaces with a Steep End Position (Scenario 2)

In Scenario 2, we use thres = 70 degrees as the maximum elevation angle for the AGV.
This scenario considers the case where the AGV can traverse a steep hill. The end location
is [10, 23], which is a rather steep position. The initial location of the AGV is [47, 47].

We present the MATLAB simulation results of the proposed route-planning algorithm
(Algorithm 1). Considering Scenario 2, Figure 7 depicts the route constructed under one
MC simulation of Algorithm 1. In Figure 7, a non-convex obstacle is plotted, and we plot
the contour map. The generated route is marked with blue line segments.

https://ompl.kavrakilab.org/index.html


Sensors 2022, 22, 4518 11 of 13

Obstacle

x

y

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Figure 7. One route constructed under one MC simulation of Algorithm 1 (Scenario 2). A non-convex
obstacle is plotted, and we plot the contour map.

Recall that the first ViableFrontierPoint is the point closest to the destination in
Algorithm 1. Thus, a virtual plot with Ri at a node n checks the point closest to the
destination of n before checking other ViableFrontierPoints of n. This makes Ri head to-
wards its destination if it is possible. This strategy is utilized to reduce the route length to
its destination, as plotted in Figure 7.

Comparison with the RRT∗

Considering Scenario 2, we compare the performance of the proposed route plan with
the RRT∗ in [17]. Figure 8 depicts the route constructed under one MC simulation of the
RRT∗. The generated route is shown with blue line segments.
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Figure 8. One route constructed under one MC simulation of the RRT∗ (Scenario 2). The generated
route is marked with blue line segments.

The MC simulation results are summarized in Table 2. In this table, [pro] represents
the proposed route planner. [rrt] represents the RRT∗. Table 2 shows that Algorithm 1
outperforms the RRT∗, considering the weighted route length. Note that Algorithm 1 runs
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much faster than the RRT∗ (see CT in Table 2). This implies that Algorithm 1 outperforms
the RRT∗, considering both the route length and the computational load.

Table 2. MATLAB simulation results (scenario 2).

Alg. MeanL MinL MaxL CT

[pro] 50 45 55 3.4
[rrt] 69 53 102 31.3

4.3. Effect of Varying Parameters

In this subsection, we present the effect of varying parameters in our paper.

4.3.1. Effect of Varying Rs

Until now, we set the footprint radius as rs = 2. Considering Scenario 1, we vary the
footprint radius rs in Table 3.

The MC simulation results are summarized in Table 3. This table shows that as rs
increases in the proposed planner, the weighted route length decreases while decreasing the
computational load CT. As rs increases in the RRT∗, the computational load CT decreases.
Table 3 shows that Algorithm 1 is superior to the RRT∗, considering both the route length
and the computational load.

Table 3. MATLAB simulation results with varying rs (scenario 1).

Alg. rs MeanL MinL MaxL CT

[pro] 2 93 73 107 14.5
[rrt] 2 93 80 110 27.7
[pro] 3 79 72 100 3.2
[rrt] 3 96 77 114 19.3
[pro] 4 78 67 92 1.5
[rrt] 4 93 78 122 17.9

4.3.2. Effect of Varying K

Until now, the proposed planner uses K = 10. Among K shortest routes, we find
a smoothest route and set it as the route for the real AGV. Similarly to [12], K shortest
routes can provide suitable options to the AGV if replanning is required due to unexpected
mobility difficulties.

Table 4 checks the effect of changing K. In Table 4, we set the footprint radius as
rs = 2. Considering Scenario 2, the MC simulation results with varying K are summarized
in Table 4. Among the K shortest routes, we find a smoothest route and set it as the route
for the real AGV. However, finding the smoothest route does not necessarily decrease
the weighted route length. Thus, varying K does not change the weighted route length
significantly. Moreover, Table 4 shows that increasing K does not necessarily increase the
computational load CT.

Table 4. MATLAB simulation results with varying K (scenario 2).

Alg. K MeanL MinL MaxL CT

[pro] 10 50 45 55 3.4
[pro] 20 49 44 56 2.5
[pro] 30 50 45 58 2.9

5. Conclusions

Considering the case where terrain information is available, this article addresses a
route-planning algorithm based on two virtual vehicles and virtual nodes. We prove that
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the proposed algorithm results in a safe route from the start to the end point in finite time.
Through MATLAB simulations, we demonstrate the effectiveness of our route-planning
algorithm by comparing it with the RRT∗. The proposed route planner can be used for
supporting path planning of humans [9,18].

In the future, we will demonstrate the effectiveness of the proposed route-planning
algorithm utilizing experiments with a real AGV. One limitation of the proposed route
planner is that the proposed planner provides a high-level planner for an AGV while not
considering unexpected situations. Future work includes research on the integration of
lower-level motion-planning algorithms and will focus on on-line risk assessment and
decision making under unexpected situations.
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