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 Exhaled Air Dispersion During Noninvasive 
Ventilation via Helmets and a Total Facemask     
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 Tony   Gin ,  MD ; and  Matthew T. V.   Chan ,  MD  

  BACKGROUND:    Noninvasive ventilation (NIV) via helmet or total facemask is an option for 

managing patients with respiratory infections in respiratory failure. However, the risk of 

nosocomial infection is unknown. 

  METHODS:    We examined exhaled air dispersion during NIV using a human patient simulator 

reclined at 45° in a negative pressure room with 12 air changes/h by two diff erent helmets via 

a ventilator and a total facemask via a bilevel positive airway pressure device. Exhaled air was 

marked by intrapulmonary smoke particles, illuminated by laser light sheet, and captured by a 

video camera for data analysis. Signifi cant exposure was defi ned as where there was  �  20% of 

normalized smoke concentration. 

  RESULTS:    During NIV via a helmet with the simulator programmed in mild lung injury, 

exhaled air leaked through the neck-helmet interface with a radial distance of 150 to 230 mm 

when inspiratory positive airway pressure was increased from 12 to 20 cm H 2 O, respectively, 

while keeping the expiratory pressure at 10 cm H 2 O. During NIV via a helmet with air cushion 

around the neck, there was negligible air leakage. During NIV via a total facemask for mild 

lung injury, air leaked through the exhalation port to 618 and 812 mm when inspiratory 

pressure was increased from 10 to 18 cm H 2 O, respectively, with the expiratory pressure at 

5 cm H 2 O. 

  CONCLUSIONS:    A helmet with a good seal around the neck is needed to prevent nosocomial 

infection during NIV for patients with respiratory infections.   
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  Respiratory failure is a major complication in patients 

hospitalized with severe acute respiratory infections 

(SARIs), such as severe acute respiratory syndrome 

(SARS),  1,2   pandemic 2009 infl uenza A(H1N1  ) (A[H1N1]),  3   

avian infl uenza (A[H5N1] or A[H7N9]),  4,5   and the 

Middle East respiratory syndrome.  6,7   Patients may 

progress rapidly to ARDS and multiorgan failure, 

requiring intensive care support.  1-8   Noninvasive ven-

tilation (NIV) may play a supportive role in patients 

with early ARDS or acute lung injury due to SARI 

as a bridge to invasive mechanical ventilation.  8-10   How-

ever, a systematic review has shown that mask venti-

lation, tracheal intubation, tracheotomy, and NIV 

may increase the risk of nosocomial transmission 

of respiratory infections to health-care workers 

(HCWs).  11   

 Following the outbreak of SARS and emergence of the 

A(H1N1) infection, it has been recommended that 

when NIV is required for patients with acute hypox-

emic respiratory failure due to SARI, infection control 

measures such as the use of helmets or full facemasks, 

double circuit tubes, and addition of viral-bacterial fi l-

ters be considered.  10,12   However, whether these infection 

control measures are eff ective in minimizing exhaled air 

leakage has not been objectively evaluated. Th is study 

aimed to examine the dispersion of exhaled air during 

application of NIV via helmets and total facemask. 

Knowledge about the extent of exhaled air leakage from 

diff erent masks will facilitate the development of pre-

ventive measures to reduce the risk of nosocomial trans-

mission during application of NIV to high-risk patients 

hospitalized with SARI. 

 Materials and Methods 

 We examined the extent of exhaled air dispersion during application of 

NIV on a high-fi delity human patient simulator (HPS) (HPS 6.1; CAE 

Healthcare, Inc) via two diff erent helmets (PN530L; Sea-Long Medical 

Systems Inc, and StarMed CaStar R; Intersurgical Ltd) using a SERVO-i 

ventilator (MAQUET) with double-limb circuit and fi lters. In addition, 

we studied the deliberate leakage from the exhalation port of a total 

facemask (Koninklijke Philips N.V.) during NIV via a bilevel positive 

airway pressure device and a single-limb circuit fi rmly attached to the 

HPS ( Fig 1 ).   

 Th e experiments were conducted in a negative pressure room, with 

12 air changes/h (ACH) ( Fig 2 )  . Th e experimental design and method 

of data analysis have been described in detail in our previous studies 

on exhaled air dispersion related to the application of NIV,  12,13   oxygen 

masks,  14,15   jet nebulizer,  16   and mask ventilation.  17   

 NIV and Lung Model 

 Th e HPS represented a 70-kg adult man sitting on a 45°-inclined hospital 

bed. It was programmed to breathe spontaneously to mimic diff erent 

degrees of lung injury ( Table 1 )  .  12-19   Th e HPS contains a realistic airway 

and a lung model that undergoes gas exchange by removing oxygen and 

adding CO 2  to the system simultaneously. Th e lung compliance and 

airway resistance respond in a realistic manner to relevant respiratory 

challenges. In addition, the HPS produces an airfl ow pattern that is 

close to the in vivo situation and has been applied in previous studies to 

simulate human respiration.  20-23   

  Figure 1  – A-C, Application   of noninvasive ventilation via the Sea-Long helmet (A), StarMed CaStar R helmet (B), and the Respironics total face mask 
(C) on the human patient simulator (HPS). Th e HPS represented a 70-kg adult man sitting on a 45°-inclined hospital bed and was programmed to 
mimic normal breathing, mild lung injury, and severe lung injury. Exhaled air, marked by the smoke particles, is illuminated by the laser light-sheet, 
with dispersion through the neck interface of the Sea-Long helmet (A) and through the exhalation port of the total face mask attached to the HPS (C). 
No signifi cant leakage was noted with the StarMed CaStar R helmet.    
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 During examination of air leakage via the helmets, the inspiratory pos-

itive airway pressure (IPAP) was increased from 12 to 20 cm H 2 O, while 

keeping the expiratory positive airway pressure (EPAP) at 10 cm H 2 O. 

During examination of exhaled air dispersion from the total face-

mask, NIV was applied using a bilevel positive airway pressure device 

(ResMed VPAP III ST). Th e IPAP was initially set at 10 cm H 2 O and 

gradually increased to 14 and then 18 cm H 2 O, whereas the EPAP was 

maintained at 5 cm H 2 O throughout the study.  12,13   Th e EPAP was higher 

for the helmets than the total face mask, as higher pressure was required 

to prevent CO 2  rebreathing in the helmets to overcome the larger ana-

tomic dead space. 

 Flow Visualization 

 Visualization of airflow around the helmets and the total facemask 

was facilitated by marking air with smoke particles produced by an 

M-6000 smoke generator (N19; Dick Smith Electronics Pty Limited) 

as described in our previous studies.  12-17   Th e oil-based smoke particles, 

measuring  ,  1  m m in diameter, are known to follow the airfl ow pat-

tern precisely with negligible slip.  24   Th e smoke was introduced contin-

uously to the right main bronchus of the HPS. It mixed with alveolar 

gas and then exhaled through the airway. Sections through the leakage 

jet plume were then revealed by a thin laser light-sheet (Green, 532 nm 

wavelength, continuous-wave mode) created by a diode-pumped 

solid state laser (OEM UGH-800 mW, Lambdapro Technologies Ltd), 

with custom cylindrical optics for two-dimensional laser light-sheet 

generation.  12-17   

 Th e light-sheet was initially positioned in the median sagittal plane of 

the HPS and was subsequently shift ed to the paramedian sagittal planes. 

Th is allowed us to investigate the regions directly above and lateral to 

the mask and the patient.  12-17   

 All leakage jet plume images revealed by the laser light-sheet were cap-

tured by the high-defi nition video camera (Sony high-defi nition digital 

video camcorder, HDR-SR8E ClearVid complementary metal oxide 

semiconductor Sensor, Carl Zeiss Vario-Sonnar T* Lens), with optical 

resolution of 1,440  3  1,080 pixels per video frame. Normalized smoke 

concentration in the plume was estimated from the light intensity 

scattered by smoke particles.  12-17   

 Image Analysis 

 We estimated normalized smoke concentration in the mask leakage 

air from the light scattered by the particles. Th e analysis was based on 

scattered light intensity being proportional to particle concentration 

under the special conditions of constant intensity laser light-sheet 

illumination and monodisperse, small (submicron) particles.  24   In short, 

the thin laser light-sheet of near constant intensity illuminated smoke 

particle markers in the mask airfl ow leakage. Smoke particles scattered 

laser light perpendicular to the light-sheet, and this was collected and 

integrated by the video camera element and lens ( Fig 2 ).  12-17   

 Image Capture and Frame Extraction 

 Th e motion video of breathing cycles for each NIV setting was captured 

and individual frames extracted as gray scale bitmaps for intensity 

analysis. Frames were extracted at times initiated from the beginning of 

each inspiration, to generate an ensemble average for the corresponding 

instance of the respiratory cycle.  12-17   Th e time at which the normalized 

concentration contours spread over the widest region from the NIV 

mask was chosen for the ensemble average to estimate the greatest 

dispersion distance. Th is was found to be approximately at the mid-

respiratory cycle.  12,13   

 Intensity Averaging and Concentration Normalization 

 All gray scale frames were read into a program specifically devel-

oped for this study (MathCad 8.0),  25   along with background intensity 

images taken with the laser switched off. The background intensity 

image was subtracted from each frame, pixel by pixel, to remove any 

stray background light, and the pixel intensity values were averaged over 

all frames to determine the ensemble averaged intensity. Th e resulting 

image was the total intensity of light scattered perpendicular to the 

  Figure 2  – The room measured 
6.1 (width)  3  7.4 (depth)  3   
3.0 (height) m. Th e digital camera 
and the laser device were positioned 
along the coronal plane on the left  side 
of the patient and along the sagittal 
plane of the patient at the end of the 
bed, respectively. Fresh air diff users, 
as air inlet, were mounted on the ceiling. 
Th e negative pressure of the isolation 
room was produced by the air exhausts 
located near the fl oor.   

  TABLE 1   ]     Three Different Lung Settings of the HPS Applied in This Study  12-19   

Settings  Normal Lung Condition Mild Lung Injury Severe Lung Injury

Oxygen consumption, mL/min 200 300 500

Lung compliance, mL/cm H 2 O 70 35 10

Respiratory rate,  a   breaths/min 12 25 40

Tidal volume,  a   mL 700 300 150

 HPS  5  human patient simulator. 
  a The respiratory rate and tidal volume were adjusted by the HPS to achieve primarily the target oxygen consumption and lung compliance. 
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light-sheet by the smoke particles and was directly proportional to smoke 

concentration under the conditions mentioned previously. Th e image 

was normalized against the highest intensity found within the leakage 

jet plume to generate normalized particle concentration contours.  12-17   

 As the smoke particles marked air that originated from the HPS air-

ways, before leaking from the mask, the concentration contours eff ec-

tively represent the probability of encountering air around the patient 

that has come from within the mask and/or the patient’s respiratory 

system. Th e normalized concentration contours are made up of data 

collected from at least 20 breaths. A normalized concentration of 100% 

or a contour value of 1 indicates a region that consists entirely of air 

exhaled by the patient, where there is a very high chance of exposure to 

the exhaled air, such as at the mask exhaust vents. A normalized con-

centration of 0% or a contour value of 0 indicates no measurable air 

leakage in the region and a small chance of exposure to the exhaled air. 

Signifi cant exposure was arbitrarily defi ned as where there was  �  20% 

of normalized smoke concentration.  12-17   Th e study received nonioniz-

ing radiation safety approval by the Chinese University of Hong Kong 

(N/DSCH/RFCID 2012).    

 Results 

 Results are presented with reference to the median 

sagittal plane  . 

 NIV Applied via the Sea-Long Oxygen Head Tent 

 During application of NIV via the Sea-Long oxygen 

head tent, exhaled air was observed to leak through the 

neck-tent interface ( Fig 1A ). Using a normalized smoke 

concentration of 20% as a cutoff , the radial dispersion 

distance was 170 mm in normal lung condition with 

IPAP of 12 cm H 2 O, and the dispersion distance was 

150 mm when the HPS was programmed in either mild 

or severe lung injury. When IPAP was increased gradu-

ally from 12 to 20 cm H 2 O, the dispersion distance 

increased to 270 mm, 230 mm, and 180 mm in normal 

condition, mild lung injury, and severe lung injury, 

respectively ( Fig 3 ,    e-Fig 1 ). 

 NIV Applied via the StarMed CaStar R Helmet 

 Th e StarMed CaStar R helmet had a tight air cushion 

around the neck-helmet interface. Th erefore, negligible 

air leak was noted during application of NIV when 

IPAP was increased from 12 to 20 cm H 2 O ( Fig 1B ). 

 NIV Applied via the Respironics Total Facemask 

  Figure 4    shows the dispersion distance of exhaled smoke 

during application of NIV using the Respironics total 

facemask in diff erent lung conditions. It was observed 

that exhaled air jet leaked through the mask exhalation 

port ( Fig 1C ) to 693, 618, and 580 mm when the HPS 

was programmed in normal lung condition, mild lung 

injury, and severe lung injury, respectively, while 

receiving IPAP of 10 cm H 2 O and EPAP of 5 cm H 2 O. 

Th e dispersion distance increased by 31% when IPAP 

was increased from 10 to 18 cm H 2 O. As the severity of 

  Figure 3  – A-C, Exhaled air dispersions through the neck interface during application of noninvasive ventilation via a servoventilator with double limb 
circuit and fi lters to the HPS using the Sea-Long head tent. EPAP was maintained at 10 cm H 2 O, and IPAP was increased from 12 to 14, 18, and 
20 cm H 2 O gradually in four experiment settings. With normal lung condition, the mean ( �  SD) exhaled air dispersion distances with 20% normalized 
smoke concentration were 170  �  39 mm, 200  �  23 mm, 219  �  32 mm, and 270  �  20 mm, respectively. With mild lung injury, the exhaled air dispersion 
distances were 150  �  12 mm, 200  �  17 mm, 210  �  28 mm, and 230  �  37 mm, respectively. With severe lung injury, the corresponding values were 
150  �  7 mm, 160  �  17 mm, 170  �  21 mm, and 180  �  22 mm, respectively. EPAP  5  expiratory positive airway pressure; IPAP  5  inspiratory positive 
airway pressure. See Figure 1 legend for expansion of other abbreviation.   
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lung injury worsened, there was a decrease in the dis-

persion distance ( Fig 4 ,  e-Fig 2 ). 

 Discussion 

 Because of the lack of any reliable and safe marker that 

can be introduced into human lungs for study, we have 

examined the maximum distribution of exhaled air, 

marked by fi ne smoke particles, from the HPS during 

application of NIV using two diff erent helmets and a 

total facemask. We have shown that leakage of exhaled 

air was negligible when NIV was applied to the HPS via 

a helmet with double limb circuit, fi lters and a good seal 

at the neck-helmet interface, whereas leakage at the 

neck interface could reach a maximum radial distance 

of 270 mm through another helmet without a tight seal 

in the interface. In addition, exhaled air jet through the 

exhalation port could reach a distance of 916 mm when 

NIV was applied to the HPS via the total face mask 

using single circuit. 

 In addition to reporting the exhaled air dispersion 

during manual ventilation with and without addition 

of a viral-bacterial fi lter on the HPS model,  17   we have 

previously examined the maximum exhaled air 

distances from the HPS receiving NIV via several 

orofacial masks using a single limb circuit.  12,13   Th e 

ResMed mirage mask could leak through its exhala-

tion port up to 500 mm when the HPS was pro-

grammed in mild lung injury,  12   whereas leakage from 

the Respironics ComfortFull 2 mask would increase 

from 650 to 850 mm through the exhalation diff user 

at a direction perpendicular to the head of the HPS 

along the sagittal plane, when IPAP was increased from 

10 to 18 cm H 2 O, respectively.  13   In contrast, even when 

a low IPAP of 10 cm H 2 O was applied to the HPS via 

the Respironics Image 3 mask connected to the whis-

per swivel exhalation port, the exhaled air leaked far 

more diff usely than via the ComfortFull 2 mask, dis-

persing a low normalized concentration to 950 mm 

along the median sagittal plane of the HPS, whereas 

higher IPAP resulted in wider spread of a higher 

normalized concentration of smoke around the HPS 

in the isolation room with negative pressure.  13   

  Figure 4  – A-C, Exhaled air dispersions during application of noninvasive ventilation using a bilevel positive airway pressure device with a single circuit 
to the HPS via the Respironics total facemask. IPAP was increased in three experiment settings from 10 to 14 and 18 cm H 2 O, respectively, while main-
taining EPAP at 5 cm H 2 O. With normal lung condition, the mean ( �  SD) exhaled air dispersion distances with 20% normalized smoke concentration 
were 693  �  83 mm, 704  �  57 mm, and 916  �  35 mm, respectively. With mild lung injury, the exhaled air dispersion distances were 618  �  67 mm, 
698  �  48 mm, and 812  �  65 mm, respectively. With severe lung injury, the corresponding values were 580  �  72 mm, 638  �  53 mm, and 710  �  103 mm, 
respectively. See Figure 1 and 3 legends for expansion of abbreviations.   
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 NIV is eff ective in the treatment of patients with respi-

ratory failure due to COPD, acute cardiogenic pulmo-

nary edema, and pneumonia in immunocompromised 

patients, but the evidence supporting its use in hypoxic 

respiratory failure due to SARI is limited.  26   NIV was 

applied successfully to some patients with SARS in a 

hospital in Hong Kong, with reduced needs for tracheal 

intubation and decreased mortality without causing any 

clinical and serological evidence of nosocomial transmis-

sion among the HCWs.  27   Th e hospital involved man-

aged to install exhaust ventilation fans in the windows 

of the treatment rooms to create a negative pressure 

environment with  .  8 ACH, and the HCWs involved 

complied well with airborne precautions.  27   However, 

other reports suggested that NIV might have led to 

nosocomial transmission of SARS involving HCWs,  28,29   

whereas NIV was shown to be an independent risk 

factor of super-spreading events in the hospital setting 

in a large case-controlled study.  30   Indeed, a systematic 

review has shown that NIV is one of the factors that 

may lead to increased risk of nosocomial infection.  11   

 In immunocompromised patients with lung infi ltrates 

and acute hypoxic respiratory failure, NIV delivered via 

helmet appeared as eff ective as NIV via face mask in 

avoiding tracheal intubation and improving gaseous 

exchange, whereas fewer NIV discontinuations and 

fewer complications were observed in the helmet 

group.  31   NIV has been applied to some patients with 

severe H7N9 infection  5   and Middle East respiratory 

syndrome,  32   but the majority of patients required inva-

sive mechanical ventilation. Several groups had applied 

NIV to patients hospitalized with infl uenza A(H1N1) 

and acute hypoxemic respiratory failure with variable 

success.  33-35   

 Infl uenza A viruses may spread between humans 

through contact, large respiratory droplets, and small 

particle droplet nuclei (aerosols).  36,37   Th ere was evidence 

of possible aerosol transmission in a nosocomial out-

break of seasonal infl uenza temporally related to the use 

of NIV in an index patient with acute exacerbation of 

COPD due to infl uenza A(H3N2) in our acute hospital 

medical ward with an imbalanced indoor airfl ow.  38   

 Patients with mild ARDS due to SARI may be consid-

ered for a trial of NIV if there is suffi  cient local experi-

ence.  10,39   However, NIV is generally regarded as one of 

the aerosol-generating procedures in which there is 

possibly increased risk of respiratory pathogen trans-

mission.  11,40   Th us, it is advisable to apply NIV carefully 

with airborne precautions in an adequately ventilated 

room (with 6-12 ACH) when caring for patients with 

SARI of infectious nature.  10,12,13,40,41   Based on our study 

fi ndings, NIV via the helmet with double limb circuit 

and a good seal at the neck-helmet interface would be 

a safe option for managing infectious patients with 

hypoxemic respiratory failure due to SARI. 

 Our study was limited by the use of smoke particles as 

markers for exhaled air. However, evaporation of water 

content in some droplets during NIV may produce 

droplet nuclei suspended in air, whereas the larger 

droplets will fall to the ground in a trajectory pathway.  42   

As the smoke particles in this study mark the contin-

uous air phase, our data contours are referring to 

exhaled air. Our results would therefore represent the 

“upper bound” estimates for the dispersion of droplets, 

which would be expected to follow a shorter trajectory 

than the air jet because of gravitational eff ects, but not 

fully refl ect the risk of droplet transmission.  12-17   

 In summary, we have shown that leakage of exhaled air 

was negligible when NIV was applied to the HPS via a 

helmet with double limb circuit, fi lters, and a good seal 

at the neck interface, whereas leakage at the neck inter-

face could reach a maximum radial distance of 270 mm 

through another helmet without a tight neck seal. In 

addition, leakage of exhaled air jet through the exhala-

tion port could reach a distance of 916 mm when NIV 

was applied via the total face mask and a single circuit. 

HCWs should take adequate precautions when pro-

viding NIV support to patients with SARI complicated 

by respiratory failure. 
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