Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(1S,2S,5S)-2-Methyl-3-oxo-5-(prop-1-en-2-yl)cyclohexane-1-carbonitrile

Marcos L. Rivadulla, ${ }^{\text {a }}$ Alioune Fall, ${ }^{\text {a }}$ María González ${ }^{\text {a }}$ and Maria J. Matos ${ }^{\text {b* }}$
${ }^{\text {a }}$ Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, E-36310 Vigo, Spain, and ${ }^{\text {b }}$ Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Correspondence e-mail: mariacmatos@gmail.com
Received 19 April 2013; accepted 24 April 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.052 ; w R$ factor $=0.164 ;$ data-to-parameter ratio $=21.6$.

The molecule of the title compound, $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$, contains a cyclohexanone ring, three defined stereocenters and an exocyclic double bond. The crystal structure is the result of a study on the Michael addition reaction of (S)-carvone with sodium cyanide using ionic liquids as the reaction medium and so the absolute configuration is known from the chemistry. The six-membered ring is in a chair conformation.

Related literature

For recent review of Ionic liquids as solvents, see: Welton (1999); Wasserscheid \& Keim (2000).

Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$
$M_{r}=177.24$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.2892$ (8) \AA
$b=10.7213$ (16) \AA
$c=19.559(3) \AA$

Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1995)
$T_{\text {min }}=0.861, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.164$
$S=1.04$
2590 reflections
$V=1109.1(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.60 \times 0.56 \times 0.42 \mathrm{~mm}$

7138 measured reflections
2590 independent reflections
2112 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

120 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2007); software used to prepare material for publication: PLATON (Spek, 2009).

This work was supported financially by the Xunta de Galicia (No. EXPTE. CN 2012/184). The work of the MS and Singlecrystal X-ray Diffraction divisions of the research support service of the University of Vigo (CACTI) is also gratefully acknowledged. MG thanks the University of Vigo for a PhD fellowship.

[^0]
References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wasserscheid, P. \& Keim, W. (2000). Angew. Chem. Int. Ed. 39., 3772-3789. Welton, T. (1999). Chem. Rev. 99, 2071-2084.

supplementary materials

Acta Cryst. (2013). E69, o799 [doi:10.1107/S1600536813011197]

(1S,2S,5S)-2-Methyl-3-oxo-5-(prop-1-en-2-yl)cyclohexane-1-carbonitrile

Marcos L. Rivadulla, Alioune Fall, María González and Maria J. Matos

Comment

Ionic Liquids (ILs) have been attracting considerable attention in the last decade as a new media due to their unique physical and chemical properties (Welton, 1999, Wasserscheid and Keim, 2000). They are often preferred as being more environmentally friendly than traditional organic solvents. The range of known and available ILs has been rapidly growing and nowadays many ILs are commercially available. In accordance with current trends in academic and industrial research, in recent years our research group has also began to work towards the replacement of toxic volatile organic solvents with ILs. In the title compound, I, (Fig. 1), it is observed that the six-membered ring adopts the usual chair conformation. The $\mathrm{C} 1-\mathrm{C} 2$ bond of the cyclohexanone moiety adopts a cis configuration. The dihedral angle between the main plane of the cyclohexanone ring (defined for $\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$) and the main plane of the lateral chain (defined for $\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$) is 73.97°. The $\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ atoms of the lateral chain are co-planar but show large thermal motion. The absolute configuration was established according to the configuration of the starting material.

Experimental

Over a stirring solution of $(\mathrm{S})-(+)$-Carvone $(104 \mu L ; 0.67 \mathrm{mmol})$ in the ionic liquid [TMG][LAC] (1 mL), $\mathrm{NaCN}(39.15$ $\mathrm{mg} ; 0.8 \mathrm{mmol}$) was added. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Then the reaction was cooled at room temperature and was quenched with water $(15 \mathrm{~mL})$ and extracted with AcOEt . The organic layer was washed with a aqueous solution of $\mathrm{HCl}(10 \%)(2 \times 10 \mathrm{ml})$ and brine $(2 \times 10 \mathrm{~mL})$, then was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel ($5 \% \mathrm{AcOEt} / \mathrm{hexane}$) to afford the two desired diastereosiomeric compounds (116 $\mathrm{mg} ; 86 / 14 ; 99 \%$). The title compound, was crystallized using a mixture of $30 \% \mathrm{AcOEt} / \mathrm{hexane}$.

Refinement

In (I) H atoms were placed in calculated positions and treated as ding atoms with $\mathrm{C}-\mathrm{H}$ (tertiary), $0.98 \AA, \mathrm{C}-$ H_{2} (secondary), $0.97 \AA, \mathrm{C}=\mathrm{C}-\mathrm{H}_{2}($ terminal $), 0.93 \AA$, with $U_{\text {iso }}=1.2 \mathrm{Ueq}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}$ (methyl), $0.96 \AA$, with $U_{\text {iso }}$ $=1.5 \mathrm{Ueq}(\mathrm{C})$.
The H atoms attached to atom C11 were located on a final difference map. Atoms C8 and C9 show large thermal motion and, as a result, their contact distances to atom C 7 are shorter than would be expected. Since the $\mathrm{C} 7-\mathrm{C} 8$ distance was longer than the C7-C9 distance C8 was assumed to be the methyl carbon. The H atoms attached to C 8 and C 9 could not be clearly seen on a final difference map.
Since no atom in the structure had an atomic number greater than 8 the absolute configuration could not be deterimed with $\operatorname{Mok} \alpha$ radiation hence the Flack parameter is meaningless.

Computing details

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97
(Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2007); software used to prepare material for publication: PLATON (Spek, 2009).

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

(1S,2S,5S)-2-Methyl-3-oxo-5-(prop-1-en-2-yl)cyclohexane-1-carbonitrile

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$
$M_{r}=177.24$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.2892$ (8) \AA
$b=10.7213$ (16) \AA
$c=19.559$ (3) \AA
$V=1109.1$ (3) \AA^{3}
$Z=4$
$F(000)=384$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
$T_{\min }=0.861, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.164$
$S=1.04$
2590 reflections
$D_{\mathrm{x}}=1.061 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3155 reflections
$\theta=2.8-26.9^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.60 \times 0.56 \times 0.42 \mathrm{~mm}$

7138 measured reflections
2590 independent reflections
2112 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.9^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-6 \rightarrow 6$
$k=-13 \rightarrow 13$
$l=-19 \rightarrow 25$

120 parameters

0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1051 P)^{2}+0.0575 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.20\) e \(\AA^{-3}\)
```


Special details

Experimental. ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{C D C l}_{3}, \boldsymbol{\delta}\right): \delta(\mathrm{eq}) 4.83(2 H, \mathrm{~J}=26.07 \mathrm{~Hz}, \mathrm{H}-9), 3.35-3.32(1 H, \mathrm{~m}, \mathrm{H}-3), 2.82-2.74(1 H, \mathrm{~m}, \mathrm{H}-5)$, 2.63-2.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2+\mathrm{H}_{\mathrm{eq}}-4$), 2.32-2.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{ax}}-4+\mathrm{H}_{\mathrm{eq}}-6$), 1.99-1.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{ax}}-6$), $1.77(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.70 \mathrm{~Hz}$, $\left.\mathrm{H}_{3}-7\right) \delta(\mathrm{ax}) 4.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 4.65(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-9), 2.84-2.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.69-2.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3+\mathrm{H}_{\mathrm{eq}}-4\right)$ 2.58-2.49 (2H, $\left.\mathrm{m}, \mathrm{H}-2+\mathrm{H}_{\mathrm{ax}}-4\right)$, $2.35-2.18\left(2 H, \mathrm{~m}, \mathrm{H}_{\mathrm{eq}+\mathrm{ax}}-6\right), 1.75(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-10) ; 1.25(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.70 \mathrm{~Hz}, \mathrm{H}-7) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{C D C l}_{3}, \boldsymbol{\delta}\right):$ $\delta(\mathrm{eq}) 206.73(\mathrm{C}-1), 145.55(\mathrm{C}-8), 118.65(\mathrm{C}-11), 111.16\left(\mathrm{CH}_{2}-9\right), 45.79\left(\mathrm{CH}_{2}-4\right), 45.05(\mathrm{CH}-2), 42.25(\mathrm{CH}-5), 35.67$ (CH-3), $32.85\left(\mathrm{CH}_{2}-6\right), 20.53\left(\mathrm{CH}_{3}-10\right), 12.59\left(\mathrm{CH}_{3}-7\right) ; \delta(\mathrm{ax}) 207.23(\mathrm{C}-1), 144.76(\mathrm{C}-8), 120.54(\mathrm{C}-11), 113.88\left(\mathrm{CH}_{2}-9\right)$, $46.70\left(\mathrm{CH}_{2}-4\right), 40.35(\mathrm{CH}-5), 31.96(\mathrm{CH}-3), 30.52\left(\mathrm{CH}_{2}-6\right), 21.89\left(\mathrm{CH}_{3}-10\right), 13.50\left(\mathrm{CH}_{3}-7\right) . \mathbf{I R}-\left(\mathbf{C D C l}_{3}, \boldsymbol{v}\left(\mathbf{c m}^{-1}\right)\right): 2974$, 2936, 2359, 2237, 1709, 1447, 1379, 898. MS (EI') (m/z, \%): $162.99\left(\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\right]^{+}, 4\right) ; 178.12\left([M+1]^{+}, 57\right) ; 200.10([M+$ $\left.\mathrm{Na}]^{+}, 100\right) ; 201.05$ (12); 201.10 (16); 210 (10); 216 (5). HRMS: 177.2429 calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$ and found 177.1145.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
O	$0.1359(3)$	$0.16426(13)$	$0.97088(8)$	$0.0752(4)$
N	$0.1851(4)$	$-0.20500(17)$	$0.92433(12)$	$0.0888(6)$
C 1	$0.5822(3)$	$-0.06508(16)$	$0.94292(9)$	$0.0573(4)$
H 1	0.7132	-0.1143	0.9659	0.069^{*}
C 2	$0.5121(4)$	$0.04653(16)$	$0.99035(8)$	$0.0588(4)$
H 2	0.6689	0.0917	1.0002	0.071^{*}
C3	$0.3426(3)$	$0.13420(15)$	$0.95095(9)$	$0.0564(4)$
C4	$0.4468(4)$	$0.17830(18)$	$0.88397(11)$	$0.070)^{(5)}$
H4A	0.5991	0.2266	0.8919	0.085^{*}
H4B	0.3243	0.2320	0.8617	0.085^{*}
C5	$0.5082(4)$	$0.06743(17)$	$0.83708(9)$	$0.0625(4)$
H5	0.3501	0.0222	0.8288	0.075^{*}
C6	$0.6881(4)$	$-0.02143(19)$	$0.87410(10)$	$0.0646(5)$
H6A	0.8484	0.0203	0.8816	0.078^{*}
H6B	0.7192	-0.0935	0.8454	0.078^{*}
C7	$0.6110(5)$	$0.1083(2)$	$0.76790(12)$	$0.0885(7)$
C8	$0.7980(8)$	$0.2010(4)$	$0.76281(18)$	$0.1574(17)$
H8A	0.7514	0.2597	0.7280	0.236^{*}
H8B	0.9568	0.1631	0.7511	0.236^{*}
H8C	0.8137	0.2434	0.8058	0.236^{*}
C9	$0.5180(13)$	$0.0550(7)$	$0.71081(16)$	$0.263(4)$
H9A	0.5776	0.0796	0.6681	0.316^{*}
H9B	0.3943	-0.0063	0.7141	0.316^{*}
C10	$0.3602(4)$	$-0.14556(16)$	$0.93301(10)$	$0.0642(5)$

C11	$0.4019(6)$	$0.0058(2)$	$1.05820(10)$	$0.0901(7)$
H11A	0.2379	-0.0301	1.0509	0.135^{*}
H11B	0.3870	0.0768	1.0879	0.135^{*}
H11C	0.5111	-0.0550	1.0789	0.135^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O	$0.0629(8)$	$0.0698(8)$	$0.0928(10)$	$0.0087(7)$	$0.0027(7)$	$-0.0158(7)$
N	$0.1012(14)$	$0.0644(10)$	$0.1009(14)$	$-0.0174(11)$	$0.0103(12)$	$-0.0007(9)$
C 1	$0.0587(9)$	$0.0538(8)$	$0.0594(9)$	$0.0115(7)$	$0.0018(7)$	$-0.0007(7)$
C 2	$0.0646(10)$	$0.0575(8)$	$0.0542(8)$	$0.0038(8)$	$-0.0016(8)$	$-0.0046(7)$
C 3	$0.0598(9)$	$0.0453(7)$	$0.0641(9)$	$-0.0001(7)$	$-0.0026(8)$	$-0.0111(6)$
C 4	$0.0820(13)$	$0.0565(9)$	$0.0729(11)$	$0.0033(9)$	$-0.0021(10)$	$0.0073(8)$
C 5	$0.0656(10)$	$0.0669(10)$	$0.0549(9)$	$-0.0066(9)$	$0.0005(8)$	$0.0009(8)$
C 6	$0.0609(10)$	$0.0682(10)$	$0.0647(9)$	$0.0022(9)$	$0.0111(8)$	$-0.0039(8)$
C 7	$0.1031(17)$	$0.0994(15)$	$0.0630(11)$	$-0.0087(15)$	$0.0083(12)$	$0.0114(11)$
C 8	$0.179(3)$	$0.205(4)$	$0.0891(19)$	$-0.075(4)$	$0.014(2)$	$0.044(2)$
C 9	$0.358(9)$	$0.365(8)$	$0.0663(17)$	$-0.233(8)$	$0.047(3)$	$-0.045(3)$
C 10	$0.0789(12)$	$0.0467(8)$	$0.0669(10)$	$0.0016(9)$	$0.0094(9)$	$0.0003(7)$
C 11	$0.129(2)$	$0.0840(13)$	$0.0578(10)$	$0.0202(15)$	$0.0180(12)$	$-0.0017(10)$

Geometric parameters (${ }_{A},{ }^{\circ}$)

O-C3	1.205 (2)	C5-C6	1.529 (3)
$\mathrm{N}-\mathrm{C} 10$	1.137 (3)	C5-H5	0.9800
C1-C10	1.470 (3)	C6-H6A	0.9700
C1-C6	1.531 (3)	C6-H6B	0.9700
C1-C2	1.559 (2)	C7-C9	1.347 (5)
C1-H1	0.9800	C7-C8	1.406 (5)
C2-C3	1.510 (2)	C8-H8A	0.9600
C2-C11	1.513 (3)	C8-H8B	0.9600
C2-H2	0.9800	C8-H8C	0.9600
C3-C4	1.498 (3)	C9-H9A	0.9300
C4-C5	1.536 (3)	C9-H9B	0.9300
C4-H4A	0.9700	C11-H11A	0.9600
C4-H4B	0.9700	C11-H11B	0.9600
C5-C7	1.522 (3)	C11-H11C	0.9600
C10-C1-C6	110.83 (16)	C4-C5-H5	107.5
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2$	109.82 (15)	C5-C6-C1	112.29 (15)
C6- $\mathrm{C} 1-\mathrm{C} 2$	112.06 (14)	C5-C6-H6A	109.1
C10-C1-H1	108.0	C1-C6-H6A	109.1
C6- $\mathrm{C} 1-\mathrm{H} 1$	108.0	C5-C6-H6B	109.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	108.0	C1-C6-H6B	109.1
C3-C2-C11	113.48 (17)	H6A-C6-H6B	107.9
C3-C2-C1	108.38 (13)	C9-C7-C8	119.8 (3)
C11-C2-C1	113.08 (16)	C9-C7-C5	119.0 (3)
C3-C2-H2	107.2	C8-C7-C5	121.2 (2)
C11-C2-H2	107.2	C7-C8-H8A	109.5

supplementary materials

C1-C2-H2	107.2	C7-C8-H8B	109.5
$\mathrm{O}-\mathrm{C} 3-\mathrm{C} 4$	122.18 (18)	H8A-C8-H8B	109.5
$\mathrm{O}-\mathrm{C} 3-\mathrm{C} 2$	122.69 (18)	C7-C8-H8C	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	115.10 (16)	H8A-C8-H8C	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	110.84 (15)	H8B-C8-H8C	109.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5	C7-C9-H9A	120.0
C5-C4-H4A	109.5	C7-C9-H9B	120.0
C3-C4-H4B	109.5	H9A-C9-H9B	120.0
C5-C4-H4B	109.5	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 1$	178.0 (2)
H4A-C4-H4B	108.1	C2-C11-H11A	109.5
C7-C5-C6	112.20 (17)	C2-C11-H11B	109.5
C7-C5-C4	112.55 (17)	H11A-C11-H11B	109.5
C6-C5-C4	109.32 (15)	C2- $\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
C7-C5-H5	107.5	H11A-C11-H11C	109.5
C6-C5-H5	107.5	H11B-C11-H11C	109.5
C10-C1-C2-C3	-71.53 (18)	C3-C4-C5-C6	-55.5 (2)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	52.1 (2)	C7-C5-C6-C1	-178.64 (18)
C10-C1-C2-C11	55.2 (2)	C4-C5-C6-C1	55.8 (2)
C6-C1-C2-C11	178.83 (19)	C10-C1-C6-C5	67.67 (19)
C11-C2-C3-O	-2.8 (2)	C2-C1-C6-C5	-55.4 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O}$	123.73 (18)	C6-C5-C7-C9	102.3 (5)
$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	179.06 (17)	C4-C5-C7-C9	-133.9 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-54.45 (19)	C6-C5-C7-C8	-78.4 (3)
$\mathrm{O}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-120.6 (2)	C4-C5-C7-C8	45.4 (4)
C2-C3-C4-C5	57.6 (2)	C6- $\mathrm{C} 1-\mathrm{C} 10-\mathrm{N}$	-58 (6)
C3-C4-C5-C7	179.12 (18)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{N}$	66 (6)

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2087).

