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Vision is a highly rhythmic function adapted to the extensive changes in light intensity
occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular
processes, which are orchestrated by a network of circadian clocks located within the retina
and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection
and processing of light information over the 24-hour period and ensure retinal homeostasis.
Systematic or high throughput studies revealed a series of genes rhythmically expressed in the
retina, pointing at specific functions or pathways under circadian control. Conversely,
knockout studies demonstrated that the circadian clock regulates retinal processing of light
information. In addition, recent data revealed that it also plays a role in development as well as
in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays
the unique property of bringing together light sensitivity, clock machinery, and a wide range
of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both
outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of
regulation by light are diverse and intricate. In the context of the whole eye, the retina looks
like a major determinant of phase resetting for other tissues such as the retinal pigmented
epithelium or cornea. Understanding the pathways linking the cell-specific molecular
machineries to their cognate outputs will be one of the major challenges for the future.
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The existence of daily rhythms in behavior and physiology is
one of the major hallmarks of life on Earth. This

characteristic has developed throughout evolution from
bacteria or unicellular algae to vertebrates, in accordance
with periodic variation of environmental factors such as the
24-hour day/night cycle. Not surprisingly, circadian rhythms
(circadian¼ about 24 hours) are controlled by conserved, cell-
autonomous, and self-sustaining mechanisms. These are
mainly based on autoregulatory, negative feedback loops able
to track time and to entrain, more or less directly, gene
expression programs. Such timing systems have the property
to anticipate predictable environmental changes and to
control physiology and behavior, accordingly. A growing list
of ‘‘clock genes’’ and of distinct interlocked transcriptional/
translational regulatory loops has been described in mammals,
suggesting diversity in molecular architecture between tissues
or even cell types, but still conforming to the same general
principle.1 Thus, a huge number of cellular clocks exist

throughout the body. They are coordinated by a master clock
located in the suprachiasmatic nuclei (SCN) within the
hypothalamus and are themselves synchronized with the solar
day by daily light signals transmitted through the retina.
Genetic diversity as well as organization of oscillators into a
network underlie the extreme robustness of clock systems,
which are largely insensitive to minor environmental changes.
The emergence of transcriptomic approaches in the field
offered an opportunity for a systematic analysis of temporal
gene expression that functions in a specific tissue or cell type.
Using this technique, it was demonstrated that thousands of
transcripts undergo circadian oscillations in various mouse
organs and that about 43% of protein encoding genes are
rhythmic in a tissue-specific manner.2–4 Recently, the first
exhaustive analysis of rhythmic transcriptional expression
profiles in >60 tissues/organs from a diurnal nonhuman
primate was performed.5 This genome-wide transcriptome
study uncovered a wide array (about 82%) of protein-
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encoding, ubiquitous, and tissue-specific genes undergoing
rhythmic daily changes. These studies emphasize how
pervasive the circadian clock system is, with extensive
regulation of major, basic biologic processes such as
metabolism, DNA repair, and gene expression but also
tissue-specific functions,6 all intimately coordinated within
the 24-hour period. The award of the 2017 Nobel Prize to the
researchers who discovered the molecular mechanism
governing daily rhythms (Jeffrey C. Hall, Michael Rosbash,
and Michael W. Young) provided widespread acknowledge-
ment of the fundamental importance of circadian clocks. It
also underlines the emerging interest for biologic rhythms in
today’s society. Indeed, modern lifestyles with extensive use
of artificial light throughout the 24-hour period, frequent
jetlag, and sleep debt, challenge our circadian system, likely
hasten aging and increase the risk of major health problems
such as metabolic syndrome, neurobehavioral abnormalities,
and cancer.7–9

The day/night cycle in ambient light is the major
environmental factor able to entrain clocks, also called a
zeitgeber (time-giver). In mammals, eyes constitute the only
light input pathway to the SCN10 and entrainment of this
central clock involves the three main light sensitive systems of
the retina (i.e., rods, cones, and the intrinsically sensitive
retinal ganglion cells [ipRGCs]). The latter were discovered
about 20 years ago and express the photopigment melanopsin
(OPN4). These ipRGCs send axons to the SCN as well as
multiple other targets within the brain and integrate light
information processed and transmitted by rods and cones.11,12

Both irradiance and wavelength serve as entraining factors to
align the circadian system with the external light/dark cycle.13

Interestingly, eye physiology is also subject to circadian
regulation, which adapts vision to the alternating day-night
cycle (i.e., high and low light intensities), but also modulates
the capacity of the retina to signal to the circadian system. In
mammals, the retina was actually the first tissue outside of the
SCN, described to display circadian clock properties, based on
its capacity to synthesize and release melatonin in vitro with a
~24-hour rhythm.14 This observation triggered extensive
analysis of retinal physiology over the 24-hour cycle and many
molecular and cellular processes are now known to be under
clock-control.15,16 These extend from the expression of
photopigments17,18 to visual sensitivity, as reflected in ERG
by the amplitude of the photopic b-wave.19–21 They also
include processes linked to retina survival such as rhythms in
shedding of rod and cone outer segments and phagocytosis by
the underlying RPE22,23 and the vulnerability to phototoxici-
ty.24 In addition, rhythmic processes have been reported
elsewhere in the eye, such as in the cornea (daily variation of
thickness or mitotic rate25,26) and in the ciliary body (aqueous
production contributing to intraocular pressure27,28). In line
with these results, transcriptomics analysis of the eyes over the
24-hour period provided an extensive view of processes under
cyclic control in ocular tissues.5,21 Although identified cycling
genes appear linked mainly to the retina, these data provided
potential insight into the rhythmic physiology of the cornea,
lens, choroid, and sclera, among others. Conversely, disruption
of the circadian clock as induced by Bmal1 knockout was
described to dramatically alter corneal and lens structure.29,30

Likewise, photoreceptor viability during aging is significantly
reduced in Bmal1

�/� as well as in Npas2/Clock double
knockout mice.31 Thus, alteration of clock signaling compro-
mises cell viability and leads to accelerated aging in ocular
tissues.

Circadian regulation of retinal functions is present in all the
different classes of vertebrates but since significant differences
exist in the circadian organization of the retina among these
different systematic groups, and often among the different

species within the same class, we decided to focus our review
on mammals. This review presents general data about the
molecular clock and its retinal target genes, updates the
understanding of clock involvement in the regulation of vision,
and provides information about the distinct synchronization
mechanisms at play in the retina and within the eye.

CIRCADIAN CLOCKS IN THE MAMMALIAN RETINA

The Molecular Clock

The central clock and most clocks throughout the organism
share similar transcriptional architecture.1 This molecular time-
keeping system is generated by interlocking transcriptional-
translational feedback loops (TTFL; Fig. 1). The clock core loop
involves the activator proteins complex CLOCK-BMAL1 (or
NPAS2-BMAL1) which binds to the E-box sequences in the
promoters of the repressor genes Period (Per) 1–3 and
Cryptochrome (Cry) 1–2 to induce their transcription. PER
proteins form complexes with CRY proteins, undergo phos-
phorylation by casein kinase CK1e/d and are translocated back
to the nucleus to repress the transcriptional activity of the
CLOCK-BMAL1 complex, thus repressing their own transcrip-
tion. In addition, the CLOCK-BMAL1 complex activates the Ror

and RevErb nuclear receptor genes also via the E-box
enhancers. The ROR and REVERB proteins compete at the
retinoic acid-related orphan receptor binding elements (RORE)
sites and activate or, respectively, repress Bmal1 transcription.
These interlocking feedback loops build a network of rhythmic
clock genes and clock-controlled genes (CCGs) in which
expression patterns are finely shaped by posttranslational
processes such as proteasomal degradation, ubiquitination,
sumoylation phosphorylation, and acetylation in order to set
the phase coherence of cellular and tissue functions over a 24-
hour cycle. In the mouse eye, one groundbreaking study
reported that the steady-state levels of a large number of
transcripts exhibit daily and circadian oscillations.21 These
include genes involved in basic neural and cellular functions
such as synaptic transmission, intercellular communication and
photoreceptor signaling. Similar observations were made using
proteomic approaches.32,33 In a nonhuman primate (Papio

anubis), Mure and colleagues5 compared gene expression
throughout a 24-hour cycle in several ocular tissues (retina,
RPE, iris, and cornea) using RNA-Seq. The authors found that
around 4% to 5% of the transcripts are rhythmic in the retina,
the RPE, and the iris whereas the cornea exhibits 12% of
rhythmic gene expression with peak phases occurring around
the middle of the day and the end of the night. In this primate
retina, clock genes were not found to cycle as previously
reported in several studies in rodents.17,21,34–38 This may be
related to the existence of several clocks in the retina, with
differences in phasing and period between cells/layers that
may render difficult the transcriptomic analysis at the whole
tissue level. Indeed, ex vivo studies of clock gene expression
demonstrated rhythms in photoreceptor layers on one hand
and in the inner retina on the other39,40 (Fig. 1). Nevertheless,
specific retinal ablation of the Bmal1 core clock gene led to
abnormal retinal transcriptional responses to light21 while in
retinal explants, Per1 (but not Per2 and Per3), Cry1 (but not
Cry2), and Clock were found to be necessary for sustained
circadian rhythms.41,42

Finally, it is worth mentioning that recent studies have
shown the presence of a metabolic clock in red blood cells that
is independent from the molecular clockwork above de-
scribed.43 The role of this metabolic clock in the regulation
of retinal circadian rhythmicity is not known and will require
further investigation.
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The exact cellular location of the retinal clock remains an
area of ongoing research. However, it was demonstrated that
the retina harbors a network of clocks localized in each cell
layer. Strong evidence came from the bioluminescence
recordings using the luciferase reporter coupled to Per1

and 2 clock genes.44,45 The mouse whole retinal explants as
well as the isolated ganglion cell (GCL), inner nuclear (INL),
and outer nuclear (ONL) layers exhibit autonomous PER2::-
LUC rhythmic expression with specific periods46 while Per1-

Luc was shown to oscillate in the isolated rat ONL.47 GCL and
INL are the major sites of PER2::LUC expression36,40,46 and
the connectivity with the neighboring layers increases the
robustness of the rhythms46 indicating dynamic network
properties. Moreover, autonomous PER2::LUC oscillations
were recorded in Müller cells.48 Hence, experimental
evidence indicates the presence of a complex network of
cell circadian oscillators throughout the retina and this might

explain the rather divergent results that were previously
obtained using in vivo and in vitro techniques with varying
detection limits (in situ hybridization, whole retina/vibratome
sections/microdissection/single cell qRT-PCR) on the expres-
sion patterns of circadian clock genes in the different retinal
cell types.34,35,37,39,40,49–51

Immunohistochemistry studies confirmed the broad ex-
pression of core clock proteins. CLOCK, BMAL1, NPAS2,
PER1, PER2, and CRY2 are expressed in ipRGCs, amacrine
cells, bipolar cells, horizontal cells and cones, but clear
diurnal and circadian rhythms were observed only in mouse
cones.52 CRY1 is also expressed throughout all retinal layers,
albeit within the ONL only the cones express CRY1.42 Taken
together, these findings suggest that cones and not rods are
cell-autonomous circadian clocks.40,52 Thus, further investi-
gation is required to define the exact molecular clock make-
up in each cell type.

FIGURE 1. The molecular clock pathways and retinal clocks. Schematic representation of the transcriptional/translational feedback loops model for
the molecular clock. The BMAL1/CLOCK (or BMAL1/NPAS2) dimer activates transcription of the Per and Cry genes upon binding to the Ebox
sequences in their promoters. In turn, PER and CRY proteins form heterodimers able to inhibit transcriptional activity of BMAL1/CLOCK, thus
turning down their own transcription. Meanwhile, these factors undergo posttranslational modifications, in particular, phosphorylation of PER
proteins by the Casein Kinases 1d or 1e, signaling for ubiquitination and proteasomal degradation, and then allowing the cycle to restart. BMAL1/
CLOCK likewise activates the expression of Rev-Erb and Ror genes, which products respectively repress and activate transcription of the Bmal1

gene at retinoic acid-related orphan receptor binding elements (RORE) sites. This generates an additional loop interlocked with the previous one, all
together contributing to the robustness of the clockwork. The presence of Ebox and/or RORE sequences throughout the genome supports the
rhythmic regulation of a set of target genes (CCG) for BMAL1/CLOCK, BMAL1/NPAS2, REV-ERB, and ROR transcription factors. Clock gene
expression dynamics over the 24-hour cycle conforming to this model have been described in the ONL and in the inner retina (INLþGCL) in several
ex vivo studies, as symbolized next to the eosin/hematoxylin stained transversal section of a rat retina shown in the upper-right corner of the figure.
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Clock-Driven Gene Expression

Clock-dependent control of retinal physiology appears to
involve transcriptional gene regulation. This follows from the
observation that retinal clocks drive the expression of
numerous genes21,53,54 including those that are: important
for retinal health and genetically associated with severe retinal
diseases (Esrrb55; Rev-Erba56; Nr2e3

57; Nxnl1
58; Rorb59),

important for vision (Arr1
60; Kcnv2

61; S-opsin and M-

opsin
17,18), and encoding key regulators of metabolism (Cpt-

1a62; Pgc-1a63). Consistent with a significant role of clock-
dependent gene regulation in retinal physiology, changes in
transcript levels were seen to result in corresponding changes
in protein amount.55,61,62,64

The retinal clock influences gene expression through
various pathways. On the one hand, it directs transcription
of target genes within the same cell. In this process, protein
products of clock genes or those of so-called ‘‘CCGs’’ target
gene transcription by binding to specific promoter sites. Thus,
the protein products of Clock, Npas2, and Bmal1 form
heterodimers (CLOCK/BMAL1 and NPAS2/BMAL1) that bind
to the E-box sites of various genes65 in photoreceptors,
including Aanat, which encodes arylalkylamine N-transferase,
the key regulatory enzyme in melatonin synthesis.66–68

Consistent with a role of also CCGs in linking retinal clocks
to cell-own target genes, Dbp—a CCG known to transactivate
gene expression through the D-box element69—displays
circadian changes in preparations of the whole retina and
microdissected photoreceptors.21,62,70 On the other hand, the
clock of a given retinal neuron appears to influence gene
expression in other retinal cells, a process that requires the
clock-dependent release of an extracellular messenger.15

Consistent with this concept, the clock-dependent release of
dopamine from amacrine neurons50,71,72 appears to contribute
to rhythmicity of gene expression in photoreceptors. This
follows from studies in melatonin-proficient mouse strains in
which dopamine levels show a circadian rhythm73: in mice
deficient for D4 receptors, the periodicity of a subset of genes
is attenuated in photoreceptors (Acadm, Cpt-1a62; Nr4a1

63;
Gnaz

64).
Similarly, the clock within photoreceptors may use melato-

nin signaling to influence gene expression in target cells
expressing melatonin receptors.74 This becomes evident from
the observations that photoreceptors (principally cones)
display a clock-dependent release of melatonin15 and that the
failure of functional MT1 receptors prevents (Pgc-1a63) or
phase-advances (Acadm, Cpt-1a62; Drd4, Gnaz

64; Rev-Erba,
Nr2e3, Rorb63) the daily rhythmicity of circadian genes.
Considering that melatonin released by photoreceptors might
also feedback on photoreceptor MT1 receptors,15 autocrine
signaling via melatonin may also participate in clock-depen-
dent regulation of photoreceptor gene expression.

Circadian regulation of a subset of genes is abolished in the
db/db mouse75—a mouse (melatonin-deficient) model of early
diabetic retinopathy.62,64 Likewise, clock gene expression is
strongly reduced in the retina of another model of type 2
diabetes and associated diabetic retinopathy.76 Interestingly,
circadian disruption (Per2 knockout) recapitulates diabetic
retinopathy in mice.77 Therefore, circadian regulation might
also be impaired in diabetic retinopathy of humans—one of the
most common causes of blindness in Europe and the United
States.78 Interestingly, the genes affected by diabetic retinop-
athy are known to be under dopaminergic control. Consistent
with this assumption, the diabetic retina displays disturbed
dopamine signaling.34,79 Hence, altered circadian regulation of
these genes may mirror dysfunction of the retinal dopaminer-
gic system in diabetic retinopathy.

To conclude, control of retinal physiology by the circadian
clock appears to be extensive in photoreceptors, in particular
by targeting genes involved in phototransduction but also
genes known to be important for their development. Whether
circadian regulation of gene expression in the retina involves
molecules distinct from dopamine and melatonin remains to be
further investigated.

CIRCADIAN CLOCKS AND VISUAL FUNCTION

A fundamental feature of sensory systems is their ability to
change their responsiveness when confronted with a constant
stimulus, a process called sensory adaptation.80 In the retina,
light adaptation contributes to the tissue’s ability to detect and
process visual images at any time of the day or night, when
ambient or background light intensity varies over more than a
billion-fold range.81 This amazing capability depends on a
specific functional architecture, including two classes of
photoreceptors, rods, and cones. In addition, a wide variety
of adaptive processes, collectively referred to as network or
neural adaptation, are driven by ambient illumination and
target cellular and synaptic elements of retinal circuits.81 Over
the last 2 decades, it has become clear that circadian clock
activity interacts with the effects of light to change signal
processing in retinal circuits over the course of the day/night
cycle (for reviews see Refs. 15 and 82 through 85). Although
we know little about how such changes are implemented, the
widespread expression of clock genes and proteins in retinal
tissue15 suggests that clocks likely influence the functional
organization in the retina at all levels, with the possibility that
each cell type’s clock acts in its direct vicinity through a
restricted clock pathway or more remotly via diffusible signals
such as dopamine and melatonin, able to diffuse through
retinal layers, and act at larger distances. The challenge we are
facing today is to identify these many putative clock pathways
and establish their individual contributions to the overall daily
changes in retinal function.

Organization of Rhythmic Visual Function at the
Level of the Network of Photoreceptors

Little is known about how ambient illumination and circadian
clocks implement changes in retinal circuit operation, but
accumulating evidence indicates that gap junctions play a
prominent role in neural adaptation in the retina.86,87 Gap
junctions are intercellular channels made of connexins that
permit direct cell-to-cell transfer of small molecules and
electrical current and, thereby, constitute the anatomic
substrate of electrical synapses.80 Each of the five major
neuron classes in the retina is coupled by gap junctions that
express a number of different connexins; connexin36 (Cx36),
which is the predominant connexin in the central nervous
system, is widely expressed in retinal neurons, including
photoreceptors.86 It has become increasingly evident that gap
junctions in neural networks are plastic, similar to chemical
synapses.88 Consistent with this, most gap junctions in the
retina show some degree of plasticity, generally in response to
changes in lighting.86,87 The involvement of circadian clocks in
the plasticity of gap junctions in retinal circuits remains largely
untested, but a large body of evidence now indicates that
electrical coupling between photoreceptors is modulated by
ambient light and circadian clocks.

The presence of a dynamic regulation of photoreceptor
electrical coupling is supported by indirect measures, such as
tracer coupling patterns,89–92 the phosphorylation state of
Cx3690,91,93 or Cx36 transcript expression,94 or light response
properties of photoreceptors,92,95 as well as direct measures of
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junctional conductance.96 These different approaches predict
that photoreceptor coupling is controlled by light/dark and
circadian clocks: it is weak during the subjective day, much
stronger in subjective night, and nearly abolished under bright
light illumination, irrespective of the time in the daily cycle.
These approaches also support a key role for the melatonin/
dopamine pathway in the regulation of photoreceptor
coupling (Fig. 2). Other clock effectors have been shown to
contribute to the daily plasticity of photoreceptor coupling as
well. In particular, adenosine, whose extracellular levels
increase at night, acts as a coupling agent on photorecep-
tors.91,97,98 It is thus very likely that multiple clock pathways
are at play to tightly regulate and set preferred states for
junctional coupling at different times of the day.

The notion that electrical coupling between photorecep-
tors is dynamically regulated by circadian clocks suggests
profound changes in downstream circuits in the process of rod
and cone signals according to the time of day. Indeed, changes
in the light response properties of rods and cones as a result of
changes in photoreceptor coupling strength have been
observed.92,95 Also, consistent with an increase in rod/cone
coupling at night, signals that originate in rods are found to a
greater extent in cones and cone-connected horizontal cells at
night.92,99–103 Although the functional impact of the circadian
modulation of photoreceptor coupling on the retinal output
awaits further investigations, studies so far have established
that photoreceptor gap junctions are the primary targets of the
melatonin/dopamine clock pathway and that these gap
junctions act as a neural circuit switch that controls signal
flow between photoreceptors, and, thereby, downstream
processing of rod- and cone-mediated signals in retinal circuits
on a daily basis, at least in the outer retina.87,104

Our current knowledge offers a conceptual framework to
explore the function of the reorganization of the photorecep-
tor network with the time of day in the retinal processing of
visual information. The photoreceptor network alternates
between a ‘‘daytime’’ state, where photoreceptor coupling
must be weak to maintain the spectral purity of the cone-
mediated responses, essential for high-acuity, color vision, and
a ‘‘nighttime’’ state, where strong photoreceptor coupling
maximizes processing of rod-mediated signals when vision is all
about catching scarce photons and high sensitivity. Remark-
ably, circadian clocks modulate photoreceptor electrical

coupling in anticipation of predictable changes in light
intensity that occur at dawn and dusk, but the clocks also
guarantee that the coupling strength is near optimal during day
and night, thereby, conveying more reliability to this process
than if it were solely controlled by ambient light.

Role of Melatonin in the Modulation of Retina
Functions

The hormone/neurotransmitter melatonin is synthetized by the
retinal photoreceptors during the night and its levels are tightly
controlled by light/dark cycle and by the circadian
clock.47,65,105,106 Melatonin acts by binding to two types of
melatonin receptor (e.g., MT1 and MT2), which are present in
many different retinal cell types.107 Consistently with this
observation, several studies have shown that melatonin can
indeed modulate a wide variety of retinal functions.108 In the
mouse melatonin signaling is necessary for the circadian rhythm
in the photopic ERG109 and in melatonin deficient strains (C57/
BL6) the circadian rhythms in retinal dopamine content is no
longer present. However, such a rhythm can be restored by
cyclic administration of exogenous melatonin during the
night,73 thus suggesting that the circadian rhythm in retinal
dopamine levels is driven by the circadian rhythm in melatonin
levels. Hence the circadian rhythm in rod-coupling observed in
the mouse96 is also regulated by melatonin. Finally, melatonin
drives the modulation of rod dark adaptation and thus it
potentially protects the retina from light-induced damage during
the day.110 Consistently with these experimental findings,
several studies have shown that administration of exogenous
melatonin can protect photoreceptors from apoptosis in mouse
models of retinitis pigmentosa111,112 and that melatonin
signaling is involved in the modulation of rod and cone
photoreceptor viability during aging.113,114 A protective effect
of melatonin on photoreceptor cells has been also observed in
humans since administration of exogenous melatonin (3 mg)
delayed the progression of age related macular degeneration
(AMD) in a few patients.115 Additional studies have shown that
low levels of circulating melatonin may correlate with the
incidence of AMD116,117 and other retinal diseases.118

Clock Genes in Retinal Physiology and Health

Deletion of clock genes was shown, so far, to display mild
effects in the retina,119 since only subtle morphologic
alterations have been described in Per1/Per2 mutants up to
1 year of age, whereas none were seen in Cry1/Cry2 knockout
mice.21,119,120 There is now evidence that changes occur in
clock gene mutant mice at older ages.31 Alterations induced by
the absence of these clock genes have been essentially linked
to the absence of clock-regulated visual sensitivity.21,119

Developmental defects have been described in the Per1/Per2

mutant120 as well as in conditional photoreceptor-specific
Bmal1 or Per2 knockout.121 These data correlate with the
capacity of Bmal1 to regulate expression of the Dio2 gene,
hence thyroid hormone signaling in the retina,121 but also
indicate other developmental signaling pathways potentially
under the control of clock gene expression.

Cryptochromes in the Retina

The role of Cry in the retina has been the subject of interest
since the cloning of two human homologs in the 1990s.122

Given that CRY family proteins function as photoreceptors in
plants and insects, this led to the suggestion that CRY was the
elusive photopigment mediating circadian responses to
light.123 Subsequent studies showed that this circadian
photoreceptor was in fact melanopsin—an opsin/vitamin A–

FIGURE 2. Overview of photoreceptor gap junction coupling and the
melatonin/dopamine pathway. Gap junctions are located at photore-
ceptor terminals. Melatonin production is under the control of a clock
within the photoreceptor layer and high at night. Melatonin suppresses
dopamine release, and it is the nocturnal decrease in dopamine release
and the subsequent decrease in activity of dopamine D2/4 receptors on
photoreceptors that increases photoreceptor coupling. SD, subjective
day; SN, subjective night.
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based photopigment expressed in ipRGCs.124–127 The demon-
stration that rods, cones, and melanopsin accounted for all
retinal responses to light128 and that melanopsin expression
alone was enough to make cells photoresponsive129–131

provided the key evidence that CRY did not function as a
photoreceptor in mammals.

The initial evidence for a role of CRY as a photoreceptor in
mammals came from studies showing that mice lacking both
Cry1 and Cry2 (Cry1

�/�
;Cry2

�/�) show attenuated nonimage
forming responses to light.132–135 However, under constant
conditions Cry1

�/�
;Cry2

�/� double-knockout mice are arrhyth-
mic.136 This is due to CRY playing a key role in the negative
limb of the TTFL underlying molecular circadian rhythms. As
such, CRY is also expected to play a role in the regulation of
retinal circadian rhythms. As predicted, Cry1

�/�
;Cry2

�/� mice
show a loss of circadian rhythms in the photopic ERG b-wave
amplitude.137 Furthermore, the attenuated pupillary responses
described in Cry1

�/�
;Cry2

�/� mice were found to be due to
loss of circadian rhythms, with similar phenotypes in other
clock mutants.119

While earlier studies had suggested that only CRY2 was
expressed in the mammalian retina,52 recent data has shown
that not only is CRY1 expressed in cones and amacrine cells,
with some expression in retinal ganglion cells. Moreover,
Cry1

�/� mice show a loss of rhythms in photopic ERG b-wave
amplitude, contrast sensitivity and pupillary light responses,
with reduced robustness and stability of bioluminescent
rhythms.42 By contrast, Cry2

�/� mice show just an attenuated
ERG b-wave amplitude. These data are consistent with
previous data on PER2::LUC rhythms in Cry1

�/�, Cry2
�/� and

Cry1
�/�

;Cry2
�/� mice, showing a more important role of

Cry1.41 Interestingly, Cry1
�/� mice show retinal responses

comparable to the ‘‘daytime’’ state at all phases, with a similar
phenotype in Cry1

�/�
;Cry2

�/� mice.137 By contrast, retinal
conditional Bmal1

�/� mice show physiology comparable to
the ‘‘nighttime’’ state.21 These differences have been attributed
to the roles of Bmal1 and Cry1 in the positive and negative
limb of the TTFL, respectively. This model is consistent with
data from Npas2

�/� mice, which demonstrate contrast
sensitivity responses comparable to the ‘‘nighttime’’ state.138

Rev-Erba in the Retina

As outlined elsewhere in this article, it is thought that the
principal driving force for retinal circadian clock function is to
match light sensitivity to ambient light levels, which vary by
~1010-fold between midnight and midday. In such a scheme,
retinal light sensitivity can be simplistically thought as shifting
along a continuum between at one end high sensitivity
(necessary during nighttime when available light is very low)
and at the other end low sensitivity corresponding to daytime
(when ambient light levels are high and the retina must be
protected from potential oxidative damage). As outlined
earlier, these changes in light sensitivity are thought to be
controlled in part by clock-driven physiologic mechanisms
such as rod-cone coupling during the night,92,100 ion channel
sensitivity,139 and visual pigment synthesis.18 REV-ERBa140 was
well-placed to influence rod photoreceptor function because it
was originally identified as being strongly linked with NR2E3, a
rod-specific transcription factor involved in differentiation.141

Structural and immunochemical analyses did not reveal any
significant differences between wild-type and Rev-Erba�/�

littermates, neither did noninvasive imaging by scanning laser
ophthalmoscopy. Functional analyses using single flash ERG
uncovered two distinct differences between control and
mutant mice. First, under scotopic recording conditions,
implicit times (response latencies) were significantly shorter
in mutant mice, for both a and b-waves, over most stimulus

intensities; second, the descending slope of the b-wave was
abnormally shaped (‘‘humped’’) and large in mutant mice.
These scotopic flash ERG data were complemented by analyses
of the scotopic threshold response (STR), photopic flash ERG,
and pupillary constriction. All these parameters were altered in
Rev-Erba�/�mice, with STR and photopic ERG also showing a
hump-shaped distortion, and Rev-Erba�/� mice exhibiting
increased constriction and slower recovery compared to
wild-type mice.142

These observations could be interpreted as a more rapid
response to light stimulation in retinas of Rev-Erba�/�

compared to wild-type mice. The enhanced pupillary constric-
tion suggested the involvement of ipRGCs. Immunohistochem-
ical examination of whole flat-mounted retinas from the two
mice strains revealed that melanopsin was more strongly
expressed by individual cells in mutants, and that there was a
large significant increase (62%) in total numbers of ipRGCs. To
see whether this enhanced retinal response to light was
translated into downstream locomotor activity, light sensitivity
thresholds were explored as determined by behavioral tests.
Using a two-step paradigm whereby mice were subjected
simultaneously to experimental jetlag (delayed illumination of
room lights by 6 hours) and reduced ambient light intensi-
ty,143,144

Rev-Erba�/� mice were clearly still able to perceive
and act upon light information at very low intensities to which
wild-type mice no longer responded.142 Furthermore, negative
masking responses could be elicited in Rev-Erba�/�mice at low
light intensities which no longer affected wild-type mice.
Importantly, this latter behavior (negative masking) was
abolished in double Rev-Erba�/�;Opn4

�/�mice, indicating that
expression of melanopsin was necessary to convey the light
information to the SCN.

Taken together, these data indicate that deletion of the Rev-

Erba gene enhances light detection, both at the retinal level
(reduced implicit times in a and b-wave) and cognitive
processing (increased light sensitivity). Figure 3 presents a
hypothetical model to explain the different experimental data.
In wild-type mice, output of ipRGCs in response to light
information is an integrated product of all three photoreceptor
types, rods, cones and ipRGCs. At sufficient light intensity,
input from any/all of these sources can trigger firing. But at low
light intensity, stimulation is insufficient to lead to firing.
However, removal of Rev-Erba leads to increased rod input
(shortened a-wave latencies) and/or increased melanopsin
input (higher expression levels, higher cell number), which
allow ipRGCs to reach threshold depolarization. In double Rev-

Erba�/�;Opn4
�/� mice, the melanopsin component is missing

and even with higher rod signaling, the system is not able to
attain threshold.

The data lead to several interesting lines of further
investigation:

1. They suggest that the physiologic role of Rev-Erba is to
reduce light sensitivity, which by inference should
correspond to a ‘‘daytime state’’ of visual processing.
In other words, there should exist a circadian-dependent
mechanism connecting Rev-Erba to changes in retinal
light sensitivity (e.g., through regulation of ion channel
activity or cell-cell coupling).

2. Since Rev-Erba�/� mice are ‘‘stuck’’ in a highly sensitive
nighttime state, they could be more susceptible to
intense light damage compared to normal littermates.24

3. Increased ipRGC numbers indicate that Rev-Erba is
possibly involved in developmentally programmed cell
death, since total RGC numbers were not altered and it
seems easier to imagine elevated ipRGC numbers arise
through a faulty apoptotic mechanism145 rather than
selective increase in this population. In this respect, it is
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interesting to note that the lack of other clock genes
which negatively regulate Bmal1 lead to an increase in
ipRGCs.119 Alternatively, perhaps the enhanced light
sensitivity of the system makes the ipRGCs more
responsive to early light history which changes mela-
nopsin expression.146,147

These different possibilities are being actively investigated.
To conclude, the role of clock genes in the retina still

requires further investigation, to understand both how they
control rhythms in phototransduction and how they regulate
retinal development.

THE EYE: A MULTIOSCILLATORY SYSTEM WITH

DIVERSE ENTRAINING MECHANISMS

Light Entrainment of the Retina Clock

The identification of an autonomous clock in the retina of
Xenopus laevis brought circadian rhythms out of the brain and
into individual ‘‘peripheral’’ tissues.148 Similar to previous
observations in lizard and avian pineal cells, these clocks
within Xenopus retinas could be photoentrained in a culture

dish.149–151 In 1996, Tosini and Menaker demonstrated that
melatonin rhythms of hamster retinas could also be entrained
to light/dark cycles ex vivo, free of influence from the brain’s
‘‘master’’ clock.14 While the notion of photoreceptive cells
within a retina may not have been a surprise, their ability to
directly set the phase of local clocks revealed a level of
independence of retinal clocks not previously appreciated. It
had previously been observed that the phases of rhythmic disk
shedding in rod photoreceptors could be dissociated between
the two eyes within the same animal through use of an eye
patch.152 Also, in blind mice (Opn4

�/�
;rd1/rd1) which fail to

synchronize behavioral rhythms to a light/dark cycle, the phase
of the retinal circadian clocks remain synchronized to the light/
dark cycle regardless of the phase of the SCN.153 Thus, such
independence of the retina from the SCN can act in vivo, as
well as in a dish. In vivo and in vitro studies showed that
rhythmicity in the retina emerges from a network of coupled
circadian oscillators located within distinct cellular lay-
ers.37,39,46 Thus, it might be that the phase shifting response
of inner or outer layers involves different photoreceptors,
known to encode distinct light parameters. For instance, light-
induction and circadian rhythms of clock gene expression are
abolished in the photoreceptor layer of Opn4

�/�mice while, at
the same time, these responses are maintained in the inner and
ganglion cell layers,39 confirming the complexity of the clock
system and entraining mechanisms in the retina.

The Roles of Dopamine and Melatonin

In the same work that demonstrated the local photoentrain-
ability of the Xenopus retinal clocks, Cahill and Besharse154

identified dopamine as a key determinant of clock phase. In
mammals, McMahon and colleagues36 blocked an exhaustive
assortment of neurotransmitters and signaling modalities in the
mouse retina, and they used the PER2::LUC reporter method
discussed above as a measure of retinal clock amplitude and
phase. Surprisingly, little effect was observed on oscillator
amplitude by the blockade of many neurotransmitters;
however, like frog retinas, dopamine agonists were capable
of shifting the phase of the clock. Furthermore, inhibition of
dopaminergic signaling (blockade of D1 receptors) diminished
the phase shifting effects of light.36 This model fits with the
observations that the activity of dopaminergic amacrine cells is
both modulated by the circadian clock and, directly, by
light.155,156 Both activation of D1 and D4 receptors has
influence on retinal clock phase,36,157,158 but exactly how
and where these signals are integrated is still being investigat-
ed.

While dopamine production and release is stimulated by
light, the production of melatonin within the retina is observed
at times of darkness and is gated by the circadian clock65 and
melatonin levels are rapidly reduced in the presence of light
via direct proteolysis of the AANAT enzyme.105,159 The
regulation of melatonin synthesis in the rodent retina is similar
to what has been described for the pineal gland85 and involves
a well-defined biosynthetic pathway.160 However, it is impor-
tant to note that only the retina Aanat transcription is under
direct control of the circadian clock.66

The secretion of melatonin was measured as the circadian
output from hamster retinas in tissue culture.14 Interestingly,
melatonin likely also has a role in setting the phase of the retina
clock. The retinas of mice that lack melatonin, either by natural
mutation in genetic strain or by targeted loss of melatonin
receptors, display phases of clock gene expression distinct
from mice in which melatonin signaling is intact.70,161,162 In
further support of the idea of the retinal clock being uniquely
independent among peripheral oscillators, transcription of
enzymes necessary for melatonin production remains rhythmic

FIGURE 3. Hypothetical mechanism explaining the effect of Rev-Erba
knockout on nonvisual responses. In wild-type mice, output of ipRGCs
(G, blue) in response to light information is an integrated product of all
three photoreceptor types, rods (R, green), cones (C, red), and ipRGCs.
At sufficient light intensity, input from any/all of these sources can
trigger firing (symbolized by the black curve close to ipRGCs), whereas
at low light intensity, stimulation is insufficient, although the cells are
partly depolarized and exhibit resting potentials close to threshold.
However, removal of Rev-Erba leads to increased rod input (shortened
a-wave latencies) and/or increased melanopsin input (higher expres-
sion levels, higher numbers), which allow iipRCGs (G, blue) to reach
threshold depolarization. In double Rev-Erba�/�;Opn4

�/� mice, the
melanopsin component is missing and even with higher rod signaling
the system is not able to attain threshold. The number of ‘‘þ’’ indicates
the hypothetical level of stimulation. Curved arrow between rods and
cones, and ipRGCs, indicates bipolar contact.
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in retinas of behaviorally arrhythmic rats in which their SCN
were surgically lesioned.163 While rhythmic melatonin expres-
sion is not dependent on light, it may be dependent on the
presence of the cells of the outer nuclear layer in some species
such as mice,47,106 but not in others such as rat.164 It is
interesting to note that many common laboratory mouse
strains are deficient in the enzymes to produce melatonin and
thus lack melatonin signaling.165,166 However, the lack of
melatonin in these mouse strains does not diminish the
amplitude of the molecular circadian clock within the retina
nor its ability to photoentrain.36,153 In these mice, synchroni-
zation of retinal oscillators was reported to involve GABA
acting as a night signal, further relayed by casein kinase 1
epsilon (CK1e) within cells.36 In retinas that express both
dopamine and melatonin neuromodulators, it is likely that
dopamine acts as a light signal, and melatonin signals darkness.
It should be mentioned that melatonin regulation in the diurnal
rodent Arvicanthis appears to be bimodal, with one source
(cones) peaking in the night and a second source (ganglion
cells) peaking in the day.167 Finally, it is worthwhile
mentioning that although melatonin is present in the primate
retina, it is not clear whether melatonin found in the eye is
actually synthesized in situ or is of pineal origin.168

Photoreceptors Involved in Local
Photoentrainment

In order for the retinal circadian clocks to photoentrain, one or
more groups of photoreceptors must first capture the light and
convey the information to the rest of the tissue. The landmark
study by Ruan and colleagues36 clearly demonstrated that light
is able to phase shift the retinal clock in vitro with respectively
a phase delay/advance when light is applied at the beginning/
end of the biologic night, but the use of broadband white light
did not allow distinction of the putative roles of different
photoreceptors. More recently, using monochromatic light, a
typical phase response curve to light was described in the
retina.153,169 Interestingly, the light-activated dopamine release
from dopaminergic amacrine cells was shown to require the
presence of rods and cones170 and ipRGCs.171 The respective
contributions of the distinct photosensitive cells to dopami-
nergic amacrine cell activation by light are irradiance-
dependent.172 The authors found that rods excite dopaminer-
gic cells across a wide range of light intensities (from the
scotopic to the photopic range) whereas middle wavelength-
sensitive cones and ipRGCs present a higher threshold than
rods (3 log units). In addition, several anatomic and functional
studies suggest that ipRGCs occupy a central role in the retinal
network and may contribute to the light response of the retinal
clock. Specifically, synaptic contacts of ipRGCs with dopami-
nergic neurons have been reported in rodents, monkeys, and
humans173–177 and provide sustained excitatory light responses
to dopaminergic neurons with peak sensitivity near 480 nm,
the maximum of sensitivity of melanopsin.171 In the absence of
melanopsin this sustained dopaminergic light response is
greatly diminished.39,177 Interestingly, a recent study in the
rat retina showed that ipRGCs are able to transmit their tonic
light response not only to dopaminergic cells but also to a
variety of amacrine interneurons exclusively through gap
junctions, suggesting a widespread intraretinal role of
ipRGCs.175 Finally, in the Opn4 knockout mice, the circadian
control of cone-light response, as assessed by ERG, is lost.19 All
these data suggest a retrograde direction of signaling in the
retina, distinct from the classical outer-to-inner layer pathways
that represent a potential mechanism for transmitting irradi-
ance information to the outer retina. Notwithstanding, at the
level of transcription, the presence of rods and cones in the
outer cellular layer influences the expression of Opn4 itself

within the ganglion cells.147 Clearly, the ensemble of cells
within the retinal system displays a level of interdependency.

In addition to the rod and cone photoreceptors in the outer
layer and melanopsin in ganglion cells, neuropsin (Opn5) is yet
another bistable opsin expressed within the mammalian
retina.178,179 In birds, Opn5 is expressed in the retina as well
as in neurons along the 3rd ventricle in the hypothalamus, and
it acts as a deep brain photoreceptor regulating seasonali-
ty.180–182 In the mammalian retina, Opn5 expression is found
primarily in a subset of ganglion cells, similar to melanop-
sin.169,178,183,184 Heterologous expression of human and mouse
Opn5 shows a sensitivity to short-wavelength light with an
absorbance maximum around 380 nm.178,184 In the absence of
rods, cones and melanopsin, mouse retinas retain the ability to
photoentrain in a culture dish and in vivo.153 The ability of
mouse retinas to entrain to short-wavelength light/dark cycles
in culture is lost in the absence of Opn5.169 This adds the
influence of another opsin and ganglion cell-type to the
regulation of the retinal clock’s response to light. The fact that
the mouse retina is able to be photoentrained by UV light is not
surprising given the peak sensitivity of its short-wavelength
opsin and the fact that its lens effectively transmits UV light.185

The role of neuropsin in the human retina remains to be
investigated given its reduced UV transmittance.186,187

Circadian Regulation and Entrainment of Extra-
Retinal Tissues Within the Eye

In addition to the retina, several structures within the eyes also
contain circadian clocks that control several important
physiologic functions. In this section, we will review the
regulation of circadian rhythm and mechanisms by which these
structures—that are not directly photosensitive—are entrained
to the external light/dark cycle.

The RPE was the first extraretinal tissue in which a
circadian rhythm was reported.23,188 This tissue plays a key
role in the maintenance of photoreceptor health189 and, in
addition to providing nutrients to the photoreceptors, the RPE
cells are responsible for the phagocytosis of the disks that are
shed by photoreceptor outer segments (see Ref. 190 for
review). The shed ROS fragments are then engulfed, phagocy-
tized, and degraded by the RPE. Lack of phagocytic activity by
the RPE leads to the accumulation of membranous debris and
subsequent photoreceptor degeneration.191 Another important
aspect of RPE biology is the burst in disk shedding and
phagocytosis that occur every day 1 to 2 hours after the onset
of light for rod photoreceptors,23,188,192 and at the onset of or
during the night for cones.193–195 The circadian rhythm in
phagocytic activity is also present in a diurnal rodent
(Arvicanthis ansorgei), but in this case, no difference was
observed in the time of peak of phagocytic activity between
rods and cones.22,196 These rhythms persist in constant
conditions, thus demonstrating that they are controlled by
circadian clocks.152,188,197,198

Earlier studies indicated that circadian clocks controlling
these rhythmic events were located within the eye and
possibly in photoreceptors.152,198 However, other studies
indicate that the RPE is also involved in the control of disk
shedding and phagocytosis since the diurnal rhythm in
exposure of phosphatidylserine by rod outer segments is not
entirely controlled by the photoreceptors, but RPE cells
participate in the synchronization of this process.199 Additional
studies have also revealed that the molecular mechanisms
controlling the daily burst in phagocytosis activity by the RPE
involves the activation of the FAK-MerTK signaling path-
way200,201 and phosphoinositide signaling.202

Finally, recent experimental evidence has shown that the
RPE cells contain an autonomous circadian clock, that is not
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influenced by the master circadian clock located in the brain
and that the RPE is not directly photosensitive.203 Hence the
entrainment of the RPE circadian clock must depend on a
signal coming from the retinal photoreceptors. Indeed, a
recent study has reported that dopamine—acting via D2R—can
entrain the RPE circadian clock.204 Another study using human
RPE cells has also shown that the activation of muscarinic
receptors can induce a phase-shift in their circadian clock.205

Interestingly—although melatonin does not entrain the RPE
circadian clock204—a recent study has reported that in mice
lacking MT1 or MT2 receptors the peak of phagocytic activity
by the RPE is advanced (about 3 hours) with respect to control
mice.206 Hence these data suggest that the timing of the daily
burst in phagocytic activity is the result of interactions
between the retinal and the RPE circadian clocks.

The presence of a daily/circadian rhythm in the intraocular
pressure (IOP) of many mammalian species—including hu-
mans—has been also demonstrated by several studies.207–210

The regulation of the circadian rhythm in IOP involves direct
neural control via the sympathetic innervation211–213 and
hormonal signaling via melatonin.214–218 In mice lacking a
functional circadian clock—Cry1/Cry2-double knockout
mice136—the circadian rhythm in IOP is no longer present
regardless of environmental light conditions.219 However, it is
important to note that this study did not provide any insight
whether the master circadian clock in the brain or other ocular
clocks control this rhythm. To address this question two recent
studies investigated whether the iris/ciliary body contains a
circadian clock. The first study reported that clock genes and
proteins are expressed in the iris-ciliary body complex of
mice220 and the second study demonstrated that cultured iris/
ciliary body obtained from mPer2

Luc mice could express a
circadian rhythm in bioluminescence.28 Also in this case, the
circadian rhythm in PER2::LUC bioluminescence from cultures
of iris/ciliary body could not be entrained by light, thus
suggesting that the entrainment of the circadian rhythm in

these structures—and possibly the IOP—is mediated via
neuronal or hormonal signaling outside the ciliary body and
even from outside the eye.

Several studies have shown that a regular diurnal rhythm in
the light/dark cycle is important for normal corneal growth
and development (see Ref. 221 for review). The renewal of the
corneal epithelium shows a daily rhythm222 and the mitotic
rate of the corneal epithelial cells is highest during the night
and lowest during the day.223 Finally, cultured corneas obtained
from mPer2

Luc mice show a robust circadian rhythm in
bioluminescence45,224,225 that can be entrained by light via
OPN5169 or by melatonin via activation of MT2 receptors.224

Interestingly it has been reported that the expression of clock
genes in the corneal epithelium and their rhythmic profiles are
altered in diabetic mice and such a rhythm can be restored by
insulin administration.226 Finally, it is worthwhile mentioning
that exposure to constant light, constant dark, or jetlag
conditions can also alter the circadian pattern of the corneal
epithelial mitosis and clock gene expression.26

Diurnal changes in corneal growth as well as in IOP might
also be relevant to the daily changes in the eye axial length.
Such changes in early life contribute to refractive development
and quality of image formation. How these processes are
regulated by the retinal circadian clock remains to be
characterized (see Ref. 221 for review).

Thus, from what we have mentioned in this section, it is
evident that many ocular structures contain circadian clocks;
however, the cues that these different structures may use to
entrain their circadian rhythms may vary (Fig. 4). Whether
these clocks interact also remains to be investigated.

CONCLUSIONS

Recent data have enriched our view of the diversity of
photosensitive systems and downstream pathways, as well as

FIGURE 4. Entrainment of circadian rhythms in ocular tissues. Many physiologic functions in eye tissues (left column) are regulated by circadian
clocks and synchronized to the light/dark cycle. The retina, RPE, and cornea, among others, were shown to harbor autonomous clocks, as
demonstrated by their capacity to display oscillating PER2::LUC activity (bioluminescence, counts/sec) in vitro (see representative recordings). One
major site for the input of light information from the environment to the eye is the retina. OPN1-5 are opsin photopigments expressed at various
levels in the retina: OPN1 (short and middle/long wavelength sensitive) in cones, OPN2 (rhodopsin) in rods, OPN4 in ipRGCs and OPN5 in a
subpopulation of ganglion cells as well; localization of OPN3 expressing cells is not known. Most opsins are involved in the effects of light on retinal
physiology. OPN4 and OPN5 are involved in the regulation of the retinal clock’s response to light. The retina synthesizes (purple arrows) melatonin
(MLT) in the night and dopamine (DA) during the day. These signals display phase regulatory properties (blue arrows), in the retina itself, but also in
other ocular tissues such as the RPE and cornea.
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of the complexity of the clock cellular network sustaining
adaptation of eye physiology to the 24-hour cycle. They
confirm that the eye stands apart in the circadian field, mainly
by the capacity, within this network to integrate light
information and in turn finely tune cellular function through-
out the organ. Many questions are still currently unanswered,
notably regarding the exact function of the molecular clock in
the distinct constitutive cell types, in the adult and during
development, as well as in nocturnal versus diurnal species.
They also open stimulating perspectives regarding the variety
of synchronization mechanisms at play, both in response to
light and downstream within the eye. Similarly to what has
been described in the SCN, the distinct photoreceptors present
are likely to specifically contribute to shaping the visual
response: how their signaling is integrated and communicated
downstream within ocular tissues will be the focus of future
studies.
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