
© 2023 Journal of Medical Physics | Published by Wolters Kluwer - Medknow 195

Abstract

Original Article

Introduction

Coronavirus disease (COVID‑19), caused by the SARS‑CoV‑2 
virus, is one of the deadliest and most contagious diseases of 
this decade.[1] The COVID‑19 pandemic can be considered 
severe due to the high rate of transmission and lethality.[2] 
Lack of any prior knowledge about this disease overwhelmed 
hospitals with shortages of detection tools and medical 
supplies, making the battle against COVID‑19 onerous.[3] 
Most infected people experience mild‑to‑moderate respiratory 
symptoms.[4] Effective screening of the infected people was a 
critical step. Many techniques, such as real‑time polymerase 
chain reaction, Truenat screening, cartridge‑based nucleic 
acid amplification test, rapid antibody, and rapid antigen test 
techniques, were used for the detection of COVID‑19.[5,6]

The chest X‑ray (CXR) is a useful, noninvasive clinical adjunct 
that aids in the initial diagnosis of a variety of pulmonary 

disorders.[7] In the early diagnosis of COVID‑19 disease, a 
vital role was played by the imaging techniques like CXR 
imaging. Some studies revealed distinct visual characteristics 
such as ground‑glass opacities and patchy reticular opacities.[8] 
Ground‑glass opacities, patchy reticular opacities, can be 
detected on CXR images but not precisely as much in computed 
tomography (CT) images. CT is a more precise approach for 
imaging the chest, but it has not replaced CXR as the major 
imaging test due to the additional time, cost, and radiation 
exposure involved with CT. Less ionizing radiation, quick data 
collection, accessibility in intensive care units, and mobility 
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are a few of the advantages that CXR has over CT. However, it 
is difficult and requires subject expert knowledge to manually 
identify these minor visual characteristics on CXR images.[9]

With the development in technology, computer‑aided diagnosis 
systems are growing in popularity since they reduce the cost 
of setting up a medical laboratory, hence expanding access 
to quality health care.[10] Artificial intelligence has offered a 
new glimmer of hope for assisting clinicians in making more 
accurate imaging diagnoses and decreasing their workload.[11,12]

Identifying the most significant risk factor associated with an 
illness is crucial in medical diagnosis. Quantitative data values 
or pixel intensities that provide rich, meaningful information 
about the pixels of an image in terms of local and/or global 
variation constitute an image’s features.[13] Image features can 
be handcraft features and nonhandcraft features or learned 
features.[14] Handcraft features are manually engineered 
features and learning features are the features that are 
automatically extracted by the algorithm, like in deep learning.

Unfortunately, sometimes, deep learning models may suffer 
from overfitting problems, cause high bias because they extract 
unknown and abstract features, and need high‑dimensional 
datasets to obtain higher performance.[15‑17] To overcome such 
problems, some researchers used pretrained transfer learning 
models to take advantage of the potential of deep learning 
techniques.[18] For a specific problem, more meaningful and 
more known features designed can be extracted manually 
using handcrafted features. Furthermore, such techniques do 
not require a lot of data.[19,20]

Multiple features‑based classifications have the advantage 
of achieving good classification accuracy. With the selection 
of the most effective image features, all noise, redundant, 
and interrelated features can be removed.[21] However, if too 
many features are derived from a limited training dataset, then 
due to overfitting, the robustness of the classification model 
will decrease on data other than the data used for training the 
model.[22] Hence, the selection of a limited number of features 
is necessary to balance the accuracy and robust classification 
efficiency of the model. There are several methods available for 
feature selection like forward selection, backward elimination, 
recursive feature elimination  (RFE), linear discriminant 
analysis, etc.[23‑25] Chandra et al. used 8196 features from the 
CXRs, which are eight first‑order statistical features (FOSF), 
88 Gray‑Level Co‑Occurrence Matrix  (GLCM), and 8100 
histograms of oriented gradients and they selected the 
features Using Binary Gray wolf optimization.[26] Öztürk 
et al. used GLCM, local binary GLCM, Gray‑level run length 
matrix  (GLRLM), and segmentation‑based fractal texture 
analysis features and to identify the most prominent features 
principal component analysis (PCA) was used.[27] Bhargava 
et  al. presented a comparative study that compared the 
classification performance of four machine learning models, 
i.e., PCA, K‑Nearest Neighbour (KNN), Sparse Representation 
Classifier, artificial neural network  (ANN), and SVM, for 
the different features extracted from the segmented CT and 

CXR images.[28] Kumar et al. proposed the notion of Pearson 
Correlation Coefficient along with variance thresholding to 
optimally reduce the feature space of extracted features from 
the conventional deep learning architectures from the CXR 
images and used these features to classify the images into 
different categories.[29] Sethy et al. presented a 2‑class study 
using the SVM algorithm with the features obtained from 11 
different well‑known convolutional neural network  (CNN) 
models with a very little data set. In their second study, they 
performed a 3‑class study with increased data and determined 
the classification performance with SVM using the feature 
maps obtained from 13 CNN models.[30]

The objective of the present study is to classify the CXR images 
into a COVID‑positive and normal categories with the optimal 
number of features extracted from the images. The successful 
optimal feature selection algorithm that can represent images 
and the classification algorithm with good classification ability 
has been determined as the result of experiments.

Materials and Methods

Dataset used
The presented work used publicly available data, the 
COVID‑QU‑Ex dataset from the Kaggle database, which was 
compiled by researchers from Qatar University.[31‑35] In the 
present study, out of 33,920 images, 400 CXR images were 
randomly selected with their ground truth to study only the 
lung part. All images were in portable network graphics format. 
The ability to segment lungs from surrounding structures 
significantly reduces the execution time and boosts the 
effectiveness of nodule identification.[36] The given lungs‑only 
masks from the database were used to segment the lungs from 
the X‑ray images.

Data preprocessing
The objective of the data pre‑processing stage is to prepare 
the data for use in the prediction model. Typically, data are 
disorganized and derived from various sources with varying 
sizes and resolutions. To reduce the complexity and increase 
the accuracy of the prediction model, cleaning up the data 
is crucial. In the first step, all the images were resized to 
256 × 256. After that, to enhance small details, textures, and 
contrast of the images, contrast limited adaptive histogram 
equalization, which is an adaptive contrast histogram 
equalization method, was used.[37]

Features extraction
In any pattern classification system, feature extraction is 
a crucial step. Features were extracted from the first‑order 
statistics (FoS), GLCM, GLRLM, local binary pattern (LBP), 
Law’s Texture Energy Measures (LTEM), Discrete Wavelet 
Transform  (DWT), and Zernikes’ Moments  (ZM) using an 
image feature extraction tool “pyFeats.”[38‑46]

First‑order statistical features
These features were extracted from the histogram of the image. 
These features included mean, median, skewness, kurtosis, etc.
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Gray‑level co‑occurrence matrix
It is a second‑order statistical feature that provides information 
about texture. GLCM examines the spatial relationship among 
pixels and defines the frequency of a combination of pixels in 
a given direction and distance. For texture analysis, several 
features like angular second moment, contrast, entropy, 
correlation, etc., can be calculated from the GLCM.

Gray‑level run length matrix
It is a 2‑D matrix of the component in which each component 
provides information about the total number of occurrences of 
the run having a length n of the grey level in a given direction. 
In GLRLM, the run length, or the number of the neighboring 
grey levels in a particular direction, is the frequency of 
the particular run in the image. Features such as short‑run 
emphasis, long‑run emphasis, run percentage, low gray level 
run emphasis, high gray level run emphasis, etc., can be 
calculated from GLRLM.

Local binary pattern
It is a texture descriptor that describes the local texture pattern 
of the image and is used for the property of high discriminative 
power. It assigns a binary number to the pixel by comparing 
the gray level with the neighboring after labeling. Energy and 
entropy of the LBP image, constructed over different scales, 
are used as feature descriptors.

Law’s texture energy measures
A texture‑energy‑based approach developed by Law, measures 
the amount of variation within a fixed‑size window. It uses a 
set of convolutional kernels to compute the texture energy. 
Features such as texture energy from different kernels, etc., 
can be calculated from the resulting image.

Discrete wavelet transform
DWT provides information on the time and frequency of the 
signal simultaneously. The different information of the main 
signal, such as high‑frequency or low‑frequency segments, 
can be extracted with the help of wavelet decomposition. 
By the application of DWT, the image is divided into four 
sub‑bands, i.e., low‑frequency components in horizontal and 
vertical directions (cA), the low‑frequency component in the 
horizontal, and high‑frequency component in the vertical 
direction (cV), the high‑frequency component in the horizontal 
and low‑frequency component in the vertical direction (cH) 
and high‑frequency components in horizontal and vertical 
directions (cD). cA, cV, cH, and cD can also be represented 
as LL, LH, HL, and HH, respectively.

Zernikes’ moments
In image shape description and content‑based image retrieval, 
the moments, such as geometric moments, centric moments, 
and orthogonal invariance moments, have been used. The most 
commonly used technique in image shape feature extraction 
and description, i.e., Zernike moment, which is one kind of the 
orthogonal invariance moment and its kernel is a set of Zernike 
complete orthogonal polynomials defined over the interior of 
the unit disc in the polar coordinates space. An image moment 

is a certain particular weighted average of the image pixels’ 
intensities in image processing, computer vision, and related 
fields or a function of such moments, usually chosen to have 
some attractive property or interpretation.

Features selection
The features extracted differed in their range, so to make 
them on the same scale, standardization was performed.[47] 
To reduce the computation times and to take up less storage 
space, dimensionality reduction and feature selection can be 
so helpful. With the help of feature selection methods, we can 
remove noisy, redundant data and optimize the efficiency of 
the classification model simultaneously.[48]

For the feature selection, three nature‑inspired optimization 
algorithms were used. These nature‑inspired algorithms 
were Grey Wolf Optimization  (GWO) algorithm, Particle 
Swarm Optimization  (PSO) algorithm, and Genetic 
Algorithm (GA).[49‑51] For feature selection using the GWO, 
PSO, and GA python library Zoofs was used.[52]

Grey wolf optimization
It is a population‑based meta‑heuristic algorithm. It stimulates 
the leadership and predation behavior of the grey wolves. For 
simulating the leadership hierarchy, four types of grey wolves 
such as alpha, beta, gamma, and omega are employed. The 
three main steps of hunting, searching for prey (exploration), 
encircling prey, and attacking prey, are implemented in this 
algorithm. In the present study, the value of the parameters, 
i.e., size of the population and number of iterations used for 
GWO, were 40 and 20, respectively.

Particle swarm optimization
It is another metaheuristic optimization algorithm. It is inspired 
by swarm behavior such as a school of fish or a swarm of 
birds. It is one of the bio‑inspired algorithms and differs 
from other optimization algorithms as it is not dependent on 
the gradient or any differential form of the objective. Due to 
the easy encoding of features, global search facility, being 
reasonable computationally, fewer parameters, and easier 
implementation, PSO is a suitable algorithm for feature 
selection. In the present study, the parameters used for PSO 
were the size of the population, number of the iteration, 
first acceleration coefficient of the particle swarm, second 
acceleration coefficient of the particle swarm, and weight 
parameter. The values of the above parameters used in the 
present study were 40, 20, 2, 2, and 0.9, respectively.

Genetic algorithm
It is an adaptive heuristic search algorithm based on the 
principles of genetics and natural selection. In GAs, there is a 
population or pool of possible solutions to the given problem. 
These solutions are then subjected to recombination and 
mutation  (similar to natural genetics), resulting in the birth 
of new offspring, and the process is repeated for multiple 
generations. Each individual (or candidate solution) is assigned 
a fitness value, and the fitter people are given a greater 
opportunity to mate and produce more “fit” individuals. It 
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optimizes both continuous and discrete functions and also 
multi‑objective problems. It is very useful when the search 
space is very large and there are a large number of parameters 
involved. In the present study, the parameters used for GA were 
the size of the population, number of the iteration, selective 
pressure, elitism, and mutation rate. The values of the above 
parameters used in the present study were 40, 20, 2, 2, and 
0.05, respectively.

Image classification
For the classification of the images using the reduced 
features from the above‑mentioned algorithms, different 
machine‑learning models were used. These models were 
the Random Forest  (RF) classifier, KNN classifier, SVM 
classifier, and light gradient boosting model  (LGBM) 
classifier.[53‑56]

Random forest
It is a supervised machine learning algorithm based on 
ensemble learning. It is a combination of the large number 
of the decision each tree in the ensemble is comprised of a 
bootstrap sample, which is a data sample obtained from a 
training set with replacement. To make the final decision, 
it aggregates the output from all decision trees formed on 
different samples and decides the outcome based on the 
majority voting. Figure 1 shows the working of RF.

K‑nearest neighbour
It is also a nonparametric supervised machine learning 
algorithm. An input test data point is classified by identifying 
the K nearest training vectors using a suitable distance metric. 
The class to which the majority of these K nearest neighbors 
belong is then allocated to the test input data point. Figure 2 
shows the working of KNN.

Support vector machine
It is a supervised machine learning algorithm, and 
the objective of the SVMC is to find a hyperplane in 
N‑dimensional space that can distinctly classify the data 
points. The dimension of the hyperplane depends on the 
number of features. Data points falling on either side of the 
hyperplane can be attributed to different classes. It chooses 
the extreme points that help in creating the hyperplane. These 
extreme cases are called “support vectors.” Figure 3 shows 
the working of SVM.

Light gradient boosting model
It is based on the gradient boosting framework. It uses two 
types of techniques which are Gradient‑based one side 
sampling  (GOSS) and Exclusive Feature bundling  (EFB). 
In contrast to other boosting algorithms, which grow tree 
level‑wise, it selects the leaf with maximum delta loss to 
grow. Limiting the maximum depth of trees can not only 
ensure training efficiency but also prevent overfitting. GOSS 
excludes the significant portion of the data part, which has 
small gradients and to estimate the overall information gain 
use the remaining data. For computation on information gain, 
the data instances which have large gradients play a greater 

role. When the value of information gain has a large range, 
this can lead to a more accurate gain estimation than uniformly 
random sampling with the same target sampling rate. While 
working with high dimensional data, there are many features 

Figure 1: Working of random forest algorithm

Figure 2: Working of K- nearest neighbour algorithm

Figure 3: Working of support vector algorithm
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that are mutually exclusive, with the EFB technique, LGBM 
can safely bundle such exclusive features into a single feature 
to reduce the complexity.

Proposed work
In the present study, a total of 400 CXR images were taken. 
These images were equally divided into COVID‑19 and normal 
classes. This dataset was further divided into training and 
testing in a ratio of 80:20. Figure 4 depicts the block diagram 
of the present study.

A total of 98 features were obtained for each image using 
FoS, GLCM, GLRLM, LBP, LTEM, DWT, and ZM. 
For optimization of the features, with each optimizing 
algorithm, the classification algorithm with hyper‑tuned 
parameters was given as an objective function. For the 
classification models, the hyperparameters used in the study 
are given in Table 1.

For each classification algorithm, i.e., RF, KNN, SVM, 
LGBM, different numbers of optimal features were obtained 
using GWO, PSO, and GA. All steps, which included 
feature extraction, feature reduction, and classification, 
were implemented using Python 3.10 on Google Colab. 
In classification models, for hyperparameter tuning of 
parameters, GridSearchCV from the sklearn library was 
used.[57] The machine learning model is evaluated for a 
variety of hyperparameter values. This approach seeks for the 
best set of hyperparameters from a grid of hyperparameters 
values.

Performance evaluation
The metrics that were used in the evaluation process for the 
model performance were accuracy, precision, sensitivity, 
and F1 score. Accuracy is the ratio of the number of correct 
predictions to the total number of predictions. Precision is 
the ratio of the number of correct positive class predictions to 
the total positive class predictions. Sensitivity is the number 
of correct positive class predictions to the correct positive 
class predictions and the false negative class predictions. The 
F1 score is the weighted average of precision and sensitivity. 
F1 score reaches its best value at 1 and worst score at 0. The 
relative contribution of precision and recall to the F1 score are 
equal. The accuracy metric computes how many times a model 
made a correct prediction across the entire dataset. F1‑score 
gives a better measure of the incorrectly classified cases than 
the accuracy metric.

Results

In the present study, the classification performance of the 
four machine learning algorithms (RF, KNN, SVM, LGBM) 
with the optimal number of features extracted from the CXR 
images was studied.

Feature extraction
The details of the features extracted from the Zoofs library 
are given in the supplementary file, with each feature name 
as mentioned in the library. 

The different number of features extracted from the CXR 
images are given in Table 2.

Performances of feature selection algorithms
Using the GWO, PSO, and GA feature selection algorithms, 
the selected optimal number of features was selected. The 
GWO reduced the features in the range of 81 to 85 from 

Table 1: Value of hyperparameters for different 
classification models

Classification model Parameters
RF max_features=“log2,” n_estimators=40
KNN n_neighbors=6, weights=“distance”
SVM C=100, gamma=0.001
LGBM bagging_fraction=0.5, bagging_frequency=5, 

feature_fraction=0.5, max_depth=10, min_
data_in_leaf=110, num_leaves=1200

RF: Random Forest, KNN: K‑Nearest Neighbour, SVM: Support Vector 
Machine, LGBM: Light Gradient Boosting Model

Table 2: Different features extracted from the chest X‑ray 
images

Feature type Number of features
FoS 16
GLCM 14
GLRLM 11
LBP 8
LTEM 6
DWT 18
ZM 25
Total 98
FoS: First‑order statistics, GLCM: Gray‑Level Co‑Occurrence Matrix, 
GLRLM: Gray‑Level Run Length Matrix, LBP: Local Binary Pattern, 
LTEM: Law’s Texture Energy Measures, DWT: Discrete Wavelet 
Transform, ZM: Zernike’s Moments

Figure 4: Block diagram representing the working of present study
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a total of 98 features, the PSO reduced the features in the 
range of 47 to 52 from a total of 98 features and the GA 
reduced the features in the range of 38 to 53 from total 98 
features as given in Table 3. On an average, 83 (84.69%) 
features out of the total features were selected by GWO, 
49 (50.00%) features out of the total features were selected 
by PSO, and on an average, 44  (45.66%) features of the 
total features were selected by GA in the optimal feature 
selection.

Classification algorithm comparison with different feature 
selection algorithms
Table  4 shows the comparative performance of 3 feature 
selection algorithms and 4 classification algorithms for the 
classification of 400 CXR images. For the RF classifier, the 
feature selection algorithms PSO and GA outperform the GWO. 
For KNN, SVM, and LGB classifiers, the feature selection 
algorithms PSO outperform the GWO and GA. The python 
source code is available on https://github.com/MohiniManav/
Feature‑optimization.

Figure  5 demonstrates the classification performance of 
classification models on test data with different feature 
selection algorithms.

In order to demonstrate the performance of the proposed 
framework over the existing state‑of‑the‑art in terms of various 
evaluation metrics, a comprehensive performance comparison 
with other similar works in the literature has been performed. 
Khuzani et al. performed a study with spatial (Texture, 
GLDM, GLCM), frequency (Wavelet and FFT), and statistical 
measurements. In their study features were reduced using PCA 
and classified using an Artificial Neural Network (ANN). In 
their study, the highest overall accuracy and F1-score values 
were 95% and 94.3%, respectively.[19]

Singh et al. extracted the features from CXR images and relevant 
features were selected using the Hybrid Social Group Optimization 
algorithm. With these selected features, a classification accuracy of 
99.65% was achieved using the SVM classifier in their study.[58]

Mostafiz et al. proposed an approach to detect COVID‑19 with 
good accuracy from the CXR image using the hybridization 

Table 3: Feature selection for various classification models using feature selection algorithms

Models used for 
classification

Methods used for 
feature reduction

The initial number 
of features

Selected optimized 
number of features

RF GWO 98 83
PSO 98 48
GA 98 38

KNN GWO 98 85
PSO 98 47
GA 98 38

SVM GWO 98 81
PSO 98 50
GA 98 53

LGB GWO 98 83
PSO 98 52
GA 98 50

RF: Random Forest, KNN: K‑Nearest Neighbour, SVM: Support Vector Machine, GWO: Grey Wolf Optimization, PSO: Particle Swarm Optimization, 
GA: Genetic Algorithm, LGB: Light Gradient Boosting

Table 4: Performance of different feature selection algorithms with different classifiers

Models used for classification Methods used for feature reduction Accuracy Precision Recall F1‑score
RF GWO 88 85 85 85

PSO 96 94 97 96
GA 96 94 97 96

KNN GWO 84 77 88 82
PSO 93 89 94 91
GA 90 86 91 89

SVM GWO 96 92 100 96
PSO 100 100 100 100
GA 99 97 100 99

LGB GWO 93 91 91 91
PSO 95 92 97 94
GA 93 89 94 91

RF: Random Forest, KNN: K‑Nearest Neighbour, SVM: Support Vector Machine, GWO: Grey Wolf Optimization, PSO: Particle Swarm Optimization, 
GA: Genetic Algorithm, LGB: Light Gradient Boosting



Manav, et al.: Optimal feature selection for chest X‑ray image classification

Journal of Medical Physics  ¦  Volume 48  ¦  Issue 2  ¦  April-June 2023 201

of deep CNN and DWT features. They extracted optimum 
features from these hybridized features through minimum 
redundancy and maximum relevance along with RFE and 
achieved an overall accuracy of more than 98.5%.[59]

Nour et  al. conducted a 3‑class classification study for the 
classification of COVID‑19‑normal‑viral Pneumonia. They 
obtained the features with CNN models and optimized the 
parameters of the models using the Bayesian optimization 
algorithm. They used SVM and KNN for classification. In 
their study, the most efficient results were ensured by the SVM 
classifier with an accuracy of 98.97%, a sensitivity of 89.39%, 
a specificity of 99.75%, and an F‑score of 96.72%.[60] Sahlol 
et  al. proposed an improved hybrid classification approach 
for COVID‑19 images by combining the strengths of CNNs 
to extract features and a swarm‑based feature selection 
algorithm  (Marine Predators Algorithm) to select the most 
relevant features from 2 datasets. They achieved 98.7%, 
98.2% and 99.6%, 99% of classification accuracy and F‑Score 
for dataset 1 and dataset 2 respectively.[61] Dias Júnior et al. 
extracted the features from CXR using a deep features‑based 
approach implemented through the networks VGG19, 
Inception‑v3, and ResNet50 and the classified the CXR 
images into COVID‑19 and Non‑COVID‑19 groups, using 
eXtreme Gradient Boosting  (XGBoost) optimized by PSO. 
They achieved an accuracy of 98.71%, a precision of 98.89%, 
a recall of 99.63%, and an F1‑score of 99.25%.[62] Mohammed 
et al. used Binary PSO to optimize the LBP features extracted 
from the CXR images. For the classification of CXR into 
COVID and Non‑COVID category, they have used SVM and 

KNN classifiers. Their experimental results showed an average 
accuracy of 94.6%, sensitivity of 96.2%, and specificity equal 
to 93% with the SVM classifier.[63]

In the present study, for all the feature selection methods, 
SVM classifier gave the most accurate and precise result 
as compared to other classification models. Also, in feature 
selection methods, PSO gave the best result as compared to 
other methods for feature selection. Using the combination of 
SVM classifier with the features selected with PSO algorithm, 
we observed that the accuracy, precision, recall, and F1‑score 
were 100%.

Conclusion

The present study used the optimal number of features 
extracted from the CXR images for classification. Based on 
these features, CXR images were classified into two categories, 
i.e., COVID‑19 and normal images. For optimal feature 
selection, three nature‑inspired algorithms GWO, PSO, and 
GA were used. For classification, RF, KNN, SVM, and LGBM 
classifiers were used. With optimal features obtained with PSO, 
the SVM classifier achieved the highest accuracy, precision, 
recall, and F1 score as compared to others. The result of the 
study indicates that with optimal features and the best choice 
of the classifier algorithm, the most accurate computer‑aided 
diagnosis of CXR can be achieved.

Since the present study uses publicly available data so the 
diversity of the databases can simulate the clinical routine, and 
makes the classification method amenable to comparison. It 

Figure 5: Bar graph representing the classification performance of classification models on test data with different feature selection algorithms
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does not require large quantities of hardware resources, which 
is one of the biggest problems faced in deep learning‑based 
methods. As it is extremely difficult to manually select a 
feature from the dataset on which the algorithm can perform 
better, so understanding the dataset and selecting meaningful 
features from it prior to feeding data into the machine learning 
algorithm is necessary. The feature selection impacts the final 
accuracy of the machine learning models. Contrarily, a deep 
learning algorithm with a small dataset has a high chance 
of over‑fitting. It also requires high computational power, a 
large feature set, and resources compared to machine learning 
models.

However, our method did not propose a new machine‑learning 
model. We used the existing models and demonstrated 
their effectiveness for feature classification. It is believed 
that developing a new model or modifying the existing 
classification architectures will further improve results and 
can be extended as future work.

The minimal consumption of data storage, processing time, 
and hardware is an additional advantage of the optimal 
feature selection. Thus, the proposed computer‑aided 
diagnosis approach with optimal features may be used as a 
complementary tool to assist the radiologist in making a more 
accurate and early diagnosis of disease using CXR images.
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Supplementary Table  1: Extracted features from X‑rays

Feature extracted from Features extracted (features name given here as mentioned in zoofs python library)
FOS features “FOS_Mean,” “FOS_Variance,” “FOS_Median,” “FOS_Mode,” “FOS_Skewness,” “FOS_Kurtosis,” “FOS_

Energy,” “FOS_Entropy,” “FOS_MinimalGrayLevel,” “FOS_MaximalGrayLevel,” “FOS_CoefficientOfVariation,” 
“FOS_10Percentile,” “FOS_25Perce‑ntile,” “FOS_75Percentile,” “FOS_90Percentile,” “FOS_HistogramWidth”

GLCM “GLCM_ASM,” “GLCM_Contrast,” “GLCM_Correlation,” “GLCM_SumOfSquaresVariance,” “GLCM_
InverseDifferenceMoment,” “GLCM_SumAverage,” “GLCM_SumVariance,” “GLCM_SumEntropy,” “GLCM_Entropy,” 
“GLCM_DifferenceVariance,” “GLCM_DifferenceEntropy,” “GLCM_Information1,” “GLCM_Information2,” “GLCM_
MaximalCorrelationCoefficient”

LTE “LTE_LL_7,” “LTE_EE_7,” “LTE_SS_7,” “LTE_LE_7,” “LTE_ES_7,” “LTE_LS_7”
GLRLM “GLRLM_ShortRunEmphasis,” “GLRLM_LongRunEmphasis,” “GLRLM_GrayLevelNo‑Uniformity,” “GLRLM_

RunLengthNonUniformity”, “GLRLM_RunPercentage”, “GLRLM_LowGrayLevelRunEmphasis”, “GLRLM_
HighGrayLevelRunEmphasis,” “GLRLM_Short owGrayLevelEmphasis,” “GLRLM_ShortRunHighGrayLevelEmphasis,” 
“GLRLM_LongRunLowGrayLevelEmphasis,” “GLRLM_LongRunHighGrayLevelEmphasis”

LBP “LBP_R_1_P_8_energy,” “LBP_R_1_P_8_entropy,” “LBP_R_2_P_16_energy,” “LBP_R_2_P_16_entropy,” 
“LBP_R_3_P_24_energy,” “LBP_R_3_P_24_entropy”

DWT “DWT_bior3.3_level_1_da_mean,” “DWT_bior3.3_level_1_da_std,” “DWT_bior3.3_level_1_dd_mean,” “DWT_
bior3.3_level_1_dd_std,” “DWT_bior3.3_level_1_ad_mean,” “DWT_bior3.3_level_1_ad_std,” “DWT_bior3.3_level_2_
da_mean,” “DWT_bior3.3_level_2_da_std,” “DWT_bior3.3_level_2_dd_mean,” “DWT_bior3.3_level_2_dd_std,” 
“DWT_bior3.3_level_2_ad_mean,” “DWT_bior3.3_level_2_ad_std,” “DWT_bior3.3_level_3_da_mean,” “DWT_
bior3.3_level_3_da_std,” “DWT_bior3.3_level_3_dd_mean,” “DWT_bior3.3_level_3_dd_std,” “DWT_bior3.3_level_3_
ad_mean,” “DWT_bior3.3_level_3_ad_std”

ZM “zenikes_0,” “zenikes_1,” “zenikes_2,” “zenikes_3,” “zenikes_4,” “zenikes_5,” “zenikes_6,” “zenikes_7,” “zenikes_8,” 
“zenikes_9,” “zenikes_10,” “zenikes_11,” “zenikes_12,” “zenikes_13,” “zenikes_14,” “zenikes_15,” “zenikes_16,” 
“zenikes_17,” “zenikes_18,” “zenikes_19,” “zenikes_20,” “zenikes_21,” “zenikes_22,” “zenikes_23,” “zenikes_24”

FOS: First‑order statistics, GLCM: Gray‑level co‑occurrence matrix, GLRLM: Gray‑level run length matrix, LBP: Local binary pattern, DWT: Discrete 
wavelet transform, ZM: Zernike’s moments, LTE: Law’s Texture Energy


