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Fluorescent Fe Embedded Magnetic 
Nanodiamonds Made by Ion 
Implantation
Bo-Rong Lin1, Srinivasu Kunuku2, Chien-Hsu Chen   2, Tzung-Yuang Chen3, Tung-Yuan Hsiao2, 
Hung-Kai Yu2, Yu-Jen Chang4, Li-Chuan Liao4, Huan Niu   2 & Chien-Ping Lee1

We demonstrate fluorescent Fe embedded magnetic nanodiamonds by ion implantation and two-
step annealing. The diamond characteristics with a highly ordered core and a graphite surface layer 
are maintained after the implantation process. After the two-step annealing process, a bright red 
fluorescence associated with nitrogen-vacancy centers is observed. These new fluorescent magnetic 
nanodiamonds can be used as a dual-function in vivo tracer with both optical visibility and magnetic 
resonance imaging capabilities. They are potentially useful for the more advanced in vivo biological and 
medical applications.

Multi-functional nanoparticles have been utilized in many areas especially medical applications in recent 
years1,2. Among many candidates, nano-diamonds (NDs) have been perceived as the most promising material for 
bio-applications due to their excellent bio-compatibilities3,4 and versatility5–7. One of the most attractive features 
of NDs is their capability to be functionalized by surface modification8,9. Designed functional groups can be easily 
attached to their surfaces chemically enabling them to load drugs and to target specific proteins10. However, not 
all chemicals that are desirable to be attached to the ND surface are nontoxic. One example is iron compounds, 
which can make NDs magnetic but might be toxic to human bodies. Magnetic NDs are potentially very useful for 
magnetic resonance imaging (MRI)11,12 and targeted radio frequency thermal therapy13.

Recently, we have developed a technique to place Fe atoms into the NDs by ion implantation14. Because the 
Fe atoms are embedded inside the NDs and are not in direct contact with the outside world, they are not toxic to 
living cells and at the same time become magnetic. We have shown that these magnetic NDs can be used as an 
effective MRI contrast agent without cytotoxicity15.

We have found unexpectedly that these Fe implanted magnetic NDs have a strong fluorescence if they are 
treated properly. It is known that there are nitrogen impurities naturally incorporated in NDs through the fabri-
cation process. When the substitutional nitrogen atoms and adjacent lattice vacancies form complexes, they can 
give out red fluorescent light. The vacancies can be artificially generated by high energy He ion bombardment16,17. 
Then a thermal treatment is usually used to cause the formation of the nitrogen-vacancy (NV) light emitting 
centers16. The fluorescent NDs are good tracers inside living cells and animal bodies18,19. The red fluorescence, 
with a wavelength of around 700 nm, can penetrate deep into biological tissues making it suitable for in vivo 
imaging20.

In this work, we report fluorescent Fe embedded magnetic NDs. During the ion implantation processes of our 
magnetic NDs, the Fe ions penetrate into the diamond lattice creating the magnetism. At the same time, many 
vacancies are formed because of the high energy ion bombardment. After a high-temperature heat treatment, a 
very bright red fluorescence is observed. So similar to He-ion bombardment, Fe implantation and subsequent 
thermal annealing in our process can also generate a lot of nitrogen-vacancy light emitting centers. This enables 
our NDs to be not only magnetic but also optically visible. Combining optical visibility and MRI capability, the Fe 
embedded magnetic NDs become a dual-function in vivo tracer. In the optically accessible body region, we can 
use the fluorescence images to trace them. For the region deep in the body, we can use the MR images to capture 
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them. So the fluorescent Fe embedded magnetic NDs will extend the practical use of NDs and open a new bio-
logical research field in the future.

Samples and Experiments
NDs powder (~100 nm in diameter, Microdiamant Co.) was first dispersed in deionized water and then coated on 
an oxidized silicon wafer. Fe-ions were implanted into NDs with an energy of 150 keV and a dose of 5 × 1015 ions/
cm2. After that, the magnetic NDs were collected14 and then spread on a silicon wafer. The NDs were first annealed 
at 800 °C for 2 hours in vacuum. Following that they were further heat treated in the air at 450 °C for 3 hours. The 
purpose of such a two-step annealing process will be described in the following.

Results and Discussion
After the Fe ion implantation, the first thing that we need to know is where the implanted Fe atoms were located 
in the NDs. The TEM image of a cluster of NDs after implantation is shown in Fig. 1(a). The corresponding Fe 
distribution of the same group of NDs measured by energy dispersive spectroscopy (EDS) mapping is shown in 
Fig. 1(b). We can see from these images that the Fe atoms are distributed well inside the NDs. Figure 1(c) shows 
a high-resolution TEM image of a Fe-ND. A highly ordered diamond core (yellow arrow) covered by a graphite 
layer (red arrow) with a few nanometers thickness is clearly seen. This image demonstrates that the implantation 
process does not change the structural integrity of the NDs. The graphite layer, which has been present in the 
original NDs and further thickened by the implantation process is undesirable not only because it changes the 
sp3 surface structure but also it can impede the fluorescent emission from the NDs21,22. As will be described in the 
following, this graphite layer can be easily removed through an annealing process.

The luminescence from NDs without any post-processing is barely seen because of the lack of emission 
centers. The Fe ion implantation, however, generates a lot of carbon vacancies in the NDs lattice. These lattice 
vacancies are unstable and static at room temperature. They become mobile if they are treated at the high tem-
perature, therefore, the annealing process helps the vacancies to diffuse and to combine with N atoms, which 
are substituted in carbon lattice in NDs to form NV centers23. So following Fe ion implantation, our Fe-NDs 
were annealed at 800 °C in vacuum for the formation of the NV centers. But as shown in Fig. 1(c), there is a 
graphite layer on the surface of the NDs. S. Osswald et al. have shown that a low- temperature annealing in the 

Figure 1.  (a) TEM image of as-implanted NDs. (b) EDS mapping for Fe. Red points represent the position with 
iron signal. (c) High-resolution TEM image of the as-implanted NDs.
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air can remove such graphite layer by selective oxidation24. Following their method, we have performed a sec-
ond step annealing process at 450 °C in the air to remove the graphite layer. As will be shown in the following 
photo-luminescence (PL) spectra, this step is crucial for the luminescent property of the Fe-NDs.

The fluorescent emission characteristics of NDs and Fe-NDs were studied using the micro-PL measurement 
system. The pumping source was a diode pumped solid state 532 nm laser. Figure 2 shows the PL spectra of NDs 
and Fe-NDs at different stages of processing. Figure 2(a) shows the PL spectrum of the original NDs prior to 
Fe implantation. The fluorescent emission of NDs was very weak due to fewer emission centers. The two sharp 
peaks between 550–600 nm are from Raman scattering of diamond and graphite25–27. After Fe implantation, the 
emitted light became even weaker as shown in Fig. 2(b). It was because the diamond lattice was damaged by the 
high-energy implanted Fe ions. But at the same time, many carbon vacancies were generated inside the NDs. 
After annealing at 800 °C in the vacuum, the vacancies are started to move to the vicinity of N atoms and captured 
by the substitutional N atoms in the Fe-NDs23. As a result, intense red fluorescence illustrated around 680 nm 
from the 800 °C annealed Fe-NDs (See Fig. 2(c)). A board spectrum shape was observed, which is a typical char-
acteristic of the negatively charged nitrogen-vacancy (NV−) center’s emission28,29.

Furthermore, second-step annealing was executed at 450 °C in the air in order to remove graphite on the sur-
face of annealed Fe-NDs in first-step, thus the emission of the red fluorescence became very strong (see Fig. 2(d)). 
The second-step annealing revealed a significant effect on the NV− emission intensity, which appeared in the PL 
spectrum of two-step annealed Fe-NDs (Fig. 2(d)). The prominent enhancement of NV− emission is due to two 
aspects. The first one is the annealing at 450 °C in the air is similar to the oxidation of Fe-NDs, such an oxidation 
influence the change of charge states of NV° to NV− centers30. As a result, in the second-step annealing process, 
most of the NV° centers changed their charge state to NV−, consequently, the intensity of red luminescence was 
increased significantly. The second one is very straightforward. As the graphite on Fe-ND’s surface has been 
removed by the oxidation process in the air at 450 °C, the quenching effect on NV− emission by graphite is over-
whelmingly suppressed31. It should be noted that the intensity of the emission from these set of samples cannot be 
compared directly, since the intensity shown as arbitrary units. But from the signal to noise ratio of these spectra, 
we can tell that the luminance from the Fe-NDs with two-step annealing is much stronger than that of all others 
samples.

For the fluorescence to be useful, it has to be observable under real imaging systems. We have used a Nikon 
inverted fluorescence microscope and an in vivo imaging system (IVIS Lumina II) to look at the real images of our 
NDs and Fe-NDs. The excitation light had a wavelength around 550 nm and the detection window was centered 
around 680 nm. Figure 3(a–d) are fluorescent images of NDs and Fe-NDs were captured by the Nikon micro-
scope. The dark images were from, (a) original NDs, (b) Fe-NDs and (c) Fe-NDs annealed at 800 °C in the vac-
uum. These three cases illustrate that no significant fluorescence from the NV color centers of the NDs, Fe-NDs 

Figure 2.  Photoluminescence spectra of (a) Original NDs. (b) NDs after Fe implantation (c) Fe-NDs annealed 
at 800 °C under vacuum. (d) Fe-NDs annealed at 800 °C under vacuum and 450 °C in air.
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Figure 3.  Microscope fluorescence images of NDs and Fe-NDs under different condition. (a) Original NDs. (b) 
NDs after Fe implantation (c) Fe-NDs annealed at 800 °C under vacuum. (d) Fe-NDs annealed at 800 °C under 
vacuum and 450 °C in the air. Scale bar: 10 μm.

Figure 4.  IVIS fluorescence images of NDs and Fe-NDs under different condition. (a) Original NDs. (b) NDs 
after Fe implantation (c) Fe-NDs annealed at 800 °C under vacuum. (d) Fe-NDs annealed at 800 °C under 
vacuum and 450 °C in the air. The grey image is taken by visible light camera and then the fluorescent signal 
is overlaid on this grey image. Only the colored part has 680 nm fluorescence emission signal. The dark area is 
uncoated silicon wafer surface.
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and 800 °C annealed Fe-NDs. Whereas, a noticeable fluorescence has been perceived from the two-step annealed 
Fe-NDs, which has shown in Fig. 3(d). The corresponding IVIS fluorescence images are shown in Fig. 4(a–d). 
These images depict the macroscopic pictures of the NDs (Fe-NDs) covered Si wafers. The grey image is taken by 
the visible light camera and then the fluorescent signal is overlaid on this grey image. Only the colored part emits 
the 680 nm fluorescence emission signal. Again, the only visible fluorescence was from the one with Fe-NDs after 
two-step annealing. IVIS is a very mature and sensitive technique commonly used for the biological organism. 
The fluorescence images are shown here demonstrate that our Fe-NDs are indeed useful as a luminous agent.

It should be mentioned that we have also investigated the PL and fluorescent images at NDs, which did not 
receive Fe implantation but underwent the same annealing processes as the Fe-NDs. The resultant PL spectra 
indicated weak NV emission, but it was totally invisible under the fluorescence imaging system. According to our 
study, both ion implantation and subsequent two-step annealing processes are necessary for the emission of red 
fluorescent light for bio-imaging applications.

Conclusion
In conclusion, we have successfully fabricated fluorescent Fe embedded magnetic NDs by Fe ion implantation 
and two-step annealing. These magnetic NDs have strong red fluorescence that is easily detectable by fluores-
cence microscopes and IVIS systems. Combining the optical visibility and the magnetic property, fluorescent Fe 
embedded NDs can be used as a dual-function in vivo tracer. This new material should bring new applications for 
nano-medicine in the future.
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