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Abstract

Background: Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance.
However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect
sensitivity and specificity could influence animals’ classification and impact on estimated variance components. This
study was aimed at: (1) estimating the heritability of bacteria negative SCS, bacteria positive SCS, and infection
status, (2) estimating phenotypic and genetic correlations between bacteria negative and bacteria positive SCS, and
the genetic correlation between bacteria negative SCS and infection status, and (3) evaluating the impact of
imperfect diagnosis of infection on variance component estimates.

Methods: Data on SCS and udder infection status for 1,120 ewes were collected from four Valle del Belice flocks.
The pedigree file included 1,603 animals. The SCS dataset was split according to whether animals were infected or
not at the time of sampling. A repeatability test-day animal model was used to estimate genetic parameters for
SCS traits and the heritability of infection status. The genetic correlation between bacteria negative SCS and
infection status was estimated using an MCMC threshold model, implemented by Gibbs Sampling.

Results: The heritability was 0.10 for bacteria negative SCS, 0.03 for bacteria positive SCS, and 0.09 for infection status, on
the liability scale. The genetic correlation between bacteria negative and bacteria positive SCS was 0.62, suggesting that
they may be genetically different traits. The genetic correlation between bacteria negative SCS and infection status was
0.51. We demonstrate that imperfect diagnosis of infection leads to underestimation of differences between bacteria
negative and bacteria positive SCS, and we derive formulae to predict impacts on estimated genetic parameters.

Conclusions: The results suggest that bacteria negative and bacteria positive SCS are genetically different traits. A
positive genetic correlation between bacteria negative SCS and liability to infection was found, suggesting that the
approach of selecting animals for decreased SCS should help to reduce mastitis prevalence. However, the results
show that imperfect diagnosis of infection has an impact on estimated genetic parameters, which may reduce the

efficiency of selection strategies aiming at distinguishing between bacteria negative and bacteria positive SCS.

Background

Somatic cell count (SCC), and therefore somatic cell
score (SCS) have been widely promoted as an indirect
method of predicting mammary infections [1] and as a
selection criterion to improve mastitis resistance [2]. It
has been demonstrated that mastitis is associated with
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an increase in SCC in small ruminants [3,4] and cattle
[5,6]. Hence, milk with an elevated SCC is usually con-
sidered an indication of the occurrence of infection in
the udder; and selection for decreased SCC could lead
to reduced susceptibility to mastitis [7].

However, one difficulty in using SCC to find animals
most resistant to mastitis is that factors known to influ-
ence SCC have different magnitude in healthy and
infected animals [8], and SCC in healthy and in infected
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animals may even be considered as different traits.
Indeed, it has been shown that cells in the milk from a
healthy udder are mainly mammary gland epithelium
and drain canal cells; whereas polymorphonuclear leuko-
cytes (PMN) are the major cell population during early
inflammation, playing a protective role against infectious
diseases in the mammary gland [9,10]. Therefore, in
principle SCC from healthy and infected animals should
be analyzed separately. However, because the intramam-
mary infection status is generally unknown, one model
is usually applied indifferently to SCC obtained from all
animals, irrespective of whether they are infected or not.
Test-day SCC may, therefore, be regarded as a mixture
of observations from animals with unknown health sta-
tus [1]. We are in the fortunate position of having a
dataset of SCC in dairy sheep for which bacteriological
data are also available, indicating whether an animal was
infected at the time of sampling. Therefore, instead of
using mixture models to determine the infection status
[1,11], we were able to analyze SCC, and therefore SCS,
separately in apparently healthy and infected animals.

Fundamental to any diagnostic test are the concepts of
sensitivity and specificity. Sensitivity (Se) measures the
proportion of actual positives (i.e. diseased animals)
which are correctly identified as such by the diagnostic
test; whereas specificity (Sp) measures the proportion of
negatives (i.e. healthy animals) which are correctly iden-
tified by the diagnostic test. If the diagnostic test is per-
fect, both Se and Sp are equal to unity. However, if the
diagnostic test is imperfect, i.e. Se and Sp are less than
unity, Se and Sp will influence classification of animals
and potentially impact on estimable variance compo-
nents and inferences drawn from the data. Se and Sp for
the bacteriological assessments are unknown in our
dataset, but it is likely that they were less than unity due
to intermittent shedding of bacteria after infection and
the possibility of contamination during sampling.

The aims of this study, therefore, were: (1) to estimate
the heritability of SCS, according to whether the animals
were healthy or infected, as assessed by our bacteriologi-
cal data, along with the heritability of the infection status;
(2) to estimate the phenotypic and genetic correlations
between the bacteria negative SCS (i.e. apparently healthy
animals) and the bacteria positive SCS (i.e. infected ani-
mals), and the genetic correlation between the bacteria
negative SCS and the infection status; and (3) to evaluate
the impact of imperfect diagnostic Se and Sp on variance
component estimates for the traits of interest.

Methods

Dataset

The data consisted of 9,306 test-day records from 2,058
lactations of 1,125 ewes. Data for SCC were collected at
approximately 1-month intervals, following an A4
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recording scheme [12], by the University of Palermo in
four Valle del Belice flocks between 2004 and 2007. At
the same time, milk samples were collected aseptically
from each animal for bacteriological analyses, which were
performed by conventional techniques, on 5% sheep
blood agar plates, incubated at 37°C, and examined after
10-24 h and 36-48 h incubation. The bacteriological colo-
nies observed were mainly: Staphylococcus aureus, coagu-
lase negative staphylococci, Staphylococcus intermedius
and other staphylococci; Streptococcus canis, Streptococcus
dysgalactiae, Streptococcus uberis, Streptococcus agalactiae
and other streptococci; Corynebacterium spp., Pasteurella
spp., and Pseudomonas spp. (Table 1). Ewes were consid-
ered infected if more than five colony forming units (CFU)
per 10 ul of milk of one species of bacteria were isolated,
and the data used in this study were the apparent presence
or absence of infection for each milk sample.

All test-day records used in the analysis were required
to have information regarding SCC and bacteriological
status. After editing, the data comprised 8,843 test-day
records from 2,047 lactations of 1,120 ewes. The pedi-
gree file included 1,603 animals. In addition to the 1,120
animals with records, 84 sires and 399 dams without
phenotypes were included in the pedigree. On average,
the sires served at least two of the four flocks under
study and they had 13.33 daughters on average.

For analyses investigating the properties of SCC in
ewes with either positive or negative bacteriological
status, we divided the data in two sub-datasets: one sub-
dataset comprising test-day records with the presence of
infection (bacteria positive) and the accompanying SCC
information (2,866 test-day records from 1,263
lactations of 805 ewes), and the other one comprising
test-day records with the absence of infection (bacteria
negative) and the accompanying SCC information (5,977
test-day records from 1,805 lactations of 1,062 ewes).

Table 1 Number of observations and frequencies for
bacteria observed

Number of  Frequency (%)
observations
Staphylococcus aureus 300 1047
coagulase negative staphylococci 2316 80.81
Staphylococcus intermedius 36 1.26
Other staphylococci 20 0.70
Streptococcus canis 6 0.21
Streptococcus dysgalactiae 23 0.80
Streptococcus uberis 12 042
Streptococcus agalactiae 12 042
Other streptococci 84 293
Corynebacterium spp. 7 0.24
Pasteurella spp. 40 140
Pseudomonas spp. 10 0.34




Riggio et al. Genetics Selection Evolution 2010, 42:30
http://www.gsejournal.org/content/42/1/30

Because the dataset was divided by test-day records, the
same animals could appear in both sub-datasets and
they could even appear in both datasets in the same lac-
tation. Of the 1,120 ewes from the original data, 744
were included in both sub-datasets.

Statistical Analyses

The test-day traits analyzed as response variables were
SCS and the infection status. SCS were obtained after
log-transformation of test-day SCC, using a base 2 loga-
rithmic function: SCS = log, (SCC/100) + 3 [13], in
order to get an approximated normal distribution for
this trait. An infection status trait was created, based on
the presence/absence of pathogens, indicating whether
ewes were infected (1) or apparently healthy (0) at each
test-day.

Variance components and genetic parameters for SCS
(whole dataset as well as bacteria negative and positive
subsets) were estimated using ASReml [14]. The follow-
ing repeatability test-day animal model as described by
Riggio et al. [15] was used to analyze the data:

By exp(—0.05 * DI, ) + A,y + PE,, + PEy, +e

ijklmn
where y;jximn was the SCS test-day measurement;
u was the population mean; FTD; was the random effect
of flock by test-day interaction i (91 levels); YPS; was
the fixed effect of year by season of lambing interaction
j (6 levels), where the season of lambing was coded as 1
if a ewe gave birth in the period January through June,
otherwise it was coded as 2 [15]; P; was the fixed effect
of the parity (3 levels); LS, was the fixed effect of litter
size class [ (2 levels, single or multiple born lambs);
DIM;jjimn and exp(-0.05* DIM ;) Were two covariates
used to model the shape of lactation curves [16]; A,, was
the random additive genetic effect of the individual m
(1,603 levels); PE,, was the general random permanent
environmental effect of ewe m across lactations (1,120
levels); PEy,, was the random permanent environmental
effect on the individual m within parity class k (2,047
levels); e;jximn Was the random residual effect. The same
model was used for the analysis of the two sub-datasets.

Variance components and heritability for the infection
status were first estimated using an animal linear model
accounting for the same effects included in the model
used for SCS. Then, a threshold animal model was
fitted, assuming a probit link function.

Phenotypic and genetic correlations between SCS in
the bacteria negative and positive subsets were estimated
using bivariate analyses, fitting the same fixed and ran-
dom effects as previously described. Given the data
structure, i.e. non-contemporaneous bacteria negative
and positive SCS observations for any individual, the
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environmental covariance between the two traits was
assumed to be zero and not estimated when the genetic
correlation was estimated. However, covariances were
fitted for the additive genetic term and for the perma-
nent environmental effects of the ewe both across and
within lactations. To estimate an approximated phenoty-
pic correlation, the data were restructured and reduced
to adjacent pairs of bacteria negative and positive SCS
data, i.e. the bacteria negative and positive SCS observa-
tions closest within one lactation were used. It should
be noted that this approach does create a unique subset
of SCS samples, as the bacteria negative SCS samples
are from ewes either immediately prior to or post infec-
tion; conversely the bacteria positive SCS sample are
from recovering or newly infected ewes. The same fixed
effects, as previously described, were fitted but the ran-
dom effects model was simplified with (co)variance
terms estimated only for additive genetic and residual
effects.

The genetic correlation between the bacteria negative
SCS and the infection status was estimated using TM
(Threshold Model) program (available upon request to
the author andres.legarra@toulouse.inra.fr), using a
Bayesian analysis and performing numerical integration
through the Gibbs sampler. The TM program does not
handle covariates, so in this case the model was simpli-
fied and the two covariates of DIM were excluded. Flat
priors were used both for fixed effects and variance
components. A chain of 100,000 iterations was used,
discarding the first 30,000 samples and saving a sample
every 10 iterations. The mean of the estimated marginal
posterior density has been used as point estimate of the
genetic parameters of interest.

Genetic parameters for infection status, bacteria nega-
tive SCS, and bacteria positive SCS are potentially
affected by imperfect Sp and Se, which were both impli-
citly assumed to be unity in the variance component
estimation analyses. Additional file 1 shows the princi-
ples of the calculations used to show how imperfect Se
and Sp can influence the interpretations of these data.
Using the observed variance components, likely impacts
of imperfect Sp and Se on estimated mastitis prevalence,
predicted differences between SCS in bacteria negative
and positive animals, and variance components were
explored.

Results

Arithmetic means, standard deviations and range of
SCC and SCS test-day traits are given in Table 2. The
geometric mean SCC was 403 (x 10® cells/mL) for the
whole data, 253 for the bacteria negative, and 1,082 for
the bacteria positive. Although ranges of SCC for unin-
fected and infected animals were similar, the arithmetic
mean SCC for infected animals was approximately
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Table 2 Descriptive statistics of SCC and SCS traits

Mean SD Range

Whole data SCC 1,812 4,150 13 - 31,268
(x 10° cells/ml)

Whole data SCS 5.01 237 006 - 11.29
Bacteria negative SCC 1,077 3,084 13 - 29,368
(x 10° cells/ml)

Bacteria negative SCS 4.34 2.06 0.06 - 11.20
Bacteria positive SCC 3,346 5,462 16 - 31,268
(x 10° cells/ml)

Bacteria positive SCS 642 2.36 036-11.29

3-fold higher than that for uninfected animals. This
result suggests that although the distributions of bacteria
negative and bacteria positive SCS partially overlap, they
are substantially different as shown in Figure 1. The dif-
ference between bacteria positive and bacteria negative
SCC may have been higher if SCC and infection status
had been considered per udder half. However, we had
only information at the animal level (summarizing the
whole udder); therefore a dilution effect due to the mix-
ing of milk with high SCC coming from infected glands
and milk with low SCC from a healthy gland has to be
considered.

Phenotypic, genetic, and environmental variances after
adjustment for fixed effects, heritabilities and repeatabil-
ities within and across lactations for SCS traits are given
in Table 3. The heritability estimate for SCS was 0.09.
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However, estimates for bacteria negative and bacteria
positive SCS were respectively 0.10 and 0.03. This differ-
ence could be due in part to the different sub-datasets
(i.e. different animals and different number of records)
used for the analysis. Therefore, an analysis was carried
out in which only the animals present in both sub-data-
sets were considered. However, this had little effect on
the estimated heritabilities and did not change the inter-
pretation of the results. The observed phenotypic var-
iance was 5.57 for infected animals and 2.23 for bacteria
negative animals; whereas the observed genetic variance
was 0.16 for infected animals and 0.22 for bacteria-nega-
tive animals. Repeatability estimates within lactations
ranged between 0.20 and 0.29, whereas repeatability esti-
mates across lactations ranged between 0.30 and 0.33,
and were higher than the within lactation values.

Table 4 shows the heritabilities of the infection status,
estimated by considering the infection status both as a
binary and continuous trait on the underlying scale,
i.e. liability to infection, and the expected value on the
underlying scale calculated from the binary scale using
the approximation of Dempster and Lerner [17]. The
heritability estimate obtained with the probit model was
0.09. As expected, the heritability estimate from the nor-
mal analysis was somewhat lower, and it can be seen
that the assumption of the trait being continuous with
normally distributed residuals is violated. However, the
expected value on the underlying scale derived from the

Frequency . . . "
30 m Bacteria negative Bacteria positive
25
20
15
10
| I I
e I 1Tree
0-1 1-2 2-3 34 4- 56 6-7 7-8 89 9-10 10-11 »>11
Somatic Cell Score class
Figure 1 Distribution of bacteria negative and bacteria positive SCS. Distribution of bacteria negative (i.e. healthy) and bacteria positive
(i.e. infected) SCS for the observed prevalence of bacteria positive milk samples (p’ = 0.32).
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Table 3 Genetic parameters* for SCS traits
% c% o% h? + SE Twie = SE Facr £ SE
Whole data SCS 5467 0492 2633 0.09 £ 0.04 029 £ 004 0.33 £ 0.02
Bacteria negative SCS 2.225 0.223 1.188 0.10 £ 0.06 021 £ 004 0.30 £ 0.03
Bacteria positive SCS 5573 0.161 2.554 0.03 + 0.03 0.20 £ 0.05 031 £ 004

*Phenotypic (cszp), genetic (6%,), and environmental (o2 variances, heritability (h?) and repeatability within (r,«) and across (r,) lactations (+ SE) for SCS traits

heritability estimate obtained with the normal analysis
was the same as that from the binary trait analysis, con-
firming that the impact of departures from normality is
predictable.

The phenotypic and genetic correlations between bac-
teria negative and bacteria positive SCS, and the genetic
correlation between bacteria negative SCS and the infec-
tion status are presented in Table 5. The phenotypic cor-
relation between bacteria negative and bacteria positive
SCS was 0.19 (s.e. 0.02); whereas the genetic correlation
was 0.62 (s.e. 0.12), indicating that whilst there is a mod-
erate positive correlation between these traits it may be
more appropriate to consider them as different traits.
The genetic correlation between bacteria negative SCS
and the infection status was 0.51, suggesting that animals
with lower SCS, assessed when apparently not infected,
are genetically less likely to be infected (across all time
points). For completeness we also estimated the genetic
correlation between SCS in bacteria positive animals and
liability to infection. The estimated correlation was 0.81
but its biological interpretation is not obvious to us.

All analyses so far were done assuming the Sp = Se = 1.
This may not be the case; although we have no data on
the accuracy of the diagnoses, they are unlikely to be per-
fect. The impacts of imperfect diagnoses can be tabulated
from formulae derived in Additional file 1. The impact of
imperfect Sp or Se on the true prevalence, given the
observed prevalence, is shown in Figure 2. If the Se is less
than unity, then the true prevalence will have been
underestimated, whereas if Sp is less than perfect then
the true prevalence will have been overestimated. Not
only does the true prevalence of infection changes as Sp
or Se change, but the estimated true difference in SCS
between healthy and infected animals also changes, as
shown in Figure 3. Less than perfect Se has little impact

Table 4 Heritability for infection status with normal and
probit analysis

Normal Probit Expected

analysis* analysis** value®

h? + SE h? + SE h?
Infection 0.05 £ 0.02 0.09 £ 0.04 0.09

status

*Treating the infection status as a continuous variable.
**Treating the infection status as a binary trait.
TCalculated with Dempster and Lerner’s formula [17].

on the true difference between healthy and infected ani-
mals, whereas if Sp is less than perfect then the true dif-
ference between healthy and infected animals will have
been underestimated. Moreover, once Sp drops below ~
0.8 the estimated differences between the two popula-
tions becomes improbably large.

Phenotypic and genetic correlations between SCS in
infected and healthy populations also change as Sp or Se
change, as shown in Figures 4 and 5. If both Se and Sp
are less than unity, the true phenotypic correlation will
have been slightly underestimated. However, imperfect
Sp has a larger effect, as the true phenotypic correlation
drops more rapidly. A different trend is reported for the
true genetic correlation (Figure 5), which will have been
underestimated, if Sp is less than unity; whereas if Se is
less than perfect then true genetic correlation will have
been overestimated. Although Sp and Se are unknown
in these data, the improbable expected results when
either or both values are low suggest that both para-
meters are likely to be somewhat higher than 0.8.

Discussion

This paper demonstrates that SCC, and therefore SCS,
of apparently uninfected and infected animals are most
likely two different traits with different heritabilities. We
have shown that bacteria negative SCS has a slightly
higher heritability than the infection status (i.e. likely
mastitis) and that bacteria negative SCS (i.e. from appar-
ently uninfected animals) is positively genetically corre-
lated with both bacteria positive SCS (i.e. from infected
animals) and infection status. Finally, we have explored
the implications of less than perfect Se and Sp on our
estimates. Possibly the greatest impact of less than per-
fect diagnosis is on the heritability of liability to mastitis,
which is likely to be somewhat underestimated if the
diagnostic test is poor. This is likely to decrease poten-
tial genetic progress for improved resistance.

Evidence has been published that healthy ewes nor-
mally have higher SCC than healthy cows [18-20].
Bufano et al. [21] have shown that high SCC (> 1 mil-
lion/mL) do occur in healthy sheep’s milk, especially
towards the end of lactation. Therefore, whereas in cat-
tle SCC is widely recognized as indicator of mastitis,
results on the efficiency of SCC as an indicator trait are
inconsistent in dairy sheep studies. However, Ariznabar-
reta et al. [22] and Gonzalo et al. [2] have demonstrated
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Table 5 Correlations* between SCS and infection status
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Bacteria positive SCS Infection status

Bacteria negative SCS Genetic correlation:

Phenotypic correlation:

0.62 +0.02 0.51
0.19 £ 0.02 e

*Genetic and phenotypic correlations (+ SE**) between bacteria negative SCS and bacteria positive SCS, and genetic correlation between bacteria negative SCS

and infection status

**SE is not reported for the correlation between bacteria negative SCS and infection status, as it was estimated using a Bayesian approach
***No attempt was made to estimate a phenotypic correlation between bacteria negative SCS and infection status

that for around 70% of mammary pathogens isolated
from ewes with subclinical mastitis, their presence in
ewe milk is associated with high SCC. Therefore,
published evidence exists that mastitis does accompany
an increase in SCC in sheep [23]. Moreover, Leitner et
al. [24] have suggested that because sheep have only two
mammary glands, dilution effects due to the mixing of
milk with high SCC from an infected gland, and milk
with low SCC from a healthy gland, will be relatively
small at the animal level. Besides, in dairy cows, subclini-
cal mastitis, with a frequency ranging from 20-50%
[10,25] may be less apparent because the increase in SCC
in an infected gland is modest (about 300-500 x 103
cells/mL) and the mixing with the milk from uninfected
quarters is sufficient in most cases to appreciably lower
the effect of SCC at the cow level [26].

The mean SCS for bacteria negative animals was simi-
lar to the value of 4.86 reported by Ariznabarreta et al.
[22] and 5.15 reported by Leitner et al. [23]; whereas the
mean SCS for infected animal was similar to the value
of 6.32 reported by Leitner et al. [23] in Israeli-Assaf
and Awassi sheep. The observed difference between the
bacteria positive and negative populations was 2.08, i.e.
suggesting a four-fold difference in SCC between typical
diseased and healthy individuals. However, if only one
half of the udder was infected, then due to the dilution

Se=1 —e—Sp=1
True prevalence

0.5

0.4 -

0.3 -

0.2 A

0.1

1 0.96 0.92 0.88 0.84 0.8 0.76 0.72
Sensitivity or Specificity

Figure 2 True prevalence depending on imperfect specificity

and sensitivity. Trend of the true prevalence of infection

depending on imperfect specificity (Se = 1) or imperfect sensitivity

(Sp = 1) for the observed prevalence of bacteria positive milk

samples (p' = 0.32).

this would equate to an eight-fold difference between
healthy and infected halves, assuming independence
(i.e. infection in one half, which results in an increase in
SCC, does not increase SCC in the other half). If Se was
in fact less than perfect, this would only have slightly
influenced the true difference (delta) between the two
populations; whereas if Sp was less than perfect
(i.e. healthy animals wrongly classified as being infected)
then the difference between the two populations would
have been considerably underestimated.

The heritability estimates for overall SCS and SCS in
apparently healthy animals were generally in the range
reported in the literature for repeatability test-day mod-
els i.e. 0.04 to 0.16 [15,27,28]. Other studies have
reported higher heritability estimates for the average
SCS during lactation, from 0.11 to 0.18 [29-31]. How-
ever, the heritability for SCS in infected ewes (0.03) was
at the low end of published values. It is important to
highlight that the similarity between the heritability for
bacteria negative SCS and that usually observed for SCS
is probably due to the fact that the former refers to a
mix of repeatable healthy animals, animals that have
recovered from infection, and infected animals with
incorrect diagnosis. On the contrary, SCS in infected
animals are mostly truly positive samples, and the low
heritability actually reflects that most of the variation in
these samples is non-genetic. The high environmental

Se=1 ——Sp=1
Delta

T T T T T T T T T T T T
1 0.96 0.92 0.88 0.84 0.8 0.76

Sensitivity or Specificity

Figure 3 True difference between healthy and infected SCS.
Trend of the true difference (Delta) between SCS in healthy and
infected populations depending on imperfect specificity (Se = 1) or
imperfect sensitivity (Sp = 1).
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Phenotypic
correlation

0.8 q
0.6

041

027 W
0 T T T T T T T T T T

1 0.96 0.92 0.88 0.84 0.8
Sensitivity or Specificity

Figure 4 True phenotypic correlation between healthy and
infected SCS. Trend of the true phenotypic correlation between
SCS in healthy and infected populations depending on imperfect
specificity (Se = 1) or imperfect sensitivity (Sp = 1).

variance for the bacteria positive SCS is possibly due to
the nature of the pathogens (i.e. hosts may respond dif-
ferently to infection by a pathogen or another) and the
sinusoidal variation of SCC after infection, both of
which would increase variation in the dataset.

Estimated repeatabilities were similar for the two sub-
datasets. Repeatability estimates within lactations ranged
between 0.20 and 0.29, and were in the range reported
in the literature for sheep i.e. 0.22 to 0.38 [28,32,33].
However, repeatability estimates across lactations ranged
between 0.30 and 0.33, and were higher than the value
of 0.13 reported by Serrano et al. [33] for the Manchega
breed.

The estimated genetic correlation between bacteria
negative and bacteria positive SCS (0.62) is positive and
moderate, but significantly less than unity. Therefore,
our results suggest that bacteria negative and bacteria
positive SCS may be partially independent traits, possi-
bly with different heritabilities. It might be hypothesized
that ewes with high bacteria negative SCS also have a

Genetic
! correlation

N M

0.6

Se=1 ——Sp=1

0.4

024

1 0.96 0.92 0.88 0.84

Sensitivity or Specificity
Figure 5 True genetic correlation between healthy and
infected SCS. Trend of the true genetic correlation between SCS in
healthy and infected populations depending on imperfect specificity
(Se = 1) or imperfect sensitivity (Sp = 1).
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higher reaction, in terms of increase in SCS, in response
to an infection. It has to be taken into account that the
genetic correlation might partially reflect the fact that
the dataset of bacteria negative SCS animals also
includes previously infected animals. However, a some-
what different interpretation is possible. The bacteria
positive SCS actually consists of the bacteria negative
SCS (i.e. the SCS ewes would have had in the absence
of infection) along with the true response to infection.
Therefore, it is likely that the positive genetic correlation
is picking up the baseline that is contributing to both
measures, with the true response (i.e. the extra) SCS
possibly being uncorrelated. The sum of the two results
in a trait that is genetically correlated with bacteria
negative SCS, but has a low phenotypic correlation
(0.19). The exploration of sensitivity and specificity sug-
gests that imperfect diagnosis of the infection has only
minor impacts on the correlation, with the impacts
becoming large only when the diagnostic tests are very
poor.

Very few data on intramammary infection assessed by
bacteriological analyses are found in the literature, and
published studies refer more directly and exhaustively to
udder health status. In cattle, heritabilities for intra-
mammary infection varied from 0.02 to 0.04 as reported
by Weller et al. [34], and were somewhat higher (0.10 to
0.20) in Detilleux et al. [35] and Wanner et al. [36]. Our
value of 0.09 falls into the mid range of published
values. However, an important result we found was that
with imperfect Se and, particularly, Sp, the heritability of
liability is likely to be substantially underestimated. In
other words, there may truly be more genetic variation
for liability to mastitis than the field data suggest. No
estimates, however, are reported for the genetic correla-
tion between bacteria negative SCS and the infection
status. Our results, perhaps surprisingly, suggest a posi-
tive genetic correlation between bacteria negative SCS
and liability, suggesting that animals with higher bacteria
negative SCS are more liable to have mastitis. This is a
result that requires independent validation but it does
suggest that the approach of selecting animals for
decreased SCS, even in the absence of knowledge about
infection status, is correct and will help to reduce the
prevalence of mastitis.

The choice of diagnosis criteria is important, as it
affects the probability that healthy animals are truly
diagnosed as healthy and that infected animals are
classified as such. Therefore, as our results have
shown, biases may be quite large when diagnostic cri-
teria are not sensitive or specific enough. Our results
show that the imperfect diagnosis of infection has an
impact on estimated genetic parameters, particularly
the heritability of liability, and some of the inferences
drawn from the data. Bacteriological examination is
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often considered to be the ‘golden standard’ for routine
detection and identification of major mastitis
pathogens, and is usually assumed to be perfect, i.e.
Sp = Se = 1. However, even good quality bacteriologi-
cal or clinical mastitis data will most likely have true
Se and Sp values somewhat less than one. Some cases
will be missed, others may be mis-diagnosed. Hence,
the answers we get may not be quite what we think
they are, and we may well be underestimating the
impacts of mastitis and the potential for selecting ani-
mals for enhanced resistance.

Conclusions

Our results suggest that bacteria negative and bacteria
positive SCS may be partially independent traits, con-
firming that SCC from healthy and infected animals
should be analyzed separately. Moreover, a positive
genetic correlation between bacteria negative SCS and
liability to mastitis was found, suggesting that the
approach of selecting animals for decreased SCS will help
to reduce the prevalence of mastitis. However, our results
show that the imperfect diagnosis of infection has an
impact on estimated genetic parameters. Hence, the
impacts of mastitis and the potential for selecting animals
for enhanced resistance may well be underestimated.

Additional material

Additional file 1: Effect of imperfect sensitivity and specificity on
means and variances of continuous traits. The word file provided
shows the principles of the calculations used to show how imperfect
sensitivity and specificity can influence animals’ classification and impact
on estimated variance components.
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