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Abstract
Purpose: The deformable registration of 3D chest computed tomography (CT)
images is one of the most important tasks in the field of medical image registra-
tion. However, the nonlinear deformation and large-scale displacement of lung
tissues caused by respiratory motion cause great challenges in the deformable
registration of 3D lung CT images.
Materials and methods: We proposed an end-to-end fast registration method
based on unsupervised learning,optimized the classic U-Net, and added incep-
tion modules between skip connections. The inception module attempts to
capture and merge information at different spatial scales to generate a high-
precision dense displacement vector field. To solve the problem of voxel folding
in flexible registration,we put the Jacobian regularization term into the loss func-
tion to directly penalize the singularity of the displacement field during training to
ensure a smooth displacement vector field. In the stage of data preprocessing,
we segmented the lung fields to eliminate the interference of irrelevant infor-
mation in the network during training. The existing publicly available datasets
cannot implement model training. To alleviate the problem of overfitting caused
by limited data resources being available, we proposed a data augmentation
method based on the 3D-TPS (3D thin plate spline) transform to expand the
training data.
Results: Compared with the experimental results obtained by using the Vox-
elMorph deep learning method and registration packages, such as ANTs and
Elastix, we achieved a competitive target registration error of 2.09 mm, an opti-
mal Dice score of 0.987,and almost no folding voxels.Additionally, the proposed
method was much faster than the traditional methods.
Conclusions: In this study, we have shown that the proposed method was effi-
cient in 3D chest image registration. The promising results demonstrated that
our method showed strong robustness in the deformable registration of 3D
chest CT images.
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1 INTRODUCTION

In deformable registration,a highly nonlinear,dense map
is established between a pair of images. The deform-
ing registration of 3D chest computed tomography (CT)
images is critical to the application of radiotherapy,
such as lung tumor motion tracking,1 brachytherapy,2

and dose planning.3 Although many researchers have
worked on registration algorithms for chest CT images
in recent decades,4 accurate and fast deformable reg-
istration of chest 3D CT images is still a challenging
task.

3D chest CT images have been widely used in image-
guided radiation therapy5 to aid in treatment planning.
The lung is a typical moving organ. In brachytherapy
for lung cancer, doctors need to precisely pierce the
puncture needle into the tumor and implant seeds.
However, breathing and beating of the heart affect
the expansion and contraction of the lungs, which will
cause puncture errors. Therefore, it is essential to track
the lung and estimate the precise dose needed before
radiotherapy. In addition, because the brachytherapy
plan for lung cancer is developed before surgery, intro-
ducing the precise preoperative plan into the surgery is
an important measure for brachytherapy. However, due
to the patient’s breathing movement, some changes in
the shape and position of the tumor during the preop-
erative and intraoperative period occurred. To calculate
the effective dose distribution with lung movement,
it is necessary to align the 3D chest CT images of
different respiratory states to the 3D chest image of the
reference state to track each voxel’s dose. Deformable
registration of 3D chest CT images is a feasible method
for fast and accurate lung motion tracking.

Many existing state-of -the-art methods for
deformable registration use traditional algorithms,
such as standard symmetric normalization (SyN)6 and
diffeomorphic demons7 and free of deformations with
b-splines,8 to solve an optimization problem for each
volume pair that aligns by using geometric methods.
Generally, it is necessary to establish the displacement
field via iterative optimization between images and tun-
ing parameters precisely to solve this problem. These
traditional algorithms are computationally expensive.
Moreover, they learn nothing from registering each pair
of images.Every time a new pair of images is registered,
the traditional method reiterates and optimizes.

In recent years, researchers have tended to utilize
learning-based methods to improve the registration task.
After training, the resulting network could register a pair
of three-dimensional medical images in seconds or sev-
eral orders of magnitude faster than traditional methods.
The accuracy of the resulting network registration of a
pair of images can almost exceed that through the state-
of -the-art traditional methods. Image registration based
on deep learning can be classified into two categories:

supervised learning-based methods and unsupervised
learning-based methods.

For supervised learning, several recent studies have
obtained the dense ground-truth displacement filled by
geometry-based methods9 or simulating deformation.10

However, the quality of the training data limits their
performance. Hu et al.11 proposed using the seg-
mented anatomical structure as the ground truth to
train ConvNet. By using this method, ConvNet took
fixed and moving image pairs as input and learned to
align anatomical structures. Cao et al.12 also introduced
the image similarity metric into ConvNet to help guide
registration. Another supervised method that requires
ground truth is to take the original image as a moving
image, the original image warped by the simulated
displacement field as a fixed image, and the simulated
displacement field as the ground truth.13 Dubost et al.14

proposed automatically assessing the quality of regis-
tration to an atlas in clinical FLAIR MRI scans of the
brain. The method applied a neural network-based ven-
tricle segmentation algorithm based on clinical FLAIR
sequences to automatically assess the registration
quality and validated the proposed quality assessment
metric in a multiatlas registration framework. Although
supervised learning has great potential in the field of
image registration, it is cumbersome to acquire ground
truth via traditional registration tools.

Compared to supervised learning, the registration
method based on supervised learning must provide
ground truth corresponding to the training samples
when training the network. These annotations must be
manually marked by professional radiologists, and this
process is very time-consuming and laborious. Regis-
tration based on unsupervised learning does not require
additional manually generated or labeled ground truth
(GT), which reduces the complexity of the registra-
tion process. For unsupervised learning approaches,
such as recently published VoxelMorph,15 DLIR,16 and
FAIM17 methods,performance was comparable to those
of traditional methods.The registration process of these
unsupervised learning methods is roughly the same. A
pair of image pairs was fed into the ConvNet, and the
similarity measured between images was considered to
be part of the loss function. At the same time, gradient
back propagation could be operated by differentiable
warping. Balakrishnan et al.18 proposed an end-to-end
registration method of 3D medical images with UNet as
the core based on unsupervised learning. They defined
registration as a parametric function and optimized its
parameters, given a set of images from a collection of
interest.Based on their previous work,15 they added aux-
iliary segmentation of each anatomical structure in the
training data to guide the training. They also proposed
a probabilistic generation model and derived an infer-
ence algorithm based on unsupervised learning, which
could not only provide diffeomorphic guarantees and
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F IGURE 1 An overall diagram of our method

uncertainty estimates but also ensure that a pair of
images can be accurately registered.19 Zhang et al.20

presented an encoder-decoder network for the evalu-
ation of the stationary velocity field to perform diffeo-
morphic registration, which improved the invertibility
of the deformation field. Xu et al.21 achieved better
performance by predicting a dense displacement field
using a cascade registration subnetwork. The methods
mentioned above have achieved good results on brain
and liver medical images. DLIR16 used the unsuper-
vised learning-based method but could only estimate a
sparse displacement field interpolated by a third-order
b-spline kernel.

In this study, we proposed a ConvNet method based
on unsupervised learning for deformable registration
of 3D chest CT images, which could directly predict the
3D dense displacement field. This architecture captured
the feature maps of multiscale UNet.22 We also learned
from GoogLeNet23 of the multidimensional convolution
kernel and used different sizes of convolution kernels
to improve the feature perception ability of the network.
The limitation of less training data was solved by arti-
ficially generated 3D chest CT images. To suppress
irreversible deformation, the negative Jacobian determi-
nant of the displacement field was used as the penalty
loss. Experiments show few folding voxels in the result-
ing warped image. When ConvNet was trained, it could
register a pair of unseen 3D chest CT images in one
shot.

2 MATERIALS AND METHODS

We proposed a ConvNet method to estimate an opti-
mal parameterized mapping function 𝜙 directly for the
image pair (e.g., a moving image Im and a fixed image

If ). The mapping function 𝜙 is a dense nonlinear corre-
spondence of all voxels between the moving image Im
and fixed image If . The warped image Im◦𝜙 from a mov-
ing image Im can be aligned to a fixed image If . In our
method, the global mapping function 𝜙(x) = x + s(x) is
formed by an identity transform and dense displacement
field s. When ConvNet is trained, we can obtain the dis-
placement field s from an unseen image pair.

As shown in Figure 1, ConvNet is designed in the
end-to-end form. During training, a pair of 3D chest CT
images (Im and If ) are concatenated into a two-channel
3D image and fed into ConvNet. The convolutional lay-
ers of ConvNet calculate s. We use a spatial transfor-
mation layer to warp Im into Im◦𝜙. By taking the simi-
larity of If and Im◦𝜙 as a part of the loss function, the
network parameters are continuously optimized during
training. The displacement field is punished by regular-
ization terms to encourage smoothness.

2.1 Preprocessing

We focused on the registration performance in lung
fields. The lung fields were directly extracted from the
EMPIRE10,24 DIR-Lab 4DCT,25 and POPI26 datasets.
We cropped the entire lung field and resampled all
images to a size of 224×144×192. The image voxel val-
ues were normalized to [0, 1]. Finally, affine registration
was performed on intrapatient images (CT images of the
same patient in different periods).

2.2 Data augmentation

To overcome the problem of overfitting caused by having
only small amounts of training data, training data were
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F IGURE 2 Examples of augmented data of 3D chest CT images from the EMPIRE10 dataset. From top to bottom, the different slices of
the axial plane are shown. From left to right, the original images and the transformed images with different scales are shown

augmented by the thin plate spline (TPS) transformation.
The original STN experimented on three specific trans-
formation forms: affine transformation, projective trans-
formation, and TPS. Compared with the affine transfor-
mation, projective transformation, and TPS, TPS could
perform more abundant deformation on images. There-
fore, 3D TPS was used to augment our 3D chest CT
images.

We denoted a 3D grid in the space of the simulated
image and real image. The size of the 3D grid was the
same as the 3D chest CT image with N grid points.
We also denoted N pairs of the corresponding points
mi = (xi, yi, zi) and points ni = (x′i , y′i , z′i ). Here, mi was a
control point on the grid points of the simulated image,
and ni = mi + u(−h, h) was a control point on the real
image. Additionally, u(−h, h) ∈ R1×3 obeys a uniform
probability distribution between (−h, h). The 3D TPS
interpolation function is as follows:

⎡⎢⎢⎣f (x, y, z) =
⎛⎜⎜⎝
a1x
a1y
a1z

⎞⎟⎟⎠ +
⎛⎜⎜⎝
a2x
a2y
a2z

⎞⎟⎟⎠ x +
⎛⎜⎜⎝
a3x
a3y
a3z

⎞⎟⎟⎠ y +
⎛⎜⎜⎝
a4x
a4y
a4z

⎞⎟⎟⎠ z

+

n∑
i=1

⎛⎜⎜⎝
wix
wiy
wiz

⎞⎟⎟⎠U (|mi − (x, y, z)|)⎤⎥⎥⎦ , (1)

where U(r) is a radial basis function. We use
U(r) = r2 log(r). We defined ri,j = |mi − nj|, which repre-

sented the Euclidean distance between mi and nj . The
matrix and vectors can be defined as follows:

K =

⎡⎢⎢⎣
U(r1,1)⋯U(r1,N)

⋮⋱ ⋮

U(rN,1)⋯U(rN,N)

⎤⎥⎥⎦
N×N

, (2)

The parameters of the function f (x, y, z) can be
obtained by the following linear equation:{

Kw + Pa = V

PTw = 0
, (3)

where P and V are the matrices of N points in the real
and simulated images, respectively.

First, the coordinate mapping between N pairs of
corresponding points in simulated images and real
images can be obtained by using a 3D TPS interpo-
lation function f (x, y, z). Then, the gray value of each
point of the real images is interpolated into the simulated
images.

In our data augmentation experiment, simulated
images were generated by setting N = 53, h = 0.02;
N = 53, h = 0.05; N = 53, h = 0.08; and N = 53, h = 0.1.
We set h between 0.02 and 0.1 to avoid overstretching
the images.Examples are available in Figure 2. It is pos-
sible to augment the training data using a 3D TPS trans-
formation method.
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F IGURE 3 ConvNet architecture. Each rectangle represents a 3D volume, and the number of filters (channels) is marked on the rectangle

2.3 ConvNet architecture

As shown in Figure 3,our ConvNet architecture is similar
to UNet. The main architecture of the network is com-
posed of an encoder-decoder with skip connections.
The inception modules are inserted in the middle of the
“U” structure. The inception modules are composed of
convolutional layers with a convolutional kernel of differ-
ent sizes.

ConvNet takes a two-channel 3D chest CT image that
is formed by concatenating If and Im as input. Note that
both If and Im are from intrapatient. The input size of
the proposed ConvNet is 224×144×192×2. LeakyReLU
activations are applied to the end of each 3D convolu-
tional block except for the last layer. The last layer of our
ConvNet uses linear activation, which ensures that any
value (positive and negative) in the displacement field is
possible. In the encoder, convolutional kernel stride = 2
is used three times to reduce the spatial dimensions of
the volume to (1/2)3.The operation of continuous down-
sampling convolution is similar to the operation of tradi-
tional image pyramid extraction. Each volume to down-
sample goes through the inception module. The incep-
tion module attempts to capture and merge information
at different spatial scales to generate the displacement
field. In the decoder, transposed convolutional layers are
used three times for upsampling. There are three con-

catenating skip connections between the encoder and
the decoder. In both the encoder and the decoder, the
convolution kernel size is 3×3×3.The displacement field
of size 224×144×192×3 is output at the end of the Con-
vNet.

2.4 Spatial transformation layer

The spatial transformation layer is inspired by spatial
transformer networks (STN).27 The purpose of the spa-
tial transformation layer is to compute Im◦𝜙. The posi-
tion of each voxel in Im is calculated in the space of If .
This operation means that we use 𝜙 to warp Im and then
obtain Im◦𝜙.Since the position of the voxel is indexed as
an integer,we linearly interpolate the voxel value of Im at
eight neighborhood voxels in the X, Y, and Z directions.
Because the operations of linear interpolation ensure
that the spatial transformation layer is differentiable, the
errors could be back-propagated during optimization.

2.5 Loss function

The loss function is composed of three components:
Lsim, Rjac, and Rder. Lsim penalizes the difference in
appearance.Both Rjac and Rder are regularization terms
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that can help predict smooth registration fields. Rjac
penalizes transformations that have negative Jacobian
determinants. Rder penalizes the first derivative of s to
predict a smooth registration field.

We set Lsim to the negative local normalized cross-
correlation coefficient of If and Im◦𝜙. Ĩf (p) and [Ĩm◦𝜙 ](p)
are defined as the image intensities with local mean
intensities subtracted out. We calculate the local image
mean intensities and normalized cross-correlation
coefficient over a volume of 11×11×11. The local nor-
malized cross-correlation coefficient is defined as fol-
lows:

⎡⎢⎢⎢⎢⎣
NCC (If , Im◦ 𝜙) =

∑
p∈

(∑
pi

(
If (p)i − Ĩf (p)

) (
[Im◦ 𝜙 ] (pi) −

[
Ĩm◦𝜙

]
(p)

))2

(∑
pi

(
If (pi) − Ĩf (p)

)2
)(∑

pi

(
[Im◦ 𝜙 ] (pi) −

[
Ĩm ◦𝜙

]
(p)

)2
)
⎤⎥⎥⎥⎥⎦

(4)

Here, pi iterates over an 11×11×11 volume. Since
higher normalized cross correlation (NCC) values rep-
resent better alignment, we define Lsim to be:

Lsim(If , Im◦ 𝜙) = 1 − NCC(If , Im◦𝜙) (5)

A discontinuous s will lead to the existence of a fold-
ing voxel in Im◦𝜙. The Jacobian determinant of the dis-
placement field is negative, where the warped image is
folding. We set the Jacobian determinant for each point
p(i, j, k) in s as:

det (∇s(p)) =

|||||||||||||

𝜕i
𝜕x

𝜕j
𝜕x

𝜕k
𝜕x

𝜕i
𝜕y

𝜕j
𝜕y

𝜕k
𝜕y

𝜕i
𝜕z

𝜕j
𝜕z

𝜕k
𝜕z

|||||||||||||
, (6)

where the Jacobian determinant is ≤ 0, which means
that the warped image folding occurred.To avoid folding,
the regularization term is used to constrain the deforma-
tion, which is defined as:[

Rjac (s) =
∑

p∈
(|det (∇s (p))| − det (∇s (p)))

]
(7)

When the Jacobian determinants of the displacement
field are all positive, Rjac is equal to 0 and will not con-
tribute to the total loss.At the same time,Rjac will be acti-
vated by any transformations that have a negative deter-
minant. We also use a regularization term Rder related
to the first derivative of the displacement field. By pun-
ishing the first derivative of the displacement field, the

overall smoothness of the predicted displacement field
is constrained.Balakrishnan et al.18 discussed the effect
of the regularization term.The expression of Rder can be
described as:

Rder(s) =
∑

p∈
‖∇s(p)‖2 (8)

The total training loss is defined as:

Ltotal(If , Im◦𝜙) = LNCC(If , Im◦ 𝜙) + 𝛽Rjac(s) + 𝛼Rder(s),
(9)

where 𝛼 and 𝛽 are hyperparameters that control the
degree of regularization.

2.6 Implementation details

In the training stage, the size of the 3D chest CT images
was 224×144×192 because of GPU memory limitations.
To alleviate the overfitting problem, data augmentation
of training data was conducted out using a 3D TPS-
based method. The Adam optimizer was used to opti-
mize the learning model. After many experiments, we
found that the model with a learning rate of 10–4 had the
best effect. In this work, the learning model was trained
for 20 epochs. Considering the GPU memory limitation,
the batch size was set to 1. The regularization ability of
the learning model was improved by using batch nor-
malization. The other hyperparameters 𝛼 were set to 1,
and 𝛽 was set to 10−5

− −10−2.
During training, moving images were resampled to

warped images by using linear resampling. When eval-
uating the Dice score, lung masks were resampled
by using nearest neighbor resampling. The proposed
method was implemented by Keras with a Tensor-
flow backend by using an NVIDIA TITAN Xp 12 GB
GPU.

2.7 Datasets

The proposed method used three chest CT image
datasets: EMPIRE10, DIR-Lab 4DCT, and POPI. All
patients underwent contained chest 3D CT of the intra-
patient region at different times.
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The DIR-Lab 4DCT dataset consists of 10 4D chest
CT scans, which are 10-time points in a full breath-
ing cycle, for a total of 100 scans. We used the data
of the two phases with the largest relative deforma-
tion: maximum exhalation and maximum inhalation. For
each 4D scan, 300 manually identified anatomical land-
marks were annotated in each maximum exhalation and
inhalation scan. Binary lung masks were also provided
for each scan.

The EMPIRE10 dataset consists of 30 pairs of 3D
chest CT scans,and each pair of scans is taken as intra-
patient. Binary lung masks are also provided from each
scan.

The POPI dataset consists of six 4D chest CT scans,
and each 4D chest CT image consists of 10 3D chest
CT scans that represent 10 different phases of a full
breathing cycle. We used the data of the two phases
with the largest relative deformation: maximum exha-
lation and maximum inhalation. For each 4D scan,
100 manually identified anatomical landmarks were
annotated in each maximum exhalation and inhalation
scan.

2.8 Experimental setup

We used 30, 6, and 10 pairs of 3D CT scans from
EMPIRE10, POPI, and DIR-Lab 4DCT as training, val-
idation, and test sets, respectively. The data augmenta-
tion method based on 3D TPS transformation was used
to increase the diversity of the data. For each image
pair in the training and validation sets, we created 100
pairs of different simulated scans (25 for h = 0.02, 25
for h = 0.05, 25 for h = 0.08, and 25 for h = 0.1; all
of them N = 53). In total, we had 6060, 1212, and 20
chest CT scans for the training, validation, and test sets,
respectively.

2.9 Evaluation metrics

Since lungs tend to occupy many voxels, the alignment
of the lung surfaces is evaluated using the target regis-
tration error (TRE) of distinct landmarks:

TRE =
1
n

∑n

i=1
‖xf◦𝜙 − xm‖2, (10)

where xm and xf are the set of corresponding landmarks
in the moving image and fixed image, respectively.

Dice is not a great measure for how well the surfaces
of the lungs align, but it can be used to evaluate the vol-
ume overlap of the lung fields. The mask of the moving
image is warped by the predicted registration field.Then,
the Dice score of the warped mask with the ground-truth
mask of the fixed image is computed. The Dice score

can be expressed as:

Dice(AM◦𝜙, AF) =
2 |||AM◦𝜙 ∩ AF

||||||AM◦𝜙
||| + |AF| , (11)

where AM◦𝜙 and AF are the voxel sets in the warped
mask and the mask of the fixed image, respectively.

Additionally, image folding is anatomically implausi-
ble. The number of folding voxels could be counted by
the Jacobian determinant of the displacement field. Our
algorithm was also evaluated by using the Jacobian
determinant of the displacement field (described in Sec-
tion 2.5).

2.10 Baseline methods

The proposed method was compared with the publicly
available ANTs28 toolkit using SyN. A cross-correlation
similarity measure was used to guide the registra-
tion. We used the ANT smoothness parameters, includ-
ing a SyN step size of 0.25 and Gaussian parame-
ters (3, 0), at four scales with at most 219 iterations
each.

Our method was also compared with the B-spline reg-
istration method based on the Elastix29 toolkit. We used
normalized cross-correlation as the similarity measure,
using five resolutions of 1000 iterations.

We also compared our approach with VoxelMorph,
a fast learning-based algorithm. VoxelMorph proposed
two network structures, Vm1 and Vm2, both of which
were based on normal U-Net networks. We experi-
mented on both Vm1 and Vm2.The original VoxelMorph
was trained on brain registration. We retrained Voxel-
Morph on the EMPIRE10 dataset to make the compari-
son fair.

3 RESULTS

Ten pairs of scans from DIR-Lab 4DCT were used as
a test set to evaluate the method. In the experimen-
tal results diagram, we used the weights of different
Jacobian regularization terms to conduct the experi-
ments,which were represented by “β= 10−2,”“β= 10−3,”
“β = 10−4,” and “β = 10−5

.”The validation set was used
to estimate the generalization error in the training and to
update the hyperparameters. The results were reported
on the test dataset.

The test dataset contained 3000 corresponding land-
marks. All of the available corresponding landmarks
were used to calculate TRE. The results of the TRE are
shown in Table 1 and Figure 4. Our method achieved a
promising minimum mean registration error of 2.09 mm
with a standard deviation of 1.55. ANTs (SyN) overall
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TABLE 1 List for TRE of the intrapatient of 10 3D chest CT images from the DIR-Lab 4DCT

Scan Initial
Elastix
(BSpline)

ANTs
(SyN) Vm1 Vm2 β = 10-3 β = 10-4 β = 10-5

Case 1 3.89 (2.78) 1.08 (0.70) 1.09 (0.75) 1.92 (1.35) 1.69 (1.13) 1.48 (0.96) 1.28 (0.86) 1.12 (0.83)

Case 2 4.33 (3.90) 1.14 (0.67) 1.04 (0.67) 2.10 (1.42) 1.36 (1.67) 1.95 (1.23) 1.22 (0.79) 1.21 (0.77)

Case 3 6.94 (4.05) 1.21 (0.81) 1.18 (0.78) 2.54 (2.01) 1.23 (1.02) 2.70 (1.69) 1.61 (1.05) 1.49 (0.98)

Case 4 9.83 (4.85) 1.69 (1.15) 1.50 (1.04) 3.75 (2.62) 1.68 (1.31) 3.18 (2.03) 2.17 (1.54) 1.83 (1.23)

Case 5 7.47 (5.50) 1.75 (1.30) 1.43 (1.19) 3.01 (2.84) 1.77 (2.42) 3.16 (2.11) 1.98 (1.49) 1.75 (1.26)

Case 6 10.89 (6.96) 2.06 (2.12) 1.50 (1.06) 4.00 (3.11) 2.88 (2.16) 3.13 (2.06) 2.61 (1.71) 2.50 (1.65)

Case 7 11.02 (7.42) 1.96 (1.52) 2.35 (1.93) 5.58 (3.97) 3.54 (3.65) 5.39 (3.41) 4.38 (2.88) 3.30 (2.34)

Case 8 14.99 (9.00) 1.87 (1.64) 1.51 (1.37) 5.60 (3.81) 4.45 (3.64) 6.26 (3.58) 3.25 (2.36) 2.86 (2.41)

Case 9 7.91 (3.97) 1.46 (1.31) 1.83 (1.27) 3.58 (2.62) 2.56 (2.23) 3.31 (2.00) 3.25 (2.05) 2.76 (2.05)

Case 10 7.30 (6.34) 1.75 (1.62) 1.42 (1.00) 4.44 (3.10) 2.03 (1.76) 3.56 (2.59) 2.41 (1.71) 2.04 (1.22)

Total 8.46 (6.58) 1.60 (1.28) 1.49 (1.16) 3.65 (2.53) 2.35 (1.81) 3.41 (2.37) 2.42 (1.78) 2.09 (1.55)

Note: The mean (standard deviation) of TRE (mm) is in millimeters. Due to space constraints, β = 10–2 is omitted.

F IGURE 4 Residual distance errors. (a) Shows scatterplots of the global residual distance. (b)–(d) show the residual distance along the x-,
y-, and z-axes, respectively. Darker colors express a higher density of points

gave the best performance, but our method was better
than the others.

Figure 5 shows the registration results of aligning
two images from the test dataset. The absolute differ-
ence was calculated by the warped image and fixed

image, which could qualitatively evaluate the quality of
the deformation inside the lungs. In this work, different
alignment accuracies could be obtained by adjusting β in
the loss function. Visually, our method achieved promis-
ing results.
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F IGURE 5 Example results of the intrapatient 3D chest CT from the DIR-Lab 4DCT. The columns show axial, sagittal, and coronal slices
within between corresponding heatmaps of the absolute difference with respect to the fixed image

Figure 6 shows the mean Dice scores of all meth-
ods on the test dataset. We calculated Dice scores for
lung fields of a 3D chest CT image and computed the
mean across the test dataset. The experimental results
showed that the registration performance of our method
is better than that of VoxelMorph and SyN.

The representative results are shown in Figure 7. The
displacement fields were presented as RGB images.
The three channels of the RGB image correspond to the
three dimensions of the displacement field. Grid images
warped by the displacement field are also given in Fig-
ure 7. It is worthwhile to note that the proposed method
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F IGURE 6 Mean Dice scores on 10 intrapatient chest CT
images from DIR-Lab 4DCT for our methods, VoxelMorph, and
traditional methods

and VoxelMorph used the same transform standard, but
they were different from those of ANTs and Elastix. The
resulting folding of all of the methods was also displayed
in Jacobian images.

Table 2 gives a summary of all registration results.
The execution time required for all methods on the
GPU and CPU was also provided. The execution time
of our method was much faster than that of traditional
methods.To date, there have been no GPU implementa-
tions for ANTs and Elastix. The parameters of our Con-
vNet were slightly less than vm2. Our method gained
almost no folding while achieving high registration accu-
racy.

4 DISCUSSION

In this study,we developed a new unsupervised learning
method for 3D chest CT image registration.We exploited

NCC between moving and fixed image pairs to train a
ConvNet. The ground truth of the image registration is
not required. Large-scale training data are generated by
a 3D TPS-based data augmentation method. The Jaco-
bian regularization term is added to the loss function
and effectively reduces the folding of the warped image.
Experimental results confirmed that the proposed
method achieved promising results with a TRE of
2.09 mm and a Dice score of 0.987, with very little fold-
ing. The proposed methodology has been proven to be
robust in the 3D chest CT lung image registration task.

It is well known that deep learning methods are driven
by a large amount of training data. A few 3D chest CT
images of intrapatient patients were selected from the
EMPIRE10 dataset as the origin materials of the train-
ing set. The original dataset is very limited, with 30 pairs
of 3D chest CT images. To avoid overfitting caused by
a small amount of training data, data augmentation is
necessary. The 30 pairs of scans were augmented by
a 3D TPS transformation method to form the training
set, which contained a total of 6060 scans (3030 pairs
of scans). As shown in Figure 3, 3D TPS transforma-
tion can give the arbitrary nonrigid deformation of the
whole space by adjusting the control points of the corre-
sponding positions in the simulated images and the real
images.The favorable experimental result on the test set
illustrated that the ConvNet trained with augmented data
had a strong generalization ability.

The traditional methods generally execute many iter-
ations to realize one registration. Our research is an
extension of traditional methods that use deep learn-
ing theory. The proposed method can react to tradi-
tional image registration as a learning problem.A pair of
unseen 3D chest CT images can be aligned in one shot.
As shown in Table 2, the execution times of our method
were much shorter than those of the traditional meth-
ods, which is very important in critical time applications
in the real world. These regularizations in the traditional
method mean more execution time and more iterations.
The regularization terms Rjac and Rder that were used
in this study have increased memory consumption, but

TABLE 2 Results of the 10 intrapatient 3D chest CT images from the DIR-Lab 4DCT

Mean Dice Folding TRE CPU sec GPU sec Parameters

Initial 0.921 (0.201) – 8.46 (6.58) – – –

Elastix (BSpline) 0.975 (0.008) 69 979 (81 495) 1.60 (1.28) 238.6 (4.8) – –

ANTs (SyN) 0.978 (0.008) 50 (137) 1.49 (1.16) 12 582 (1321) – –

Vm1 0.961(0.011) 537 (431) 3.65 (2.53) 7.2 (0.3) 2.8 (0.6) 116 971

Vm2 0.980 (0.007) 3522 (2978) 2.35 (1.81) 21.5 (1.2) 3.7 (0.6) 277 875

β = 10-2 0.950 (0.015) 0 5.62 (4.87) 23.6 (0.4) 3.5 (0.7) 250 861

β = 10-3 0.982 (0.006) 0 3.41 (2.37) 23.6 (0.4) 3.5 (0.7) 250 861

β = 10-4 0.982 (0.008) 13 (3) 2.42 (1.78) 23.7 (0.5) 3.4 (0.7) 250 861

β = 10-5 0.987 (0.005) 59 (5) 2.09 (1.55) 23.6 (0.9) 3.5 (0.7) 250 861

Note: All of the experimental results are given as the mean (standard deviation).
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F IGURE 7 Example 3D chest CT image slice of resulting images for our methods and VoxelMorph. In the Jacobian determinant images of
the displacement field, locations that represent singularity are marked in red. A brighter color indicates a larger warping in an RGB image
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they had no extra cost to execution time. The qualita-
tive registration performance adopted the absolute dif-
ferent images that are shown in Figure 5. The abso-
lute minimum difference obtained by our method was
(β= 10−4 ,10−5).The quantitative registration results are
shown in Figures 4,6,and Table 1.The proposed method
achieved optimal Dice scores. The TRE achieved by our
method was close to that achieved by traditional meth-
ods. This finding might be a result of the limitations of
GPU memory and the suboptimal ConvNet architecture
selected. Additionally, ConvNet was sensitive to image
contour features and good at image contour registration.
Table 2 also provides a comparison between our meth-
ods and the traditional methods in the number of folds.
The proposed method achieved the minimum number
of folds. ConvNet directly penalized the spatial position
where the Jacobian deformation was singularity. It is
worthwhile to note that our method (β = 10−3 ) achieved
no folding with promising TRE and Dice scores. For tra-
ditional algorithms, achieving strictly positive Jacobian
values is a theoretical ideal that is limited by such things
as the chosen gradient step and the image resolution, to
which all algorithms are susceptible.

The major advantage of the learning-based method
is the ability to master the law of image registration dur-
ing training. This study provided a comparison between
our method and VoxelMorph, both of which are based
on unsupervised learning. The experimental results
achieved by the proposed method (TRE = 2.09 mm,
Dice= 0.987) were superior to VoxelMorph (TRE= 2.35,
Dice = 0.980). VoxelMorph used an insufficient tech-
nique of smoothing the displacement fields to produce
more regions of noninvertibility (folding), which was the
reason for the lower TRE. Better invertibility occurs at
the expense of registration accuracy. In extensive exper-
iments, a higher Dice score, a lower TRE, and a larger
number of folding voxels were obtained when setting a
smaller β (β= 10−4 ,10−5).The lower the Dice score was,
the higher the TRE,and no folding voxels were achieved
when setting a larger β (β = 10−2 ,10−3). This tradeoff
was easy to explore by carefully adjusting the size of β.
Both the proposed method and VoxelMorph used STN
to warp the moving images into warped images. This
finding indicated that our transform standard was the
same as VoxelMorph. VoxelMorph used a simple U-Net
to learn image features. However, many specified mul-
tiscale inception models were added in the proposed
ConvNet between skip connections to extract features
at multiscale levels. The ability of ConvNet to learn
highly discriminative features was enhanced by fusing
abundant features. Figure 7 provides the representa-
tive results. The proposed method achieved a more
competitive displacement field (abundant deformation
with almost no folding) than VoxelMorph. Figure 4 illus-
trates that our method could correct large deformations
and achieve a small registration error. Additionally, our

method had a positive effect on the residual distance in
three directions, especially in the Z direction.

This study converted image registration into a learn-
ing problem, that is, learning the optimal parameters
in the global mapping function. The alignment of the
single-modality image could be driven by minimizing
negative NCC, which is based on the intensity image
appearance.The first derivative of the displacement and
negative Jacobian determinant were used as transfor-
mation smoothness constraints. A significant limitation
of the proposed method was that the input images must
to be resized. The loss of image information could be
minimized by resizing the image through trilinear inter-
polation. Due to the limitation of GPU memory, the size
of the image input ConvNet was limited, which might be
the main reason for the registration error. In the future,
when the memory problem has been addressed, we
might use a large ConvNet for full-size image end-to-
end training. The proposed method might also support
multimodality image registration by replacing NCC with
Mutal information.

5 CONCLUSIONS

In this study, a ConvNet method based on unsupervised
learning for the deformable registration of 3D chest CT
images was proposed. Data augmentation based on
the 3D TPS transformation method was able to solve
the problem of data limitation. The proposed method
achieved accurate registration results, with hardly any
folding occurring.The proposed method was 2–3 orders
of magnitude faster than ANTs (SyN). The method has
the potential to be applied in clinical practice.
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