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Abstract

Recently, SARS-CoV-2 has been identified as the causative factor of viral infection

called COVID-19 that belongs to the zoonotic beta coronavirus family known to

cause respiratory disorders or viral pneumonia, followed by an extensive attack on

organs that express angiotensin-converting enzyme II (ACE2). Human transmission of

this virus occurs via respiratory droplets from symptomatic and asymptomatic

patients, which are released into the environment after sneezing or coughing. These

droplets are capable of staying in the air as aerosols or surfaces and can be transmit-

ted to persons through inhalation or contact with contaminated surfaces. Thus, there

is an urgent need for advanced theranostic solutions to control the spread of

COVID-19 infection. The development of such fit-for-purpose technologies hinges

on a proper understanding of the transmission, incubation, and structural characteris-

tics of the virus in the external environment and within the host. Hence, this article

describes the development of an intrinsic model to describe the incubation character-

istics of the virus under varying environmental factors. It also discusses on the evalu-

ation of SARS-CoV-2 structural nucleocapsid protein properties via computational

approaches to generate high-affinity binding probes for effective diagnosis and

targeted treatment applications by specific targeting of viruses. In addition, this arti-

cle provides useful insights on the transmission behavior of the virus and creates

new opportunities for theranostics development.
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1 | INTRODUCTION

In the first quarter of the year 2020, World Health Organization

(WHO) declared COVID-19 infection as a global pandemic due to its

rapid spread across countries, increasing 13-fold outside of China in

the first 2 weeks before the announcement (WHO virtual press con-

ference on COVID-19, March 11, 2020). COVID-19 infection is cau-

sed by SARS-CoV-2, which is a viral strain belonging to the family

Coronaviridae and genus Betacoronavirus. Other subfamily members,

include alpha, gamma, and delta coronaviruses with the alpha and beta

coronaviruses infecting only mammals, usually causing respiratory ill-

ness, gastroenteritis in other animals, and extensive attacks on organs

that express angiotensin-converting enzyme II (ACE2), such as the

heart, liver, testis, kidney, and intestines.1-3 Betacoronaviruses have

four distinct lineages that are identified and designated from A to D

based on the amino acid (AA) sequence alignment analysis, and SARS-

CoV-2 belongs to lineage C. Further, members of this family share

common characteristics, such as a unimolecular, positive-stranded
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RNA genome, an RNA-binding nucleocapsid protein (N), a homo-

trimeric spike protein (S), an outer membrane glycoproteins (M), and a

small pentameric membrane protein called the envelope protein (E).4

SARS-CoV-2 is the latest of the two previously identified zoo-

notic coronaviruses, such as SARS-CoV and MERS-CoV, that are

belonging to the beta-subfamily. Recent phylogenetic analysis showed

that SARS-CoV-2 is about 88% identical to two bat-derived SARS-like

coronaviruses (bat-SLCoVZC45 and bat-SL-CoVZXC21), about 50%

identical to MERS-CoV, and about 79% identical to SARS-CoV.5,6

SARS-CoV-2 transmission occurs through the release of respiratory

droplets from symptomatic and asymptomatic patients after sneezing

or coughing into the environment. These droplets are aerosol-like and

capable of staying in the air or surfaces for an extended period and

can be transmitted to persons through inhalation or contact with con-

taminated surfaces.7 The virus makes its way through the eyes, nose,

or mouth and attaches itself to the mucous membrane for incubation,

multiplies and then reaches the pulmonary system as well as other

body organs, which have a high percentage of ACE2, especially in the

lower respiratory system.8 The virus begins its life cycle when the

spike protein binds to the ACE2 cellular receptor, after which confor-

mational changes in the spike protein promotes viral fusion through

the endosomal pathway. Although the exact incubation period of the

virus is unknown, current reported research indicates a range of about

2.1–24 days9 upon contact with an infected person. Furthermore,

SARS-CoV-2 releases its RNA into the host cell followed by transla-

tion of the genome RNA open reading frames 1ab (ORF1ab) into viral

replicase polyproteins (pp1a and 1ab), which are then cleaved by viral

proteinases.4 The polymerase produces mRNAs, which are later trans-

lated into relevant proteins. These viral proteins and the genomic

RNA are assembled into virions and released out of the host cell via

vesicles.2,10 The same pathway is observed for SARS-CoV.6 However,

SARS-CoV possesses a lower binding affinity to ACE2. This higher

binding affinity of SARS-CoV-2 is attributed to a unique

ACE2-interacting residue (Lys417), which increases the affinity via the

formation of salt-bridge interactions, with ACE2 contributing to an

overall positive surface potential of S protein which further increases

the binding affinity.11 Since the outbreak of SARS-CoV in 2011, and

the recent emergence of SARS-CoV-2, there has been a significant

interest in probing the transmission and structural characteristics of

beta coronaviruses. While SARS-CoV-2 and SARS-CoV share similar

structures, their characteristics differ in certain aspects and hence,

there is a need for an in-depth study to better understand the unique

transmission and infection characteristics of SARS-CoV-2.The high

transmission and mortality rates of SARS-CoV-2 have catalyzed

research interests in gaining the knowledge about dynamic nature of

the virus, its spread among individuals, and replication in a host.

Mathematical models that characterize these viral attributes with

high precision will aid in decision-making, such as better healthcare

interventions. Li et al. developed a numerical model that describes the

spatiotemporal elements of infections among 375 Chinese urban

areas and explored measures, which slows down the spread of SARS-

CoV-2.12 Several transmission models, based on the basic susceptible-

infected-recovered (SIR) compartmental model, have been proposed

to investigate and estimate the transmission dynamics of SARS-CoV-

2.12-14 For example, based on the model, initially reported estimates

of the basic reproductive number, R0 has been reviewed to acquire

precise estimates of the spread.10 They reported the estimated mean

of the basic reproduction number, R0 for SARS-CoV-2 as approxi-

mately 3.28, which is higher than the estimate provided by the WHO

(R0 ~ 1.95). Thus, the study concluded that the differences in the esti-

mates may have resulted from insufficient data and the short onset

time available for the calculation of the previous estimate. Also, a sig-

nificant number of transmission models are based on SEIR compart-

mental model which represents the flow of individuals in the

susceptible, exposed, infected, and recovered compartments. The

SEIR model has been utilized to investigate the adequacy of quaran-

tine and social distance mediations, while others have changed the

model to discover analytical and numerical results to demonstrate that

SARS-CoV-2 would stay endemic14,15. Most of the current models

developed assume post-infection immunity, thus, the SEIR model is

highly beneficial in the prediction of effective lockdown measures and

immunity among patients after infection. Although, certain clinical

diagnosis and model studies suggest that immunity gained after recov-

ery may be short-lived and reinfection may occur within a year, there

is currently limited evidence to support post-infection immunity16. In

the analysis presented in this article, we assume the nonexistence of

post-infection immunity and introduced the susceptible-exposed-

infected-susceptible (SEIS) compartmental model. This model mimics

the SEIR model except that individuals are moved back to the suscep-

tible compartment after recovery, and this is important to understand

the dynamics of transmission at full scale. Further, the article dis-

cusses the structural characteristics of the SARS-CoV-2 N protein

with RNA-binding domains, and its role in interfering with the normal

reproductive cycle of the host cell as well as participating in replica-

tion, transcription, and packaging of the viral genome.6,17 Unlike the

other structural proteins, the N protein is highly conserved and has

been shown to be mostly expressed at the initial stages of the viral

infection,18 serving as a significant target for the development of

theranostics to identify and treat the infection in the early stage.

2 | SEIS TRANSMISSION MODEL FOR
COVID-19 INFECTION

Most epidemiological models are generated from the general deter-

ministic SEIR model. This model comprises of four compartments,

namely susceptible, exposed, infected, and recovered/removed. Other

models can be obtained from SEIR under certain parametric restric-

tions. In the limiting case where recovery from infection confers no

immunity, the R compartment is removed resulting in the SEI or SEIS

model. Here, the infected individual either return to being susceptible.

This model is also used, when the average period of immunity

approaches zero. The basic form of the SEIS model is the SIS model.

However, the SEIS model assumes that an individual who is suscepti-

ble would initially be latent before getting infectious, unlike the SIS

model, as shown in Figure 1. The SIS model becomes an
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approximation of the SEIS model, when there is a short latent period.

The SEIS framework is a well-known deterministic model as it con-

siders the infectious force in the inert period between the phase of

infection and the initiation of infectiousness. This transmission model

has been used in the analysis of infectious diseases, such as gonor-

rhea, Nipa virus, and SARS.13,19,20 The model describes the movement

of individuals in a population within each of the aforementioned com-

partments that are interlinked by flows of different orders. Each com-

partment is well-defined, comprising of individuals, who flow into

other compartments, following strict principles, that are set for

each compartment. Individuals may move into the population under

study by birth or immigration and can be removed from the popula-

tion by death or emigration. In the model, each compartment is repre-

sented as a differential equation. The proposed SEIS COVID-19

transmission model with the virus compartment V is depicted by the

accompanying system of differential equations as shown in the fol-

lowing equations:

dS
dt

= λ−β1SI−β2SE−β3SV−μS+ γI ð1Þ

dE
dt

= β1SI+ β2SE + β3SV− ϵ+ μð ÞE ð2Þ

dI
dt

= ϵE− ω+ γ + μð ÞI ð3Þ

dV
dt

= α1I+ α2E−σV ð4Þ

where λ denotes the population influx, μ is the natural death rate of

individuals, β1, β2, and β3 are the constant transmission rates from

infected persons (I), exposed individuals (E), and the concentration of

virus in the environment (V), respectively. Further, Υ is the recovery

rate, ϵ−1 represents the incubation period of the virus, ω is the rate of

death induced by infection, α1 and α2 are the host shedding rates from

infected and exposed individuals, and σ is the rate at which the virus

is removed through activities, such as sanitizing of infected items and

surfaces. The parameters utilized in the model are assumed to be posi-

tive. Similar to the experiment by Yang and Wang, we have deter-

mined the basic reproductive number, R0, of the model utilizing the

strategy of the next generation matrix and further assess the trans-

mission course functions.15

At the unique disease-free equilibrium, X0 = S0,E0, I0,V0ð Þ= λ
μ ,0,0,0

� �
,

the infection (F) and transition (V) matrices can be obtained from the

infection components of the model (E, I, V) as displayed in the follow-

ing equations:

f =

β2SE + β1SI+ β3SV

0

0

2
64

3
75, υ=

ϵ + μð ÞE
−ϵE + ω+ γ + μð ÞI
−α2E−α1I+ σV

2
64

3
75 ð5Þ

F =

β2
λ

μ
β1

λ

μ
β3

λ

μ
0 0 0

0 0 0

2
664

3
775, V =

ϵ+ μ 0 0

−ϵ ω+ γ + μð Þ 0

−α2 −α1 σ

2
64

3
75 ð6Þ

R0 is evaluated as ρ(FV−1) and indicates the spectral radius

of FV−1

R0 = ρ FV−1� �
= S0β2 +

S0ϵ
ω+ γ + μð Þβ1 +

ω+ γ + μð Þα2 + ϵα1½ �S0
σ ω+ γ + μð Þ β3 ð7Þ

Let,

Ra = S0β2 ð8Þ

Rb =
S0ϵ

ω+ γ + μð Þβ1 ð9Þ

Rc =
ω+ γ + μð Þα2 + ϵα1½ �S0

σ ω+ γ + μð Þ β3 ð10Þ

where Ra represents the direct transmission route for the exposed

(exposed to susceptible), Rb is the direct transmission route for the

infected (infected to susceptible), and Rc comes from the contribution

from the indirect transmission route (environment to susceptible).

The SEIS framework was first formulated in the study of the

rabies population dynamics in fox.21 Their results discussed certain

quantitative measures for controlling rabies via culling or vaccinations.

Further analysis and numerical simulations were conducted using

Hopf bifurcation.22 It is worthy to note that the SEIS models present

periodic solutions from Hopf bifurcations, since the model has stable

equilibrium points. Moreover, the SEIS transmission model has been

an effective model in their mathematical analysis, for infections with

transmitting features, such as SARS. Li and Zhen utilized the SEI

framework in their study of such infections. Their outcomes gave con-

ditions to the global asymptotic stability of the disease-free and epi-

demic equilibrium utilizing the Poincare-Bendixson property.23 They

also analyzed the global stability of the SEI transmission model. Their

model has infectious force in both dormant and infection periods, sim-

ilar to the present work. Their results exhibited global asymptotic sta-

bility in the disease-free and endemic equilibrium, thus showing when

R0 ≤ 1 (the disease-free equilibrium [DFE] is globally stable and the

F IGURE 1 A COVID-19 SEIS (Susceptible-Exposed-Infected-
Susceptible) transmission model
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malady vanishes in the end), but when R0 > 1, the endemic equilibrium

exists and the disease persists.23 The transmission dynamics of the

Nipah virus in bat and humans have also been analyzed based on the

SEI model.13 They studied the local and global stability conditions and

performed numerical simulations that examined the flow of the Nipa

virus infection in different compartments. Others have also analyzed

the stochastic versions of the model and found significant results.20,24

The effect of the presence of external noise on the disease transmis-

sion rate assessment of the SEI model has been studied.25 The deter-

ministic R0 and stochastic R0 were found, and the asymptotic stability

of the disease-free equilibrium was also analyzed. It was demon-

strated, that in any event, when the deterministic basic reproductive

number is R0 < 1, epidemic could in any case develop due to the exis-

tence of disparities in the stochastic SEI model.25 In relation to cor-

onaviruses, Elsheik et al. considered the SEIS model in studying its

dynamic spread in Sudan.20 They estimated the case detection pro-

portion to be 22.7% and demonstrated that the passing pace of

undetected cases was higher than the identified cases. Considering

the varieties in the recognition pace of new cases in various parts of

the world, and the distinctions in atmosphere, socioeconomics, and

transmission dynamics of the coronavirus, the SEIS model will be

highly beneficial to test the dynamics of the virus under explicit

conditions.

3 | VIRAL REPLICATION MODEL

The procedure of viral replication happens via the stages, such as

attachment, entrance and uncoating; transcription; synthesis of viral

segments; and virion assembly and discharge. Adsorption is the initial

phase of the viral replication process which occurs when proteins on

the viral capsid attach themselves to the receptor proteins of the cell.

Activities in this stage causes the two layers to stay as close as possi-

ble to facilitate further communications. Later, the virus proceeds to

enter the target cell by breaching a phospholipid bilayer which serves

as the cell's natural barrier. There are three means of entry into the

target cell, such as membrane fusion, endocytosis, and virial penetra-

tion, depending on the type of virus. The SARS CoV-2, like other

envelope viruses, is known to make an entry via endocytosis. Upon

entry into the cell, viral contents are released by activities that cause

the removal and degrading of the viral capsid. Viral contents then acti-

vate the formation of proteins to suppress the defense mechanisms

and other cellular activities of the host cells, thereby gaining full con-

trol of host cellular activities. Further, the viral nuclei acids are

incorporated into the genetic material of the cell to induce replication

of the viral genetic material. Furthermore, viral contents present in

the cytoplasm take advantage of the host organelles to manufacture

its viral components. For example, the virus mRNA can be translated

on the host ribosomes into viral proteins. Later, newly created viral

genome and proteins then assemble, forming virions. The virion

assembling process takes place in either the cell nucleus, cytoplasm or

the plasma membrane. The newly formed virions are discharged by

budding off through the plasma membrane, by causing the cell to

break apart or waiting for lysis. These virions are then able to infect

other neighboring cells, thus repeating the entire viral replication

cycle. Thus, it can be noted that the target cell-limited model is a pop-

ular framework in the field of viral dynamics. It has been used to study

the viral replication of HIV, Influenza and Zika.26-28 In our quest to

evaluate the SARS-CoV-2 viral replication rate, we have introduced a

modified target cell-limited model. Here, we have assumed that at the

rate of k, a SARS-CoV-2 virus (V) infects a susceptible or target cell

(T) and the infected cell (I) produces new viruses at the rate of ρ as

shown in Figure 2. We also assume that infected cells could be

cleared as a result of defense mechanisms from viral invasion as

shown in the following equations:

dT
dt

= λ−μT−kVT ð11Þ

dI
dt

= kVT− δ+ μð ÞI ð12Þ

dV
dt

= ρI– cV ð13Þ

where λ represents the production rate of new cells, μ is the apoptosis

rate, δ is the infection induced cell death rate, and c is the rate at

which viruses are cleared resulting from cell activities and properties,

such as cytopathic effect. The basic reproduction number is obtained

as in the following equation:

R0 =
kT0ρ

c δ+ μð Þ ð14Þ

where T0 is the density of the pre-infected target cells. The target

cell-limited framework was formulated from the knowledge that viral

propagation is always constrained by the accessibility of target cells.

Mathematical modeling of viral kinetics within host cells has broad-

ened understanding of viral infection dynamics and has improved

F IGURE 2 A SARS CoV-2 target
cell-limited model showing the
movement of target cells from the
production stage to viral replication
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healthcare interventions. In modeling, the “within-host” viral kinetics

of influenza, modifications such as considering an eclipse phase of

infected cells as well as ignoring the target cell production and death

rates were integrated into the basic target cell-limited model. These

modifications were based on the short duration of Influenza and the

assumption that infected cells can support viral replication before

they are cleared. The basic reproductive number, R0, was estimated to

be 22, when their modified model was also used to study the viral

kinetics of H1N1 virus.26 Several models have been developed to

investigate SARS-CoV-2 within the replication dynamics of the host

cell.29 Further, they also compared the infection time of the coronavi-

rus to other viral infections, such as Ebola and Influenza, and identi-

fied that the infecting time of SARS-CoV-2 is 3 times much slower

than Ebola and 60 times slower than Influenza.29 In deriving an analyt-

ical solution for the fundamental target cell-limited framework by uti-

lizing a quasi-steady-state approximation without cytopathic effect, it

was discovered that the deduction of the solution is critically sub-

jected to the noncytopathic condition.28 Depending on the innate

immune controls and antiviral drug-induced defense mechanisms, cer-

tain target cells are cleared or inhibited as a result of viral invasion and

are not able to synthesize viral components.30,31 The SARS-CoV-2

target cell-limited model proposed in this article was formulated by

introducing another parameter ‘δ’ into the infected cell compartment

to account for the rate at which cells are cleared in the I-compartment

for precise analytical results, since the analytical solutions of the viral

kinetics model are dependent on the noncytopathic effects.28 Thus,

the model can be applied to the statistical data available to probe the

dynamic behavior and transmission of COVID-19.

4 | SARS-COV-2 STRUCTURAL PROTEINS

The RNA of SARS-CoV-2 and other coronaviruses has approximately

30 kbs and expresses 16 nonstructural proteins that correspond to six

open reading frames (ORFs), with at least four major structural

proteins, which are required to drive virus–host cell interaction, cyto-

plasmic viral assembly, and other accessory protein. The structural

proteins of SARS-CoV-2 consists of the spike (S), nucleocapsid (N),

membrane (M), and envelope (E) protein as shown in Figure 3.

The S protein is a large, homo-trimeric type I membrane glycopro-

tein of 1,128–1,472 amino acids. It is a fusion protein that mediates

receptor binding and viral entry in the host cell, and is the main target

for neutralization by the antibodies of the adaptive immune system in

the host.4 The S protein protrudes from the surface of the virus and

interacts with the host cell via ACE2.32 Each monomer of the S pro-

tein is about 180 kDa and have subunits, namely S1 and S2, folded as

two separated units in the N- and C-terminal domains of the mono-

mers as shown in Figure 4. The S1 subunit contains an NTD (residues

14–305), a RBD (residues 319–541), and two CTDs (residues

528–686), while the S2 subunit contains the FP (residues 788–806),

FPPR (residues 834–910), HR1 (residues 912–984), CH (residues

985–1,035), CD (residues 1,036–1,068), HR2 (residues 1,163–1,213),

TM domain (1213–1,237 residues), and the cytoplasmic domain (resi-

dues 1,237–1,273).34,35 Either the N- and C-terminal domains can

function as the receptor-binding region during interaction with the

human ACE2 or the ACE2 of other mammals.4 Hence, the S protein

has gained significant attention in the antiviral drug development, due

to its receptor-binding functionality.4

The viral membrane is composed of the lipid-bilayer, which is

embedded in the M and E proteins. The M protein is a 23 kDa, highly

conserved 232 amino acid nonglycosylated membrane protein, which

possesses three transmembrane regions, as well as a NexoCendo topol-

ogy.4 It is expressed by the 669 nucleotides (nt) long M gene of SARS-

CoV-2 located after the 228 nt E gene, that encodes the E protein.

The M protein is essential for virion assembly and has been identified

to interact with the N protein during viral replication via its carboxy-

terminal.36 The E protein is a small pentameric protein of about

10 kDa, which spreads uniformly in the lipid bi-layer with about

20 copies per viral particle. Although its precise function is unknown,

studies showed that it serves as a cation-selective channel and also

plays an essential role in the virion assembly and morphogenesis.4,37

F IGURE 3 Pictorial view of SARS-CoV-2 showing its structural
proteins such as spike (S), envelope (E), membrane (M), and
nucleocapsid (N)

F IGURE 4 Image (a) is the trimeric S protein with the three

protomers (A, B, and C) colored red, orange, and gray, respectively. S1
and S2 are the subunits of each monomer folded at the N and C
terminal end as two independent domains. Image (b) is the overall
structure of the S protein color coded for the different domains (RBD,
NTD, CTD, FP, FPPR, HR1, CH, CD) (Figure generated with PBD
ID:6VXX SARS-CoV-2 spike glycoprotein using VMD software33)
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The nucleocapsid SARS-CoV-2 protein is an RNA-binding phos-

phoprotein that form a ribonucleoprotein complex with the viral RNA

and is the core structure of the virus. It is expressed by a 1,260 nt N

gene located next to ORF8 (which encodes the ORF8 non-structural

protein). The N protein participates in the synthesis and translation of

viral RNA, exhibits RNA chaperone activity, and also acts as a type I

interferon antagonist,4 making it immunogenic. It is structurally

divided into N terminal RNA binding domain (NTD), C-terminal dimer-

ization domain (CTD), and the intrinsically disordered central linker

rich in serine and arginine.18,38 It has been reported that the concen-

tration of N protein in infected patients is usually higher than the

other viral proteins,18,39,40 implying that theranostic developmental

efforts targeting the N protein are plausible. Currently, there exist

abundant literature on the structural properties of the SARS-CoV N

protein, but limited information on the structure of SARS-CoV-2 N

protein, as expected. For instance, thermodynamic studies showed

that the N protein of SARS-CoV is stable between pH 7 and 10, the

maximum conformational stability is identified to be around pH 9, and

the SARS-CoV N protein is observed to undergo irreversible thermal-

induced denaturation.18 Further, it has been reported that the N ter-

minal domain (NTD) of SARS-CoV-2 N protein functions as its RNA

binding domain.39 Also, the authors predicted the druggable location

of the NTD part of the protein using molecular dynamic simulations

and revealed specific surface charge distributions that can aid in the

discovery of drugs specifically targeting the RNA binding domain.

Such therapeutic approaches will prevent the assembling of viral RNA

by acting on the N protein of the virus to inhibit viral assembly and

replication. Thus, this article discusses on the N protein as, besides

being highly conserved and plays significant roles in RNA synthesis

and translation, its concentrations in serum samples are high and

detectable even after just a day of infection.4,18 These traits present

an opportunity to develop diagnostic solutions for early detection as

well as synthesizing antiviral agents that will potentially intercept viral

replication.

4.1 | RNA-binding domains of SARS-CoV-2 N
proteins

The N terminal domain of the coronavirus N protein is responsible for

binding to the viral RNA, resulting in a viral ribonucleoprotein (vRNA)

F IGURE 5 Multiple sequence analysis (MSA) comparing the N proteins of SARS-CoV-2 with MERS-CoV/SARS-CoV. Sequence identities are
50.8% and 92.5% for MERS-CoV and SARS-CoV, respectively

F IGURE 6 N-NTD of the three coronaviruses: (a) is SARS-CoV-2,
(b) is SARS-CoV, and (c) is MERS-CoV. Both (a) and (b) share some
similarities, having the same number of beta-sheets (5) while the C
structural feature is a little distant
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complex, that is essential for viral replication as shown in Figure 6.

Additionally, the C terminal domain (CTD) is responsible for oligomeri-

zation (forming k-mers).38,41 Certain studies focusing on the NTD of

N protein for drug development and discovery has been performed

using information deposited in public protein databases.40,42 Recently,

protein database (PDB) has received solved structures of the NTD of

SARS-CoV-2, either in isolation or complexed with other molecules.

Presently, there are three structures of the NTD protein of SARS-

CoV-2 that have been solved by X-ray crystallography with IDs;

6M3M (2.7 Å),39 6WKP (2.67 Å),43 6VYO (1.7 Å).44 6M3M represents

the structure of the N-Terminal RNA binding domain with the highest

resolution of 2.7 Å above the 2.1 Å median resolution of X-ray diffrac-

tion structures deposited at PDB as of 2020 (https://www.rcsb.org/

stats/distribution-resolution) and was reported along with the charac-

terization of the RNA-binding N protein domains. 6VYO is currently

the structure with the lowest resolution of 1.7 Å. However, unlike

6M3M, 6VYO and 6WKP have been deposited as a complex with two

and four other smaller ligands respectively. Furthermore, 6VYO has

the lowest R-factor of about 2.05, representing a high quality

structure,45,46 and thus may be preferred during molecular docking

and molecular dynamics (MD) simulations studies.39,40,47 Lastly,

researchers have used nuclear magnetic resonance (NMR) spectros-

copy to study the structure of N-NTD and its interaction with RNA

and showed the existence of a net positive charge on the surface of

the NTD as responsible for binding, confirming results also obtained

by Zeng et al..48,49 The SARS-CoV-2 N protein forms a dimer in solu-

tion via CTD–CTD interaction and binds to non-specific double-

stranded deoxyribonucleic acid (dsDNA) through electrostatic interac-

tions.40,42 Similarly, PyMOL software-generated electrostatic surface

potential map showed that the N protein has a net positive charge,

both at the NTD and CTD sites.50 Likewise, Kang et al. showed that

the NTD tail residues (Asn 48, Asn 49, Thr 50, and Ala 51) possibly

opens up the binding pocket to enable RNA binding, via atomic reso-

lution. Further, it has been revealed that the N protein possesses a

strong binding affinity to guanosine bases, by performing binding

affinity experiments with ribonucleotide monophosphates (GMP,

UMP, CMP, and AMP). Furthermore, the researchers predicted a

drugability score of 0.66 on a scale of 0–1 (1 being the highest

drugability value) with the binding pocket along its beta-sheet resi-

dues, via the pocket detection and analysis tool DoGSiteScorer. More-

over, the drugability score showed that the SARS-CoV-2 N-NTD

bond is higher on the average of 15% than SAR-CoV, MERS-CoV, and

HCoV-OC43 N-NTD.39 A prior research showed that occupying the

binding pocket of the mild type, homologous, coronavirus HCoV-

OC43 N-NTD bond with a higher affinity ligand has hydrogen-bond-

forming moieties, decreased the RNA-binding affinity of the N-pro-

tein, which is critical for the development of targeting agents.51 In

SARS-CoV-2, arginine residues, specifically Arg89, decrease the bond

formation groups of the ligand core. The most abundant interactions

of the N protein and RNA bases are the arginine–guanosine interac-

tions, which will lead to a decrement in the effects of Arg89 on the

aromatic core of the ligand. In summary, agents with high hydrogen

bond-forming moieties may increase the binding affinity for

theranostic applications, to increase the binding efficacy for SARS-

COV-2.

4.2 | N proteins of SARS-CoV-2, MERS-CoV, and
SARS-CoV

The structure of a protein determines its functionality. There are sev-

eral ways to determine the functions of proteins based on the concept

of annotation-by-homology, where annotations from well-

characterized homologous proteins are used to predict the functions

of new proteins.52 Two of such methods that can be potentially

applied to compare the N proteins of SARS-CoV-2, SARS-CoV, and

MERS-CoV, are protein sequence alignments as shown in Figure 5

and structural alignments as displayed in Figure 6. However, it can be

noted that the knowledge about structural proteins of SARS CoV-2,

including the N protein, are based on the previous SARS-CoV and

other human coronaviruses studies.

Protein sequence alignment is a relatively easy approach to compare

proteins, where algorithms are used to align amino acid sequences to pre-

dict conserved regions and secondary structures. An example of these

algorithms is BLAST, which was used to predict the percentage identity

of the three coronaviruses in Table 1. Using BLASTp for protein sequence

alignment analysis of the N proteins from the three zoonotic viral strains

(SARS-CoV-2, SARS-CoV, and MERS-CoV) showed that the N protein of

SARS-CoV-2 is much related to that of SARS-CoV, than MERS-CoV with

92.5% identity between SARS-CoV-2 and SARS-CoV as shown in Table 1

using BLAST. Further analysis of the conserved sequence regions can be

used to predict the potential binding/active sites as well as the residues

at the protein structure core for secondary structure prediction, since

these sites are generally known to be highly conserved in homologous

protein families. Although amino acid sequence alignments offer several

benefits as discussed, it is not as accurate as structural alignment.53 Struc-

tural alignment considers the spatial homologous protein evolution of

close and/or distant family functional site predictions to identify the simi-

larities and differences between them as well as searching for similar

structures that have less sequence alignment identity.54,55 Further,

FATCAT server is an example of highly efficient tools, which are used for

protein structure comparison. Its comparison algorithm showed hinges

and internal arrangements in two protein structures.55 It can be utilized

after amino acid sequence alignment of the SARS-CoV-2 N protein, for

instance, to identify proteins of similar structural characteristics and this

can be beneficial in the design of inhibitors or binders for diagnostics.

5 | DIAGNOSIS OF SARS-COV-2 BASED
ON IN SILICO ANALYSIS OF THE N PROTEIN

Current standard methods for the detection of viruses including poly-

merase chain reaction (PCR) and enzyme-linked immunosorbent assay

(ELISA) require a considerable amount of processing time, slowing

down the implementation of strategies to break the chain of transmis-

sion.56,57 These methods are not suitable for mass screening of
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individuals in applications requiring almost instantaneous results, such

as airport biosecurity programs, schools, and events. Further, certain

emerging biosensing techniques that are promising and capable of

alleviating some of the challenges associated with conventional

assays, include lab-on-chip (LOC) and Field Effect transistor (FET)

technologies. These technologies require the development of special

biological probes that can bind specifically to the analyte of interest.

Furthermore, experimental and in silico methods have been pursued

by researchers toward the development of bio-probes. An example of

an experimental approach is systematic evolution of ligands by expo-

nential enrichment (SELEX), which is used for the generation of

aptamers58,59 and offer opportunities to develop aptasensors or FET

biosensors60-62 for enhanced SARS-CoV-2 detection. Another widely

used experimental method is antibody-based-biosensors

(immunosensors) that uses either polyclonal, monoclonal or recombi-

nant antibodies as the bio-recognition elements as well as different

materials as signal-carrying transduction technologies and can be

either electrochemical, piezoelectric, or optical. These immunosensors

are composed of antibodies that are immobilized onto the surface of

the transducer and are connected to a control that reads the signals.

For example, a piezoelectric immunosensor has been developed to

detect SARS-CoV in sputum.63 Other immunosensor-based technolo-

gies have also been reported in recent times.64-66 Experimental

methods augmented with in silico approaches can significantly speed

up the process of bio-probe development for tailored biosensing

applications. Figure 7 shows the use of in silico approaches to the

development of bio-probes, such as aptamers for SARS-CoV-2 N pro-

tein detection. Although there are several in silico methods for study-

ing macromolecules, MD simulations and machine learning

approaches are considered in this article.

6 | MD SIMULATION

MD simulations predict the trajectory of every atom in a protein or

other molecular systems to describe interatomic interactions known

as force fields.67 Such simulations will be helpful to capture a variety

of essential bio-molecular processes that may not be possible, difficult

and/or expensive to capture in wet-lab experiments. Some of the

important processes, include but not limited to, conformational

changes, ligand-binding activities, and protein folding, which are

essential in the development of theranostics.67,68 MD simulations can

TABLE 1 Comparison of the N
protein sequences of SARS-CoV and
MERS-CoV with SARS-CoV-2 by BLASTp

Accession no Viral strain AA length Percent identity (%)

YP_009724397.2 SARS-CoV-2 419 100

NP_828858.1 SARS-CoV 422 92.52

YP_007188586.1 MERS-CoV 411 50.82

F IGURE 7 A flow diagram for the
development of bio-probes to be used
in diagnostic application via MD
simulation and machine- learning
techniques
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be used to answer questions relating to the structural and conforma-

tional characteristics, and binding properties of the SARS-CoV-2 N

protein to complement experimental results. The structural stability of

the N protein or specific domains of the N protein can be investigated

in isolation or in complex with designed ligands of interest using MD

simulations. It can also be used to probe real-time conformational

changes during intermolecular binding under varying biophysical

and/or biochemical conditions, such as alterations in pH, ionic

strength, redox, and molecular changes of binding motifs. Figure 8

shows 10 ns MD simulation, showing the root mean squared standard

deviation (RMSD) of the SARS-CoV-2 N protein containing 419 resi-

dues. A high stability of the RNA-binding domain (RBD) residues

(46–174) compared to the other domains of the N-Protein (CTD and

Linker) is observed. This type of analysis facilitates further probing

into the binding characteristics of the N protein with other ligands

after conformational sampling69 is performed to identify the most sta-

ble cluster of conformations.

Currently, MD simulation has been used together with other

molecular modeling methods, such as molecular docking to under-

standing the binding and structural characteristics of the SARS-CoV-

2.Tatar et al. reported molecular docking of 34 antiviral compounds

with SARS-CoV 2 N protein and performed MD simulations to show

that the N protein residues, such as Lys65, Gly69, Gln70, Pro67,

Phe66, Lys123, Trp132, and Ala134 exhibit a strong binding affinity

for Nafamostat (a synthetic serine protease inhibitor) primarily

through hydrogen bond interactions. Root-mean-square-deviation

(RMSD) analysis of the N protein also indicated its stability in the

range of 0.1–0.3 nm in a 10 ns simulation. Further analysis based on

the root mean square fluctuation (RMSF) and radius of gyration

(Rg) analysis showed that the RNA-binding domain of the N protein is

very stable and capable of forming stable complexes with ligands at

its binding sites.44 Similarly, Lin et al. used molecular docking to dem-

onstrate that occupying the binding pockets of the homologous N-

NTD of the mild type coronavirus HCoV-OC43 with a higher affinity

ligand N-(6-oxo-5, 6-dihydrophenanthridin-2-yl) (N,N-dimethylamino)

acetamide hydrochloride (PJ34) decreased the RNA-binding affinity of

the N protein.51 Although, there is currently not much literature on

the application of MD simulations to probe the binding and structural

characteristics of the SARS-CoV-2 N protein, MD simulations based

on the N protein of other coronaviruses shows the capacity to

develop and evaluate unique ligands for specific targeting of SARS-

CoV-2 N proteins toward the development of advanced theranostics.

7 | MD SIMULATIONS FOR ENHANCED
THERANOSTIC APPLICATIONS

MD simulations are highly helpful to obtain high-affinity protein–

ligand structures for theranostic applications.67 For example, the cor-

relation between the binding affinity of wild-type protein–ligand and

mutated protein–ligand complexes has been investigated by

predicting the effects of mutation on the protein–ligand complexes

using MD simulations and local geometrical features.70 The authors

measured the feature differences between the wild-type protein–

ligand and mutated protein-ligand complexes as a way to evaluate

changes in binding affinity using several machine learning models.

Other researchers have also shown the importance of MD simulations

in lead optimization for several protein structures.71-73 Generally, MD

simulation experiments take one of two forms; one that probes the

structural properties of the proteins in question as shown in Figure 8

or one that tests nonstructural properties by mutating parts or whole

structures.70 Thus, it will be possible to discover new ligands with

higher binding affinities or improve on existing ones for N protein

binding by utilizing these two approaches. Since, the N protein is most

expressed in the initial stage of SARS-CoV infection, it makes an

attractive target for theranostics. MD probing of the N protein will

not only be useful for theranostic applications but enable a better

understanding of the SARS-CoV-2 activity. Currently, proposals for

the use of the N protein as a diagnostic tool is primarily focused on

two different strategies, such as development of antibodies for the N

protein, and recombinant production of N protein for the detection of

N-protein-specific antibodies.18 These experimental approaches could

be made more efficient through MD simulations. In a recent work,

MD simulation was used as a part of four-step in silico procedure

F IGURE 8 RMSD data of 10 ns
MD simulation of SARS-CoV-2 N
proteins showing the structural
stability of the N terminal RBD
compared other domains of the
protein
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(molecular docking, binding free-energy prediction, pharmacokinetics,

and drug-likeness prediction as well as MD simulations) to determine

the affinity binding characteristics of the drug candidate called

ZINC00003118440 (8-(2-hydroxyethyl) aminophylline), which is a

synthetic derivative of the Theophylline drug known to act as a bron-

chodilator with antiviral properties as confirmed in the literature.74

Further, ZINC0000146942 (ethyl (4S)-4methyl-2-oxo-6-[(1S)-

1-phenylethyl]-3,4-dihydro-1H-pyrimidine5-carboxylate) is a

pyrimidone derivatives, that are used against viral infections and are

recently employed to inhibit SARS-CoV-2. In the study, a 100 ns sim-

ulation of the two candidates in complex is performed with the N-

NTD protein structures, which are obtained from the PDB (PDBID:

2OFZ) and used RMSD as well as RSMF analysis to determine the

protein–ligand stability.75 Furthermore, since ZINC00003118440 is a

bronchodilator, the binding affinity of all approved bronchodilators

have been investigated against SARS-CoV-2, where N-NTD showed

that other bronchodilators including formeterol, terbutaline,

ipratropium bromide, Tiotropium bromide and salbutamol can be used

a potential SARS-CoV-2 N-NTD blockers. Moreover,

ZINC000000146942 confirmed that pyrimidone derivatives, which

are already used as major components in antiretroviral drugs,76-79 can

also be used in the design of drugs to inhibit SARS-CoV-2 by targeting

N-NTD. In conclusion, in vitro assays using these drug candidates will

be required to demonstrate the effectiveness of the methods and

serve as a deciding factor to select specific bronchodilator for the

treatment of COVID-19 infection.

8 | MACHINE-LEARNING APPROACHES

Machine-learning algorithms are either supervised or unsupervised,

where the supervised learning refers to algorithms, that use labeled

data sets to make prediction/inferences and focuses more on data

classification by approximating with high accuracy. Contrarily,

unsupervised learning uses unlabeled data sets for clustering tech-

niques.80 Some of the algorithmic methods that have been developed

and used in machine learning, includes neural networks, naive Bayes,

instance-based learning, principal component analysis, and logistic

regression. Machine learning methods have been used in biotechnol-

ogy to recognize biosensing specific signal features. It has also been

used to analyze MD trajectory data for clustering of ensembles with

similar conformations to be used in docking and virtual screening

studies, as well as for dimensionality reductions to identify most rele-

vant features in trajectories, that reduces noise, and to develop empir-

ical MD force fields for simulations.81-84 The relevance of these two

applicational areas is significant in the search for diagnostic methods

to target N protein in SARS-CoV-2.

Biomolecular simulation trajectories are inherently of high dimen-

sions and therefore present a challenge in developing insights from

datasets, which are generated by MD simulations. By applying deep

learning methods, it is possible to reduce the dimensionality, making it

easier to predict essential underlying motions of complex biological

processes. Bhowmik et al. developed a deep convolutional variational

auto-encoder (CVAE) neural network that reduces high dimensions of

protein folding pathways into a reduced number of conformational

forms with similar structural properties. The method primarily utilized

a type of auto-encoder architecture known as variational auto-

encoder (VAE), which represents the output latent attributes of the

encoder section as a probability distribution, allowing for the latent

space sampling at any point to generate new outcomes that corre-

sponds to the patterns found in the initial data. The method involves

in the generation of contact matrices as shown in Figure 9, where

atoms are separated by ~8 Å were considered, and the output (con-

tact matrices) were fed as inputs in the CVAE to generate the VAE

embeddings, that has a lower dimensional representation.85 ML

methods can also be used to develop empirical molecular dynamic

force fields for MD simulations,86-89 where deep potential for molecu-

lar dynamics (DeePMD), which is a deep neural network model. This

F IGURE 9 Convolutional variational auto encoder architecture. The deep learning network that takes contact maps (2D images) as inputs and
outputs VAE embedding (low dimensionality) and reconstruct the contacts maps based on the learned embedding85
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MD simulation model is based on a many-body potential and inter-

atomic forces trained with ab initio data is of particular interest90 in

the development of DeePMD kit, which is a software library that sim-

plifies the development of energy fields for MD simulations.

Specific applications of ML in the development of theranostics,

include extraction of informative structures from raw data, classifica-

tion of different high dimensional biomedical data forms in an orga-

nized structure, prediction of protein structure and functions, as well

as recovery of clinically significant biomarkers.91,92 Thus, specific ML

methods that have been used for these applications, include principal

component analysis (PCA), single valued decomposition (SVD), sup-

port vector machines (SVM), and deep learning models. Ge et al.

applied machine learning and statistical approaches to identify SARS-

CoV-2 drug candidates by integrating large-scale available

coronavirus-related data from over 6,000 drug candidates. Their ML

approach, together with experimental methods, helped to discover

poly-ADP-ribose polymerase 1 (PARP1) inhibitor called CVL218, as a

potential drug candidate to treat COVID-19 infection. Additionally,

the researchers performed molecular docking studies and showed that

CVL218 binds favorably to the N-NTD protein of SARS-CoV-2, thus

providing a possible mode of antiviral activity against SARS-CoV-2.93

Besides, Google DeepMind's ALPHAFOLD deep learning system has

also been utilized to predict the related protein structures of SARS-

CoV-2,94 providing valuable insights to develop vaccine and drug to

combat COVID-19 infection.

9 | PROPOSED IN SILICO PIPELINE FOR
SARS-COV-2 N PROTEIN DIAGNOSTICS

A computational pipeline for the development of a highly efficient

bio-probe via RNA-binding domain of SARS-CoV-2 N protein is pro-

posed as displayed in Figure 10. The pipeline is primarily divided into

three sections, such as MD simulation, clustering via machine learning,

and molecular docking approach. In a typical process, the protein

structure is retrieved from widely used databases, such as the Protein

Databank and prepared for simulation and stability analysis using

tools, namely Chemistry at Harvard Molecular Mechanics (CHARMM)

force field,95 PropKa (protonation state prediction),96 visual molecular

dynamics (VMD) (for visualization and analysis)33 and Nanoscale

molecular dynamics (NAMD) (to perform the simulation).97 In the next

stage, machine-learning models are used to perform unsupervised

learning or clustering of the trajectory information obtained from the

MD simulations in order to select the most stable conformation of the

proteins for molecular docking experiments. The molecular docking

experiments also begin with the development of a potential ligand

pool followed by the docking simulations. It can be noted that the

ligand pool is built with molecules that may be sourced from data-

bases, such as ZINC and PubChem. After the docking process, high

affinity ligand–protein complexes are selected for further MD simula-

tion and clustering, followed by wet laboratory experiments after suc-

cessful simulations and modifications are performed in silico.

10 | CONCLUSIONS

Understanding the transmission dynamics of SARS-CoV-2 is one of

the initial steps toward the deployment of intervention strategies

for COVID-19 mitigation. The present article has discussed the

development of an intrinsic model to describe the growth charac-

teristics of the virus, and this provide relevant information to

probe the transmission rate of the virus under various conditions.

Computational approaches in the search for theranostic methods

to combat against SARS-CoV-2 are highly useful. MD simulations

and machine-learning methods are amongst the efficient tools that

facilitate the development of theranostics for new pathogens, such

as SARS-CoV-2, providing opportunities to develop new and tai-

lored biomedical technologies. Thus, the in silico methods for

F IGURE 10 Potential in silico
pipeline for the design of high-affinity
ligands for use in diagnostics strategies
for SARS-CoV-2
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probing ligand–target interactions will play a key role in identifying

and designing diagnostic and therapeutic strategies to mitigate

viral infections in the future.
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