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A yeast-optimized single-cell transcriptomics
platform elucidates how mycophenolic acid and
guanine alter global mRNA levels
Guste Urbonaite1,2,6, Jimmy Tsz Hang Lee3,6, Ping Liu 1,2, Guillermo E. Parada3, Martin Hemberg 3,5✉ &

Murat Acar 1,2,4✉

Stochastic gene expression leads to inherent variability in expression outcomes even in

isogenic single-celled organisms grown in the same environment. The Drop-Seq technology

facilitates transcriptomic studies of individual mammalian cells, and it has had transformative

effects on the characterization of cell identity and function based on single-cell transcript

counts. However, application of this technology to organisms with different cell size and

morphology characteristics has been challenging. Here we present yeastDrop-Seq, a yeast-

optimized platform for quantifying the number of distinct mRNA molecules in a cell-specific

manner in individual yeast cells. Using yeastDrop-Seq, we measured the transcriptomic

impact of the lifespan-extending compound mycophenolic acid and its epistatic agent

guanine. Each treatment condition had a distinct transcriptomic footprint on isogenic yeast

cells as indicated by distinct clustering with clear separations among the different groups. The

yeastDrop-Seq platform facilitates transcriptomic profiling of yeast cells for basic science and

biotechnology applications.
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In recent years, single-cell RNA sequencing (scRNA-seq) has
become a widely used method for studying the transcriptomes
of individual cells1. scRNA-seq has been used to identify

populations of specific cell types within tissues2, to study parti-
cular cellular pathways3, and to better understand disease
development3. One method to perform scRNA-seq is the Droplet
Sequencing (Drop-Seq) platform2. Using a microfluidic device,
this platform allows for the encapsulation of single cells, along
with microbeads carrying barcoded primers and lysis buffer into
oil droplets (Fig. 1). Upon cell lysis in the oil droplet, individual
mRNA molecules hybridize to the primers on the microbeads.
The barcoded primer sequences on each microbead allow for the
distinction of mRNAs obtained from different cells and unique
mRNAs obtained from the same cell. Next, all droplets are broken
together and release their hybridized beads. Isolated beads are
reverse-transcribed with template switching, generating cDNA
strands. This is followed by the PCR-amplification of the cDNAs
and the addition of the sequencing adapters. Finally, the barcoded
mRNA samples are sent out for sequencing.

The original Drop-Seq platform has been specifically developed
and optimized for mammalian cells with the goal of measuring
mRNA counts at the single-cell level across genetic backgrounds
and/or growth conditions. Size and structure/morphology dif-
ferences between different cell types have made it difficult
to directly apply the mammalian Drop-Seq platform to other
organisms, including yeast which are much smaller than mam-
malian cells and have a cell wall. While there are well-based4,
FISH-based5 and droplet-based6 (using commercial 10x Geno-
mics platform) methods for measuring single-cell mRNA abun-
dances in yeast cells, a table-top noncommercial Drop-Seq-based
platform optimized for robust measurements of mRNA counts in
yeast has not been available.

Here we present the yeastDrop-Seq platform, a yeast-optimized
table-top scRNA-seq technology based on the original Drop-Seq
platform2. As a proof-of-principle application of yeastDrop-Seq,
we measure how Mycophenolic acid (MPA) and guanine impact
mRNA counts globally at the single-cell level. MPA is a lifespan-
extending compound that decreases de novo GMP synthesis7–9.
Our work uncovers the global transcriptomic effects of MPA and

guanine in a pathway-specific manner at single-cell resolution,
providing novel insights about how MPA extends the lifespan
in yeast.

Results
yeastDrop-Seq as a yeast-optimized scRNA-Seq method. We
modified the original Drop-Seq protocol so that the differences in
size and morphology between yeast and mammalian cells are
factored in the relevant steps of the protocol.

To make sure that only one cell is present in each oil droplet,
cell density at the time of cell-feeding into the microfluidic chip
had to be sufficiently low. On the other hand, a density that is too
low would lead to unfeasibly long cell-feeding times. We found
that a density of 50 cells per microliter addressed these needs.

Unlike mammalian cells, yeast has a cell wall surrounding its
outer membrane. To break the cell wall, we designed a solution
containing Zymolyase in addition to a cell-lysis reagent and SDS
(Methods). Zymolyase is a cell-wall digestion enzyme which does
not alter RNA stability or folding10. After the initial formation of
oil droplets by feeding into the microfluidic chip yeast cells (at the
density of 50 cells per microliter) together with the microbeads
resuspended in this solution, the oil droplets were incubated for
30 min at 30 °C to ensure that Zymolyase breaks the cell walls and
then cell lysis occurs (Supplementary Fig. 1). After this incubation
period, we evaluated oil-droplet quality and found that more than
95% of the droplets remained intact.

Next, oil droplets were broken, and the original Drop-Seq
protocol2 steps were applied to the pooled mRNA molecules
hybridized to the primers on the microbeads, including reverse
transcription, exonuclease I treatment, PCR-amplification of the
cDNAs and the addition of the sequencing adapters. Sequencing
was performed using the Illumina HiSeq2500 platform with 2 ×
100 nts read pairs.

Measuring the single-cell transcriptomic impact of MPA and
guanine. In our previous studies, we have elucidated that
Mycophenolic acid (MPA) extended lifespan in yeast through
GMP synthesis inhibition8,9. We further found that the longevity

Fig. 1 A schematic of the single-cell mRNA sequencing workflow for transcriptomic analysis of yeast cells. The yeastDrop-Seq solution containing
chemicals for cell-wall digestion and cell lysis is mixed with barcoded microbeads, and the mixture is flown through one inlet of a microfluidic device. Yeast
cells with intact cell walls and oil are flown through the second and third inlet of the microfluidic device, respectively. Encapsulated cells are then incubated
to allow for cell-wall breakage and lysis. mRNA molecules hybridize to the barcoded microbeads via their polyA tails, droplets are broken, and reverse
transcription occurs. cDNA is PCR-amplified and the cDNA libraries are prepared and submitted for sequencing.
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effect of MPA was prevented by the supplementation of exo-
genous guanine, MPA’s epistatic agent in GMP synthesis.
MPA targets GMP synthesis by inhibiting IMP Dehydrogenase
(IMD), decreasing de novo GMP synthesis7–9. IMD catalyzes
the production of xanthosine 5’-phosphate (XMP) from inosine
5’-phosphate (IMP). This is followed by the production of GMP
from XMP through the action of the GMP synthase Gua1. The
guanylate kinase Guk1 converts GMP to GDP7. Despite the
biochemical knowledge about MPA’s involvement in the GMP
synthesis pathway, how it affects single-cell transcriptomes
downstream of GMP/GDP/GTP synthesis has been unknown.

To study the global impact of MPA and guanine on single-cell
transcriptomes and to identify the specific genes that are up/
downregulated upon MPA and/or guanine treatment, we grew
yeast cells for 18 h in media containing DMSO (D), MPA (M),
Guanine (G), or MPA+Guanine (MG) (Methods), subjected the
cells to yeastDrop-Seq, and processed the raw mRNA sequencing
data to obtain single-cell level mRNA abundances.

The processing of the raw data included trimming low quality
reads in sequences (Supplementary Fig. 2), mapping the resulting
reads to the S. cerevisiae genome, and the construction of [gene ×
cell] expression matrices for each treatment condition. We next
performed quality control of the processed data to filter out low
quality cells and features in order to improve the signal-to-noise
ratio for downstream analyses. For this, thresholds were adjusted
according to the total Unique Molecular Identifier (UMI) counts
and total gene counts (Supplementary Fig. 3); cells whose total
UMI or feature counts fell outside of the normal distribution were
excluded.

Analysis of gene expression datasets for the rate of cell-doublet
formation. An essential aspect of a droplet-based single-cell RNA
measurement platform is its ability to encapsulate only one cell in
each oil droplet or a low rate for doublet formation. To quantita-
tively characterize the doublet rate associated with yeastDrop-Seq,
we applied five methods: DoubletFinder, Scrublet, DoubletDecon,
scds, and solo (Supplementary Fig. 4). These methods first intro-
duce artificial doublets based on the original dataset, followed by the
training of a classifier to distinguish singlets from doublets. The
methods then provide a ranking/score for the cells from the original
dataset, and a threshold for doublet identification is defined.

While DoubletDecon predicted a surprisingly high doublet rate,
which we attribute to false positives, the other four methods
predicted low (~2–7%) rates for potential doublets for experiments
run at 50 cells/uL (Methods). Also, the number of conserved
doublets (i.e., doublets with the same barcode reported by more
than one method) identified by the four methods was 12 out of 844
(Supplementary Fig. 4). We conclude that the cell-doublet rate of
the yeastDrop-Seq platform is reasonably low. As a comparison, the
original Drop-Seq platform developed for mammalian cells
reported cell-doublet rates up to 11.3% at cell concentrations of
100 cells/uL and less than 5% at cell concentrations of 50 cells/uL.

Characterization of sequencing reads, and transcript and gene
counts. We analyzed the filtered sequencing reads to obtain the
condition-specific distributions of their GC contents and read
lengths. We found that the distribution of GC contents of all valid
reads in all valid cells peaks at around 23% for each of the four
growth conditions, which matched the peak expected based on
theoretical grounds (Supplementary Fig. 5a). From the distribu-
tions of read lengths, we found that the peak corresponded to
52–53 bp consistently for each condition (Supplementary Fig. 5b).
The distribution of UMI counts showed that there was no bias
toward transcript length (Supplementary Fig. 6a) and GC per-
centage (Supplementary Fig. 6b).

We next quantified the number of distinct mRNA transcripts,
and identified the genes they corresponded to. First, analyzing our
single-cell mRNA sequencing data for effective reads from valid
barcodes (Supplementary Fig. 3) (Methods), we saw that the
average number of effective reads from valid barcodes varied
between 49.3% and 65.7% across the four growth conditions used.
We then obtained the distribution of the number of distinct
mRNA transcripts per cell for each treatment condition
(Supplementary Fig. 3), and calculated the average number of
distinct mRNA molecules (Supplementary Data 1). With the total
number of cells identified in each condition ranging from 85 to
268, the mean transcript counts per cell ranged from 840.19 to
1335.62 across the four treatment conditions. Coefficients of
variation (CV) were calculated across the cells in each treatment
condition (Supplementary Data 2). We saw that the average
number of distinct genes across cells of a sample, with the
number of distinct genes quantifying the number of genes
captured per cell in each sample, were 443 (G), 554 (M), 578
(MG), and 619 (D) (Supplementary Data 1). Since S. cerevisiae
has 6275 genes, and since the set of distinct genes captured in
each cell is different, the fraction of overall distinct genes captured
by yeastDrop-Seq across all cells were 38.6% (M), 46.5% (G),
55.7% (D), and 62.2% (MG).

We also sorted our gene expression matrices for each gene
represented across cells in each growth condition. Supplementary
Data 2 shows the average single-cell mRNA transcript numbers
averaged across all cells of each treatment condition, as well as the
standard deviation (SD). To quantify transcriptional noise in the
expression of each gene, we used CV as a metric and saw similar
dependencies between CV and mean across the four treatment
conditions. A second-degree polynomial function fitted the
distribution of single-cell CV vs. mean transcript numbers pooled
from all genes represented for each condition (Supplementary
Fig. 7). As expected, genes with low transcript numbers were
associated with high CV values.

Isogenic yeast populations display distinct transcriptomic
substructures. To perform downstream analysis, we merged the
data from the 4 samples, corresponding to the 4 growth condi-
tions, using the ‘merge’ function in Seurat v311, followed by
normalization of the count matrices of the 4 samples. We per-
formed Principal Component Analysis (PCA) on the merged
gene expression data corresponding to the four treatment con-
ditions (Fig. 2a). Each condition led to distinct clustering with
clear separations among the different groups, which indicates that
each treatment condition has a distinct transcriptomic footprint
(Fig. 2b, Supplementary Data 3). The nonlinear dimension
reduction performed through Uniform Manifold Approximation
and Projection (UMAP) also showed consistent results (Fig. 2c).
Despite the use of isogenic yeast cells across our experiments, we
identified subclusters in the UMAP plot corresponding to tran-
scriptomic heterogeneity within the DMSO, Guanine and MPA
+Guanine-treated yeast populations; differently from these
observations, the MPA treatment led to a relatively homogeneous
population (Fig. 2c).

Although the PCA plot (Fig. 2a) clearly showed the presence of
4 clusters corresponding to the 4 treatment conditions, we wanted
to obtain the best quantitative clustering outcome corresponding
to our merged data. For this, we ran the single-cell consensus
clustering (SC3) method which provides robust and accurate cell
clustering as well as downstream analysis for single-cell RNA
sequencing data12. We found that SC3 with k= 4 provided the
best outcome for our combined data (Fig. 2d).

Using a Sankey diagram, we traced how results from each
treatment condition were mapped to the four SC3 clusters

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02320-w ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:822 | https://doi.org/10.1038/s42003-021-02320-w |www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


Fig. 2 Identification of DE genes in the 4 samples. a PCA plot illustrating the distribution of the 4 samples (D n= 233, G n= 258, M n= 85, MG n= 268
cells). b Heatmap illustrating the DE genes corresponding to the 4 samples (Supplementary Data 3). The color represents the normalized expression level
in natural-log scale of the corresponding genes of a cell (yellow is high). c UMAP plot of the 4 samples (D n= 233, G n= 258, M n= 85, MG n= 268 cells)
based on the PC spaces in panel a. d Semi-supervised clustering identifies 4 clusters across the 4 samples. e Sankey plot illustrating the 4 samples mapping
to the 4 SC3 clusters (cluster 1 n= 331, cluster 2 n= 193, cluster 3 n= 164, cluster 4 n= 156 cells). DE genes means differentially expressed genes.
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(Fig. 2e). As expected due to the low population heterogeneity
observed, almost all MPA-treated cells were mapped to a single
SC3 cluster (SC3_4 3). On the other hand, most cells treated with
DMSO or Guanine were mapped to three or four SC3 clusters.

To quantitatively evaluate the subpopulations associated with
each treatment condition, we performed SC3 clustering analysis
on each treatment-specific gene expression matrix separately. For
the DMSO treatment, we found that k= 2 gave a reasonable
resolution to distinguish two subclusters containing 177 and 56
cells (Fig. 3a). An area-under-the-receiver-operating-character-
istic (AUROC) curve analysis identified the list of marker genes
corresponding to each subcluster from the DMSO population
(Supplementary Data 4). For the Guanine-treated cells, we again
found two distinct subclusters represented by 135 and 123 cells
(Fig. 3b). An AUROC curve analysis identified the list of marker
genes corresponding to these subclusters (Supplementary Data 4).
As expected for the MPA-treated cells, the SC3 analysis yielded a
similar result: the apparent lack of heterogeneity prevented SC3
from resolving the population into more than one subcluster
(Fig. 3c). Finally, for the cells treated with MPA and Guanine,
there were 3 distinct subclusters (with 166, 77, 25 cells) and the
result from consensus clustering showed that k= 3 was ideal
(Fig. 3d), even though there were relatively small numbers of cells
in the third subcluster. The small cluster was supported by the
marker genes analysis which revealed a strong signal for the third
subcluster (Supplementary Data 4).

Relabeling the cells with respect to the SC3 clustering results
obtained from the analysis on each of the four treatment conditions,
one can see the eight distinct subclusters under different plotting
schemes (Fig. 3e, f, Supplementary Data 5). Finally, comparing
these eight subclusters identified separately with the results obtained
from a new SC3 clustering analysis (with k= 8) performed on the
full data merged from all four treatment conditions, we found that a
large fraction of cells could be consistently mapped between single
subcluster counterparts (Fig. 3g).

Identification of differentially expressed genes across treatment
conditions and clusters. We performed the Wilcoxon test to
identify the differentially expressed genes. Using the thresholds of
50% of minimum percentage of cells in each condition/cluster and
±0.5 average log-fold change (with adjusted p-value < 0.05), we
obtained a list of genes up- or downregulated for each treatment
condition and cluster (Supplementary Data 6). Visual inspection of
the heatmaps suggested that these genes could well represent each
condition or distinct cluster (Fig. 3f). We also identified the gene
candidates representing each subcluster in each treatment condition
(Fig. 4, Supplementary Data 7). Finally, we obtained the set of
differentially expressed genes for the clusters identified by SC3 with
k= 4 (Fig. 5, Supplementary Data 8).

Performing a GO term analysis using the R package
clusterProfiler13 we also found the pathways that are up- and
downregulated in each treatment condition or treatment clusters.
In Supplementary Data 9, we show the up- or downregulated
pathways for each treatment condition. Delving deeper into the
individual clusters for each treatment condition below we again
identify up- or downregulated pathways or biological processes
using the GO term analysis (Supplementary Data 10).

Analysis of selected differentially expressed genes and biolo-
gical processes in MPA-treated cells. We saw an upregulation of
mRNAs for proteins involved in rRNA pre-processing in cells
treated with MPA (GAR1, UTP14, CGR1, DBP3, and PXR1)
(Fig. 4). However, it is known that MPA decreases ribosome
biogenesis as well as rRNA levels, by decreasing RNA pol I and
RNA pol III activity14,15. It has been suggested that this rRNA

decrease leads to the accumulation of ribosomal proteins (r-
proteins) in the cell15. We hypothesize that cells upregulate the
processome machinery, transcribed by RNA pol II, in an attempt
to produce more mature rRNA, as there is a lack of such rRNA
upon treatment with MPA.

There is also an upregulation of tRNA synthetase and tRNA
methyltransferase genes (TRM1, SES1, ABP140, THS1, VAS1)
(Fig. 4). The decreased RNA PolI and PolIII activity due to MPA
treatment has been shown to result in a decreased concentration
of mature tRNAs16. We conjecture that MPA-treated cells
attempt to replenish this population of tRNAs by upregulating
genes, transcribed by RNA PolII, that are involved in their
production. Histone and nucleosome assembly genes are also
upregulated in cells treated with MPA (FPR4, FPR3) (Fig. 4). It is
known that MPA acts as a transcription elongation repressor17,
and we conjecture that MPA represses transcription by leading to
a more packed chromatin structure. It is interesting to note that
FPR3 and FPR4 are involved with rDNA, whose replication and
recombination has been implicated in aging18. Additionally,
translation initiation factor gene expression is upregulated,
including TIF3, GCD11, TIF4631, FUN12, and GCD2 (Fig. 4).
We hypothesize that, because MPA treatment was previously
reported to lead to a decrease in guanosine nucleotides19, protein
production is decreased (rRNA and mRNA expression decreases)
and cells attempt to rescue this phenotype by increasing
translation initiation. Moreover, it was found that some
components of the SAGA complex, which is involved in histone
acetylation, translation initiation, and elongation, are also affected
in cells treated with MPA, suggesting that MPA has an overall
effect on the translation process20. MPA-treated cells also display
an upregulation of antioxidant genes such as TSA1 and TRR1.
Cells treated with MPA appear to upregulate genes that provide
protection from oxidative damage. This antioxidant effect of
MPA has also been reported in mouse models previously21, and
here we identify which yeast genes are involved in this process.
Here we also observe that cells treated with MPA upregulate the
expression of chaperone proteins (STI1, SSE1) (Fig. 4) that are
involved in regulation of organization of amyloid-like proteins or
unfolded proteins in general. It is interesting to note that cells
treated with MPA have increased protein burden22. It is likely
that upregulation of STI1 and SSE1 is a direct cause of this
increased protein burden.

In MPA-treated cells, we saw an upregulation of genes, including
NUG1, NOC2, and RRS1 (Fig. 4), involved in ribosome component
transport. It is interesting to note that cells treated with MPA also
exhibited altered expression of 40 S and 60 S ribosomal subunits.
Some subunit components are downregulated (RPL41A, RPL41B,
and RPS29B) (Fig. 4), while others are upregulated (RPL18A). There
is a delicate balance among the r-proteins forming the various
subunits of the ribosome in the cell and it has been suggested that
during ribosomal stress there can be an accumulation of free r-
proteins not assembling in a ribosome15.

Additionally, cells treated with MPA downregulate mitochon-
drial components (MPC2, DPI8) (Fig. 4) and most likely
mitochondrial function. It is known that mitochondrial membrane
potential23 and mitochondrial composition19 are impacted by MPA
treatment, so these downregulations upon MPA treatment, perhaps
indicating a decrease in mitochondrial function, are not surprising.

Based on the GO terms analysis (Supplementary Data 9-10),
there was an upregulation of ncRNA metabolic processes, involving
tRNA aminoacylation for protein translation, as well as an
upregulation of cellular component biogenesis involving protea-
some components and ribosome assembly, such as amino acid
activation, peptide biosynthetic process, translational initiation.

GO term analysis (Supplementary Data 9–10) also revealed
several downregulated cellular processes including ribosomal
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Fig. 3 SC3 consensus clustering reveals the heterogeneity within yeast cells in the 4 samples. a PCA plot showing the 2 SC3 clusters in DMSO (n= 233
cells). b PCA plot showing the 2 SC3 clusters in Guanine (n= 258 cells). c PCA plot showing the 2 SC3 clusters in MPA (n= 85 cells). d PCA plot showing the
3 SC3 clusters in MPA+Guanine (MG n= 268 cells). e A 3-dimension PCA plot illustrating the distribution of the 8 subclusters (D.1 n= 177, D.2 n= 56, G.1
n= 135, G.2 n= 123, M.1 n= 85, MG.1 n= 166, MG.2 n= 77, MG.3 n= 25 cells) in the 4 samples. f Heatmap illustrating the DE genes corresponding to the
8 subclusters identified by SC3 (Supplementary Data 5). The color represents the normalized expression level in natural-log scale of the corresponding genes of
a cell (yellow is high). g Sankey plot illustrating the subclusters identified in separated analysis mapping to the 8 SC3 clusters identified in group analysis. DE
genes means differentially expressed genes.
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RNA transport, ribosome assembly and ribosomal RNA meta-
bolic process. In addition, mitochondrial function is also signified
by a downregulation in pyruvate metabolic process. Additionally,
phosphatidylinositol-mediated signaling was downregulated in
MPA-treated cells. This result also made sense based on the
previous finding that MPA alters cholesterol and phosphatidyl-
choline concentrations which greatly impacts lipid-mediated
signaling in intestinal cells19. Regulation of cell wall organization
was also downregulated in MPA-treated cells. Finally, we
observed a downregulation in the monocarboxylic acid metabolic
process in cells treated with MPA. As MPA itself is a
monocarboxylic acid and perturbs many cellular pathways, it is
reasonable to expect that cells attempt to downregulate genes that
promote its transport.

Discussion
In this study, we introduce a yeast-optimized table-top scRNA-
seq platform for measuring single-cell level mRNA counts in
yeast. The yeastDrop-Seq platform is applied to cells treated with
Mycophenolic acid (MPA) and/or guanine, and the resulting
changes in global mRNA expression levels were quantified. We
elucidate heterogeneous gene expression profiles in cells as well as
how the expression profiles are clustered in isogenic populations
(Fig. 3). We further uncover differentially up- or downregulated
groups of genes and pathways as a result of the growth conditions
we used (Figs. 3–5). Our table-top scRNA-seq technology is
similar in its function to a recently-published6 scRNA-seq tech-
nology that uses the commercial 10x Genomics platform; both
technologies are droplet-based, involve microfluidics and adapted
for yeast cells.

One major parameter to optimize for an effective yeastDrop-
Seq is doublet formation rate, owing to the smaller size of S.
cerevisiae cells (~4–5 μm in diameter) compared to mammalian
cells (~10–100 µm). Although doublet-detection tools tailormade
for yeast cells are yet not available, we assume transcription
doublet in yeast cells share similar nature as that in mammalian
cells. In this study, we applied five doublet-detection tools which
are based on different algorithms to identify doublets in our
dataset to estimate the doublet rate (Supplementary Fig. 4). Out
of all tools, DoubletFinder24, scds25 Scrublet26, and solo27 have
detected an average of 3.5% doublet rate and 2% of conserved
doublets, doublets identified by more than one method used.
Surprisingly, DoubletDecon28 has estimated an exceptionally high

doublet rate with only 0.01% of the detected doublets is in
agreement with the conserved doublets. This result could be
explained by the benchmark experiment against DoubletFinder,
Scrublet and solo; DoubletDecon tends to have higher sensitivity
and lower specificity28,29. Therefore, we considered this incon-
sistent result as an outlier.

In our computational analysis, we found that the expression data
from the cells grown in the 4 conditions could be merged without
batch correction, suggesting that our protocol is highly reproducible
with consistency. The principal component analysis (Fig. 2a)
showed that the 4 samples are separated into 4 distinct clusters
suggesting that each treatment condition had a distinct tran-
scriptomic footprint. This result is further supported by our clus-
tering results (Fig. 2d) as we could observe a similar cluster
distribution over the 4 samples. Although we saw 4 distinct clusters
in our UMAP analysis, we also observed subclusters (Fig. 2c)
among the cells treated with DMSO, Guanine and MPA+Gua-
nine, suggesting transcriptomic heterogeneity in these samples. This
was an interesting observation as we used isogenic yeast cells across
our experiments. To identify the subclusters, we performed unsu-
pervised clustering in each condition and successfully identified
8 subclusters and their corresponding DE genes over the 4 condi-
tions (Fig. 3). Collectively, our result reveals the population het-
erogeneity in S. cerevisiae in multiple conditions.

While higher levels of gene expression heterogeneity and cel-
lular switching between gene expression states can facilitate an
adaptive strategy against changing environmental conditions, it
can be detrimental to population fitness in stable external con-
ditions as decreasing the fraction of population at the optimal
gene expression level would hamper fitness. Surprisingly, our
results indicate that cells treated with MPA form a single sub-
cluster, which is indicative of a transcriptionally homogeneous
population. Future studies are needed to show how MPA’s
lifespan-extension effect on yeast cells might be directly con-
tributed by homogeneous expression of key lifespan-regulatory
genes and how yeast cells aging in static environmental condi-
tions could benefit more from the MPA treatment compared to
cells aging in changing environments.

Although our current work focuses on the application of MPA
on young yeast cells not enriched for old age, one can make
predictions about how MPA extends lifespan based on the dif-
ferential gene expression profiles we report here. For example, it
is known that mitochondrial DNA accrues mutations as cells age,

Fig. 4 DE genes in the 4 samples. Dotplot showing the key DE genes (Methods) identified in the 4 samples (D n= 233, G n= 258, M n= 85, MG n= 268
cells). The size of the dot represents the percentage of cells within a sample expressing the corresponding genes, while the color represents the average
expression level in natural-log scale of the corresponding genes across all cells within a sample (blue is high). DE genes means differentially expressed genes.
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Fig. 5 DE genes in the SC3 clusters with k= 4. a Dotplot showing the key DE genes (Methods) identified in the 4 SC3 clusters. The size of the dot represents
the percentage of cells within a SC3 cluster expressing the corresponding genes, while the color represents the average expression level in natural-log scale of
the corresponding genes across all cells within a sample (blue is high). b Boxplot showing the top 4 DE genes in SC3 cluster 1. c Boxplot showing the top 4 DE
genes in SC3 cluster 2. d Boxplot showing the top 4 DE genes in SC3 cluster 3. e Boxplot showing the top 4 DE genes in SC3 cluster 4. Boxplots show the
median (center line), interquartile range (hinges) and 1.5 times the interquartile range (whiskers); outlier data beyond this range are plotted as individual points.
Expression levels are plotted in log 2 scale of normalized UMI (Methods). DE genes means differentially expressed genes. (cluster 1 n= 331, cluster 2 n= 193,
cluster 3 n= 164, cluster 4 n= 156 cells).
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resulting in the accumulation of damaged mitochondria in the
cell23. This leads to oxidative stress due to the mitochondrial
malfunction and release of reactive oxygen species30. Forming a
negative feedback regulation, the accumulation of reactive oxygen
species can result in further damage in both mitochondrial and
genomic DNA31–33. In this study, when yeast cells are treated
with MPA, we see that, despite a downregulation of genes
involved in mitochondrial function, there is an increase in the
expression of genes coding for antioxidant proteins and response
to reactive oxygen and decrease in the expression of genes coding
for reactive oxygen species metabolic process (Supplementary
Data 10). The upregulation of these genes could result in fewer
reactive oxygen species and could therefore counter the effects of
reactive oxygen species on cellular aging.

Methods
Cell growth conditions. Yeast cells with BY4741 genetic background (MATa
his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) were grown in 10 mL CSM minimal media
containing 2% glucose. Four different treatment/growth conditions were used:
minimal media containing (i) 10 µM DMSO (American Bio AB00435), (ii) 10 µM
DMSO and 10 µM mycophenolic acid (Sigma M5255), (iii) 10 µM DMSO and
10 µM guanine (Sigma–Aldrich G11950) and 10 µM mycophenolic acid, (iv) 10 µM
guanine. Cells were grown for 18 h to a final density (OD600) between 0.1 and 0.25.
Cells were then diluted to 50 cells/μL for the final yeastDrop-Seq cell-collection
using the microfluidic chip.

Doubling time of cells in each treatment condition was calculated as follows:

ODf ¼ ODi ´ 2
Δt
td ! log2

ODf

ODi
¼ Δt

td
! td ¼ Δt

log2
ODf
ODi

where: ODf ¼ OD600 final
ODi=OD600 initial
Δt = elapsed culture time (18 h)
td = calculated doubling time
Based on two-point cell density measurements, we found that the doubling time

for MPA-treated cells was 187.8 min, for DMSO-treated cells was 130 min, for
guanine-treated cells was 130 min, and for GM-treated cells was 158.9 min.

yeastDrop-Seq experiments. Cells were subjected to Drop-Seq following the
original protocol2 with the following modifications. Barcoded beads were resus-
pended in the yeastDrop-Seq solution containing the reagents as shown in Table 1.
Cells were diluted to 50 cells/μL. After initial droplet formation, droplets were
incubated for 30 min at 30 °C to ensure zymolyase breakdown of cell walls followed
by cell bursting (Supplementary Fig. 1). After incubation, droplet quality was
evaluated and >95% droplet-uniformity remained intact.

Downstream breakage of oil droplets followed by reverse transcription,
exonuclease I treatment, and PCR for cDNA amplification were carried out as per
the Drop-Seq protocol2. cDNA was then tagmented using the NEBNext Ultra II
DNA Library Prep with Sample Purification Beads kit (NEB #E7103S).

Sequencing was done using the Illumina HiSeq2500 platform with 2 × 100
read pairs.

Single-cell RNA-seq data processing. Sequencing reads were trimmed using
Trimmomatic (version 0.39) for adapters and any base with less than 30 quality
score was also removed. Reads were aligned to the S. cerevisiae reference genome
(Genome assembly: R64-1-1 (GCA_000146045.2), ensembl genomes) using STAR
(version 2.7.5a). The expression count matrix was generated using UMI-tools
(version 1.0.1) on Saccharomyces_cerevisiae.R64-1-1.102 transcript annotation.
Quality control was performed using the scater R package (version 1.12.2). Number
of transcripts counts (UMI) in cells and number of features (genes) of each sample
were fitted to the Gaussian distribution and the outliers were filtered. Refer to the
code availability section for the code and parameters.

SC3 clustering. The cells of the 4 samples were combined and normalized using
the command ‘NormalizeData()‘ from the Seurat R package (version 3.2.0). The
PCA plot was performed using the top 500 variable features. Sample heterogeneity
was analysed using the SC3 R package (version 1.15.1). The number of clusters in
each sample was evaluated by assessing the heatmap of consensus clustering and
the silhouette plot of clusters. The map of cells from samples to the SC3 determined
clusters was made as a Sankey plot from the network3D R package (version 0.4).

Identification of differentially expressed genes. Differentially expressed genes in
each sample and consensus clusters k= 4, k= 8 were analysed using the Seurat R
package (version 3.2.0). All samples are combined and log normalized with a scale
factor of 104. The Wilcoxon test was used for statistical tests, and the Bonferroni
correction method was used to adjust the p-values of each gene. The key DE genes
in Figs. 4 and 5 are defined by a threshold of 50% minimum percentage of cells
with the gene detected and 0.5 log2 fold change was used to filter the gene list.

Doublet rate analysis. Doublet analyses were performed over 5 tools, including
DoubletFinder (version 2.0.3), DoubletDecon (version 1.1.6), scds (version 1.1.2) R
packages, Scrublet (version 0.2.1) and solo (version 0.6) python packages. For
DoubletFinder, the value of pK in each sample was determined by the mean-
variance normalized bimodality coefficient. For DoubletDecon, the rhop value was
set to 0.8. For scds, the threshold for doublet was determined by the co-expression
based doublet scores, binary classification based doublet scores, and the hybrid
scores. A threshold of top 4% cells was set for each score. For Scrublet, the tran-
scriptomic doublet was determined by comparing to the doublet scores of simu-
lated doublets in each sample. For solo, the default parameters were used. For the
cells that were flagged as doublets in more than one of the tools (excluding
DoubletDecon due to inconsistency), were considered as high-confidence doublets.

GO term analysis. Each cluster had genes that were classified as up- or down-
regulated based on fold change in expression and statistical significance with p-value
less than 0.05, using the Seurat (version 3). The R package clusterProfiler [ref] was
then used to perform the GO term enrichment and pathway identifications. In brief,
the ‘enrichGO()‘ function was used with the org.Sc.sgd.db organism database and the
Biological Process of the GO term database. The reported p-value is further adjusted
using the Benjamini–Hochberg procedure to correct for multiple testing34.

Statistics and reproducibility. The information on how statistical tests were
conducted is provided in the relevant subsections of the Methods section. For
example, the Wilcoxon test was used as the statistical test associated with the
identification of differentially expressed genes, with the use of the Bonferroni
correction method to adjust the p-values of each gene. The sample size was targeted
based on the original (mammalian cell optimized) Drop-Seq technique2. Corre-
sponding n number of each sample or cluster is indicated where appropriate. Due
to the inherent nature of stochasticity associated with gene expression, there were
cell-to-cell differences in the analyzed RNA transcript numbers even for cells
grown in the same growth condition.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The accession number for the raw sequencing data corresponding to the four treatment
conditions is GEO: GSE165686. Source data used as inputs to generate the figure panels,
with each Excel file containing the data shown in specific figure panel(s) are available at
the DOI-minting repository Zenodo at https://doi.org/10.5281/zenodo.4767298 35. All
other data are available from the corresponding authors on reasonable request.

Code availability
The code for analyses and parameters are available at https://github.com/hemberg-lab/
yeastDrop-Seq and the DOI-minting repository Zenodo at https://doi.org/10.5281/
zenodo.4762526 36.

Table 1 yeastDrop-Seq solution.

Solution (total volume) Reagent Reagent volume

yeastDrop-seq solution
(2223.5 μL)

Zymolyase (Zymo
Research E1004),
2 Units/μL

37.5 μL

Lysis buffer (no DTT) 1.5 mL
1M DTT 75 μL
Zymolyase buffer 600 μL
10% SDS (final
concentration at 0.05%)

11 μL

Lysis buffer (no DTT)2

(950 μL)
H2O 500 μL
20% Ficoll PM-100 300 μL
Sarkosyl 10 μL
0.5M EDTA 40 μL
2M Tris pH 7.5 100 μL

Zymolyase buffer37 (CSH
protocols Zymolyase
Buffer) (100mL)

2M Sorbitol 50mL
1M K2HPO4 4.2 mL
1M KH2PO4 0.8mL
EDTA (0.5M, pH 8) 1 mL
H2O 44mL
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