
BACTERIA

Driving polar growth
Profiling the phenotype of 200,000 mutants revealed a new cofactor

that may help a group of rod-shaped bacteria elongate and grow.
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B
acteria come in a variety of shapes and

sizes – some are round, some are spiral

and some are rod-shaped. The mecha-

nisms that bacteria use to generate and maintain

these diverse shapes as they grow is an area of

active research (Kysela et al., 2016). The cell

wall of bacteria contains a net-like structure

called peptidoglycan, and it is thought that this

structure maintains the shape of the cell

(Egan et al., 2017). As bacteria grow, nascent

peptidoglycans and other materials are inserted

into the cell wall in a complicated process involv-

ing multiprotein complexes that contain various

enzymes (Höltje, 1998; Pazos et al., 2017).

The process of cell wall growth has been

widely studied in rod-shaped bacteria such as

Escherichia coli and Bacillus subtilis, which grow

by adding new material to the long sidewalls of

the cell rather than to the ends (Daniel and

Errington, 2003). But not all rod-shaped bacte-

ria grow this way. For example, bacteria belong-

ing to the Actinobacteria phylum – which

includes the pathogens that cause tuberculosis,

leprosy, and diphtheria – grow by adding new

material to the ends (or poles) of the cell

(Kieser and Rubin, 2014; Cameron et al.,

2015).

It has been suggested that scaffold proteins

and intermediate filaments target the machinery

that synthesizes peptidoglycans to the cell poles,

in order to restrict growth to this region

(Letek et al., 2008; Fiuza et al., 2010). How-

ever, many aspects of polar growth, including

the composition of the enzyme complexes and

the cofactors involved, are still unknown. Now,

in eLife, Joel Sher, Hoong Chuin Lim and

Thomas Bernhardt from Harvard Medical School

report how a newly discovered cofactor localizes

a peptidoglycan synthase enzyme to the poles

of bacterial cells (Sher et al., 2020).

To identify the components involved in polar

growth, Sher et al. studied a library of 200,000

mutants of Corynebacterium glutamicum (a

member of the Actinobacteria phylum) in which

each strain is mutated for a specific gene or

pathway. The bacteria were exposed to various

stressful conditions or antibiotics, and a pheno-

typic profile was generated for each mutant

based on how they responded. Further analysis

revealed that genes which have a similar role, or

work together in the same pathway, exhibit simi-

lar characteristics when mutated. This allowed

Sher et al. to identify which genes are involved

in polar growth.

Sher et al. studied the behavior of a previ-

ously unknown gene that codes for a protein

named CofA. The phenotypic profile of CofA

mutants was highly correlated with the profiles

of strains carrying a genetic mutation in an

enzyme called PBP1a, which synthesizes pepti-

doglycans. Fluorescent tagging revealed that

CofA was localized at the cell poles of Coryne-

bacterium, which is consistent with previous

studies that found peptidoglycan synthases

(such as PBP1a) to also be located at this region

(Valbuena et al., 2007).
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Individually deleting the genes that code for

CofA and PBP1a showed that these two proteins

depend on each other for their localization. Fur-

ther experiments revealed that CofA acts as a

cofactor and binds to the transmembrane

domain of PBP1a, helping the enzyme accumu-

late at the tips of the cell.

Paralogs of the gene coding for CofA and its

transmembrane domains are found throughout

the Actinobacteria phylum. Sher et al. showed

that CofA proteins in pathogenic bacteria, such

as C. jeikium and M. tuberculosis, also interacted

with their PBP1a counterpart in a specific man-

ner. The CofA protein in M. tuberculosis was

found to have an extended N-terminal cyto-

plasmic domain and deleting this region facili-

tated the interaction between CofA and PBP1a.

However, the role of this N-terminal domain was

not investigated further.

This study is the first to identify a conserved

cofactor that modulates the behavior of pepti-

doglycan synthases in Actinobacteria. It also

raises several tantalizing questions: Would

removing CofA cause the growth of Corynebac-

terium to be less polar? Does deleting CofA and

PBP1a change how peptidoglycan units are

inserted into the cell wall? It would also be use-

ful to mine the phenotypic profiles of other

mutants to see if there are other unidentified

cofactors of the PBP proteins.

Several disease-causing pathogens use this

mode of polar growth, which is why it is impor-

tant to study the components and mechanisms

involved. The bacterial cell wall is repeatedly

used as a target for antibiotic development.

These findings could identify new drug targets,

which may help combat the rising rates of antibi-

otic resistance, especially in the case of tubercu-

losis. Furthermore, the phenotype profiling

approach used by Sher et al. could be used to

determine the role of previously uncharacterized

proteins and identify which proteins and genes

participate in the same biological pathway.
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Letek M, Ordóñez E, Vaquera J, Margolin W, Flärdh K,
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