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Introduction
DNA repair mechanisms are a major way by which organisms 
avoid mutations that can lead to disease, especially cancer. 
However, the complexity of DNA repair pathways has hin-
dered progress in fully understanding how they work. We 
have examined the genome of the simple chordate animal, 
Ciona intestinalis, which is the closest invertebrate relative 
of vertebrates, for genes associated with the repair of DNA 
interstrand cross-links (ICL repair), to see if it might pos-
sess a simplified version of this DNA repair mechanism. 
Fanconi anemia (FA) is clinically characterized by congenital 
abnormalities, pediatric bone marrow failure, and increased 
cancer risk during early adulthood. FA is caused by muta-
tion of one of the 19 genes linked in a complex pathway. The 
proteins encoded by the FA genes function together in the 
process of ICL repair and in the maintenance of genome 
stability.1–3 ICLs are highly toxic lesions that covalently link 
DNA strands, thereby imposing a direct physical block to 
DNA replication and RNA transcription. The FA protein 

interaction network is extensive and includes numerous other 
proteins that function in ICL repair, which have not been 
genetically linked to FA.4

The FA pathway proteins have been categorized into three 
distinct groups3: group I represents the FA core complex and 
comprises FANCA, FANCB, FANCC, FANCE, FANCF, 
FANCG, FANCL, FANCM, and FANCT/UBE2T. The FA 
core complex catalyzes the site-specific monoubiquitination 
of the FANCD2 and FANCI (group II) proteins.5–7 FANCL 
is a RING domain containing E3 ubiquitin ligase,8,9 while 
UBE2T is an E2 ubiquitin-conjugating enzyme.10 FANCM 
is a large (230  kDa) scaffold protein that possesses DNA 
binding and ATPase/translocase activities.11,12 The func-
tions of the remaining group I proteins remain poorly under-
stood. The group II proteins FANCD2 and FANCI, when 
monoubiquitinated, facilitate the recruitment of several key 
DNA repair proteins, including FAN1, FANCP/SLX4, and 
CtIP, to the ICL.13–18 The group III FA proteins comprise 
FANCD1/BRCA2, FANCJ/BRIP1, FANCN/PALB2, 
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FANCO/RAD51C, FANCP/SLX4, FANCQ/ERCC4, 
FANCR/RAD51, and FANCS/BRCA1 and function 
downstream of FANCD2 and FANCI monoubiquitination. 
These proteins function primarily in the homologous recom-
bination (HR) step of ICL repair. For example, FANCD1/
BRCA2, FANCN/PALB2, and FANCO/RAD51C regu-
late the localization and activity of FANCR/RAD51, a well 
established and key HR protein.19–25 Several of the FA pro-
teins are ubiquitous among the eukaryotes.26 Almost every 
organism surveyed possesses both of the group II proteins, 
as well as FANCL, FANCM, and an associated ubiquitin-
conjugating (E2) enzyme (Fig. 1). There is no apparent evolu-
tionary pattern associated with the presence or absence of the 
group I proteins outside of the vertebrates, as some are found 
in insects, while others are seen in plants and red algae before 
seemingly reappearing in Nematostella and then again in the 
vertebrates. Echinoderms, a sister group of the chordates, 
possess at least four of the group I proteins.

C. intestinalis is a tunicate, the group thought to be the 
closest invertebrate relative of the vertebrates.27 C. intestinalis 
has a number of characteristics that make it a promising model 
for human diseases. Its genome is very compact, at only 115 Mb, 
fully sequenced, most of which has been mapped to chromo-
somes. The current genebuild on Ensembl has 16,671 coding 
genes, as compared with 20,313  in humans.28 Homologs of 
almost all human gene families are represented, but Ciona does 
not have the duplicate genes created by the genome duplica-
tions that occurred in vertebrates.29 There are curated databases 
with abundant gene expression data,30,31 as well as a proteome 
database.32 While in many cases Ciona has lost genes reflecting 
adaptation to its sessile lifestyle,33 it can still be used to model 
simplified pathways,34–36 as it possesses a simplified version of 
the vertebrate body plan, most notably as a larva.37

A previous study focusing on zebrafish38 looked into the 
Ciona FA pathway and was unable to find most of the genes. 
The genes that were found were concentrated in groups II 
and III, making it plausible that Ciona could at the very least 
be used as a model for the latter two-thirds of the pathway. 
A  subset of the vertebrate group I proteins do appear to be 
present in Ciona, according to our study, suggesting that it 
may possess a minimal FA pathway.

In order to better assess the total complement of FA-
associated genes in C. intestinalis, we have analyzed the pro-
tein structure, hydrophobicity, and phylogenetic relationships 
of candidates for each of the FA genes of vertebrates. These 
analyses indicate that C. intestinalis has both of the group II 
genes from vertebrates, as expected, but only one-third of 
the group I and two-thirds of the group III genes. In com-
parison with other animals, and even the plant Arabidopsis, 
C. intestinalis appears to have an extremely depauperate FA 
pathway. These data suggest that C. intestinalis may be a good 
model organism to study a simplified FA pathway and gain 
important insight into the poorly understood molecular basis 
of the developmental defects of FA patients.

Figure 1. Presence/absence of FA gene orthologs in selected 
eukaryotes, as determined by this study. Filled boxes denote estimated 
presence of a gene in that taxon. Outside of Ciona and humans, 
presence/absence was determined only by a Delta-BLAST search of the 
NCBI database using the human gene as query. The dendrogram at the 
top of the figure denotes the relationships between organisms.

Materials and Methods
Obtaining sequences. First, a Reciprocal Best BLAST 

(RBB)39 search on 24 gene products was performed, search-
ing the human genes of the FA pathway (Table 1) against the 
Ciona proteome, taking the closest match, and then searching 
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the Ciona protein back against the human database to see if 
the same protein was returned as the closest result. This step 
was augmented with a search by the reciprocal smallest dis-
tance (RSD) method,40 which in all but three cases returned 
the same protein as RBB. In these three cases the RSD can-
didate had a higher percentage of positive matches, so those 
proteins were the ones listed in Table 1.

BLAT41 in the JGI genome portal42 as well as OrthoDB43 
was used to look for synteny between human and Ciona FA 
genes, but none was detected for any of the candidates.

Protein information. Using ClustalX and ClustalΩ,44 
each Ciona FA protein sequence was aligned against the 
human and Xenopus laevis sequence. The sequences were 
imported into Jalview,45 and the most closely aligned regions 
were isolated. Hydrophobicity plots of each sequence were 
created using Biopython and code built and modified from 
Dalke Scientific.46 To determine whether the results were 
significant, the Pearson coefficients were evaluated for the 
Ciona amino acid (aa) sequence against the human and 
Xenopus sequences (again using Python), a beta distribution 
derived for each sequence,47 and a comparison of the critical 
values to a P , 0.002 level of significance was made. As a 
standard, P , 0.05 level of significance with 24 tests gives 
about a 30% chance of a false positive (Type I error), so 
a more thorough bound of significance was required. The 
Sidak test,48 a familywise error correction method used to 
reduce type I errors, suggests a P-value of 1 – (1 − 0.05)1/24, 
or about 0.0021, where 0.05 is the original level of signi
ficance and 24 is the number of comparison tests per-
formed. This assumes that the genes and their products are 
independent – there does not appear to be any evidence that 
a mutation in one FA protein leads to the absence of any of 
the other FA proteins.

Protein structural models (Figs. 2E, F, J, and K and 4F 
and G) were constructed using Discovery Studio v. 3.1 (BIO-
VIA), based on pdb files in the RCSB Protein Data Bank, 
using 50 iterations with loop refinement. The protein motif 
diagrams were based on the information in Pfam 29.0.49

Phylogenetic analysis. Full protein sequences (see 
Supplementary Table S1 for accession numbers) were aligned 
using MAFFT with default settings.50 Poorly aligned regions 
were excised using TrimAI v. 1.3 using the Gappyout setting 
on the Phylemon 2.0 web server.51 RAxML v. 8.0.052 was used 
to construct a maximum likelihood (ML) tree with bootstrap 
number determined with the FC bootstrapping criterion and 
PROTGAMMABLOSUM62 substitution model. User sup-
plied trees with candidate genes rearranged were statistically 
evaluated using the Shimodaira–Hasegawa (SH) log likeli-
hood test in RAxML.

Results
Ciona has orthologs of vertebrate FA genes from each 

functional group. Our analysis revealed that Ciona has 
highly conserved orthologs of genes from each of the three 

FA protein groups (Fig.  1). Like all the other multicellular 
organisms examined, Ciona has both members of group II: 
FANCD2 and FANCI. However, only 4 of 9 members of 
group I and 5 of 8 members of group III were found, as well 
as only 2 of several “FA associated” proteins. In fact, Ciona 
appears to have as few or fewer members of the FA pathway of 
any multicellular organism examined, including plants, slime 
mold, and the primitive metazoan Nematostella.

Below we present evidence for or against orthology in 
C. intestinalis of each of the members of the FA pathway. The 
first analyses described are for those genes that we estimate 
are present in Ciona, organized by the functional group. We 
then list those that do not have orthologs in Ciona according 
to our methods. The order of the genes in the text is similar to 
the vertical order in Figure 1.

Group I orthologs found. FANCE. FANCE is part of 
the FA core complex with an unknown function. RBB returns 
an uncharacterized C. intestinalis protein LOC100186252 
(XP_002129936). The Ciona candidate protein aligns well 
with the last 250–300 aa of vertebrate FANCE proteins 
(R2 = 0.202), but on the whole, the correlation is only 0.08 
(and the region outside the C-terminal registering at only 
0.05; Fig. 2A). The Ciona candidate is about 400 aa in length, 
while vertebrate FANCE proteins are all between 550 and 
600 aa. Moderate alignment is seen between the two globular 
domains in the Ciona candidate and the two C-terminal glob-
ular regions in the human protein, though no other shared 
secondary structure is found in the ELM analysis (data not 
shown). The ML best tree (Fig. 2B) groups the Ciona candi-
date LOC100186252 (“CiUP1”) in a sister group to the verte-
brate FANCA proteins, more closely related to the plant and 
fungal candidates. However, if LOC100186252 is forced to 
group with the vertebrate FANCE proteins (Fig. 2C), the tree 
is not significantly worse, while moving LOC100186252 more 
distant from the FANCE clade is statistically worse (Fig. 2D; 
P , 0.01), consistent with the orthology of FANCE. In addi-
tion, a crystal structure exists for human FANCE,53 allowing us 
to perform structural homology modeling between the human 
protein and the inferred C. intestinalis protein (Fig. 2E and F). 
The 3D models indicate that the structure of LOC100186252 
is potentially very similar to human FANCE. Taken as a 
whole, these data provide support for LOC100186252 being 
the homolog of FANCE in C. intestinalis.

FANCL. FANCL is an E3 ubiquitin ligase and a com-
ponent of the FA core complex, which serves to ubiquit-
inate FANCD2 and FANCI.9 RBB returns a putative Ciona 
FANCL protein with an E-value of 2 ×  10−74 (Table  1). The 
Ciona candidate hydrophobicity plot shows close correspon-
dence to the vertebrate proteins (Fig.  2G). SMART and 
Pfam primary sequence-based prediction analyses both detect 
three amino-terminal WD40 repeats and a carboxy-terminal 
RING domain in Ciona fancl (Fig. 2I), similar to that origi-
nally described for human FANCL.9,54 Subsequent structural 
analyses of Drosophila and human FANCL have revealed 
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Table 2. Hydrophobicity plot correlations between identities and 
positive matches.

Group Name Id% Hydropathy 
Plot ID% R2

Pos% Hydropathy  
Plot Pos% R2

I FANCA 36% 0.052 58% 0.027

FANCB 37% 0.045 52% 0.026

FANCC 32% 0.121 46% 0.052

FANCE 19% 0.082 34% 0.051

FANCF 47% 0.039 65% 0.021

FANCG 56% 0.034 74% 0.021

FANCL 36% 0.373 56% 0.199

FANCM 52% 0.369 66% 0.321

FAAP20 18% 0.053 28% 0.027

FAAP24 26% 0.177 45% 0.098

FAAP100 35% 0.114 53% 0.053

UBE2T 34% 0.311 58% 0.222

II FANCD2 25% 0.304 44% 0.222

FANCI 29% 0.331 50% 0.237

III FANCD1 31% 0.127 49% 0.046

FANCJ 37% 0.291 53% 0.236

FANCN 18% 0.099 45% 0.061

FANCO 41% 0.328 44% 0.345

FANCP 32% 0.050 49% 0.030

FANCQ/
XPF

50% 0.566 68% 0.446

FANCR/ 
RAD51

82% 0.844 92% 0.847

FANCS/ 
BRCA1

27% 0.117 46% 0.322

ERCC1 47% 0.396 65% 0.446

FAN1 41% 0.447 63% 0.387

Note: ID% refers to the Delta-BLAST result for identical amino acid matches. 
Pos% refers to Delta-BLAST results for positive amino acid matches, eg, aa 
from the same functional groups.

that FANCL encompasses three distinct domains: an amino- 
terminal E2-like fold, a central double RWD-like domain, 
and a carboxy-terminal RING domain.55,56 Structural homol-
ogy modeling of Ciona fancl, based on the 3.2  Å Drosophila 
melanogaster FANCL structure (PDB ID 3K1L),55 indicates 
the existence of close structural similarity (Fig. 2J and K). In 
addition, Clustal Omega multiple sequence alignment (MSA) 
analyses of human, mouse, and Ciona FANCL indicate that 
K22, a predicted site of autoubiquitination, is conserved in all 
three species (data not shown). The ML best tree (Fig.  2H) 
agrees with this finding, showing that the C. intestinalis candi-
date falls in a clade with the vertebrate FANCL proteins to the 
exclusion of the second most similar Ciona and human proteins. 
However, moving the C. intestinalis candidate further from the 
vertebrate FANCL clade, or as a sister taxon to the vertebrate 
FANCL genes, does not make for a statistically worse tree 
(data not shown). This ambiguity indicates that the phyloge-
netic evidence for orthology is weak. However, based on the 
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structural similarities, there is reasonably strong support for the 
C. intestinalis gene to be a true ortholog of human FANCL.

FANCM. FANCM is also a component of the FA 
core complex and plays a key role in DNA replication fork 
remodeling and the chromatin recruitment of the group I 
proteins during ICL repair.11,57–61 RBB returns a putative 
Ciona FANCM protein as the closest match. Secondary 
structure analysis shows that both the human and Ciona 
candidate proteins possess a DEAH-box helicase/DNA-
stimulated ATPase domain (Fig. 3B). The human FANCM 
protein also possesses a degenerate XPF/ERCC4 endonu-
clease domain that the Ciona protein lacks.12 The hydropho-
bicity plot shows high levels of correlation, especially toward 
the amino-terminus (Fig. 3A). In the ML tree, the Ciona 
FANCM candidate clusters with the vertebrate FANCM 
proteins in a clade with 94% bootstrap support (Fig.  3C). 
These data indicate strong support for the orthology of the 
C. intestinalis candidate.

FANCT/UBE2T. FANCT/UBE2T is one of the many 
E2 ubiquitin-conjugating enzymes found in the human pro-
teome and is the specific one implicated in the monoubiqui
tination of FANCD2 and FANCI.10 In humans, UBE2T 
interacts with FANCL to ubiquitinate FANCD2. Patient-
derived mutations in the UBE2T gene have recently been dis-
covered in two unrelated patients, leading to a call to denote 
UBE2T as FANCT.62

The Delta-BLAST search returns Ciona ube2–17kd as 
the closest match to human UBE2T. However, the recipro-
cal BLAST against human proteins returns human UBE2D4 
with an E-value of 2  ×  10−77 (Table  1). The RSD method 
returns Ciona ube2 J1l with an E-value of 9 × 10−76. Appar-
ently, these very similar E2 ubiquitin-conjugating enzymes 
cannot be reliably distinguished by BLAST searches (Fig. 3E). 
The hydropathy and phylogenetic analyses (Fig. 3D and F) do 
not help to resolve the exact relationship. In the hydropathy 
plot, it is apparent that both the Xenopus and Ciona proteins 
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Figure 2. Analysis of FANCE (A–F) and FANCL (G–K) putative homologs in C. intestinalis. (A) Hydropathy plot of best aligning regions in human, 
Xenopus, and Ciona putative homologs for FANCE. (B) Best ML tree for alignment of FANCE and putative homologs in C. intestinalis and other 
eukaryotes. CiUP1 (LOC100186252) has 93% bootstrap support for membership in the clade with vertebrate FANCE proteins. (C) Forcing CiUP1 into the 
vertebrate FANCE clade does not result in a statistically worse tree, whereas if the locations of the two best C. intestinalis BLAST matches to FANCE 
are switched in the ML tree (D), the tree is worse at the P , 0.01 level, giving further support to LOC100186252 as the homolog of FANCE.  
(E,F) Structural modeling of human FANCE and C. intestinalis LOC100186252, showing extreme similarity of overall structures. (G) Hydropathy plot 
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roughly follow the pattern of human UBE2T, but neither 
closely matches with the hydropathy of the human protein. 
Curiously, in the ML phylogenetic analysis, the best tree 
shows human UBE2T clustering with another Ciona ube2 
protein, Ciona ube2D3-like, but not the Ciona ube2–17, or 
ube2J1l proteins that are the best hits in the RBB and RSD 
analyses (Fig. 3F). If Ciona ube2J1l is grouped with human 
UBE2T, the tree is not statistically worse (Fig. 3G), but if 
Ciona ube2D3l is swapped with Ciona ube2–17, the tree does 
become significantly worse (Fig. 3H). In short, there are mul-
tiple ube2 proteins in Ciona that have such high similarity to 
the human UBE2T that they alternately appear as putative 
homologs in different analytic methods. We suggest that it is 
likely that one of these performs the same E2 ubiquitin conju-
gation function as UBE2T does in the human FA pathway.

Both group II genes have orthologs in Ciona. FANCD2. 
FANCD2 is one of the proteins monoubiquitinated by FANCL 
and FANCT/UBE2T during ICL repair.5,9,10 Both RBB 
and RSD returned a putative FA complementation group 
D2 protein in C. intestinalis as the closest match for this 
protein in humans, with the BLAST search returning 25% 

identity, a 44% match on positives, and an E-value of less than 
1.7 × 10−308, indicating extremely strong similarity (Table 1). 
The Ciona fancd2 protein contains 1394 aa, while the most 
common isoform in humans is 1451 aa long.

When the sequences are aligned and gaps removed, 
the smoothed hydrophobicity plots show multiple similari-
ties (Fig. 4A). The proteins have highly similar (R2 $ 0.71) 
regions at around aligned Ciona aa 100–125, 240–280, 
510–540, 660–760, 1010–1045, and 1130–1170. Both the 
human and Ciona proteins show five globular domains with 
moderate alignment. The phylogenetic analysis groups the 
C. intestinalis fancd2 candidate with vertebrate, fly, urchin, 
and amphioxus putative orthologs, although at low bootstrap 
support (Fig. 4B). Forcing the C. intestinalis candidate out of 
the FANCD2 clade makes the tree significantly worse at the 
P , 0.02 level (Fig. 4C).

In addition, Clustal Omega MSA analyses of human, 
mouse, and Ciona FANCD2 revealed a strong conservation of 
the CUE ubiquitin-binding domain,63 the PCNA-interaction 
motif,64 and the site of FANCD2  monoubiquitination 
K561 (Fig.  4D and E).5 Furthermore, structural homology 

FANCM FANCT/UBE2T

A

B

C F

H

GE

D2

0

H
yd

ro
p

at
h

y

−2

−4

2

4

0

H
yd

ro
p

at
h

y

−2

−4

200

H. sapiens FANCM
H. sapiens 
UBE2T

C. intestinalis ube2D3IC. intestinalis fancm

Xenopus

Ciona

Human

Xenopus CionaH. sapiens

400 600 800 20 40 60 80 100 120 140
Residue Residue

DmAT

NvPP

DfARH DrUBE2D1

DrUBE2D1

XIUBE2D1

XIUBE2D1

Ciube2-17

Ciube2D3I

NvPP

NvPP
Dm_effeteA

Dm_effeteA
BfHP

BfHP
SpUBE2-17

SpUBE2-17
AtUBE11

AtUBE11

HsE2D4X1
HsE2D4X1 Worse**

Ciube2D3I
Ciube2-17

Ciube2J1I

Ciube2J1I

HsUBE2T
HsUBE2T

DdHP
DdHP

Cifancm

SpUP

BfHP

XIFancM

DrFancM

CiDHX58

HsRH116

HsFANCM

AtFancM

0.4

32 98

37
93

94

43

77

100

100

54

0.3

0.8

DrUBE2D1
XIUBE2D1
Ciube2-17

NvPP
Dm_effeteA
BfHP

SpUBE2-17
AtUBE11

HsE2D4X1 Not worse

Ciube2J1I

Ciube2D3I

HsUBE2T
DdHP

0.8

30

35 20

62

41

59

86

68

DEXDc

DEXDc

HELICc

HELICc

ERCC4

UBCc

149 aa

197 aa

UBCc

2048 aa

1371 aa

Figure 3. Analysis of FANCM (A–C) and FANCT/UBE2T (D–F) putative homologs in C. intestinalis. (A) Hydropathy plot of best aligning regions in 
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modeling of Ciona fancd2, based on the 3.4 Å Mus musculus  
Fancd2-Fanci heterodimer structure (PDB ID 3S4W),65 
reveals a largely favorable structural similarity (Fig. 4F and G).  
Taken together, we consider that these data provide good sup-
port for the presence of a C. intestinalis fancd2 gene.

FANCI. Like FANCD2, FANCI is monoubiquitinated 
by FANCL and FANCT/UBE2T during ICL repair. Both 
RBB and RSD returned a C. intestinalis candidate fanci as 
the closest match to the human FANCI protein, with an 
E-value of 0. The hydrophobicity plots return an R2 value 

of 0.33, but several areas, notably a 150 amino acid stretch 
toward the carboxy-terminal end of the protein, have much 
higher correlations (Fig.  4H). Both proteins show multiple 
globular domains with moderate alignment and no recog-
nizable secondary motifs. Clustal Omega MSA analyses of 
human, mouse, and Ciona FANCI indicate the conservation  
of K523 and K715, the sites of FANCI monoubiquitina-
tion and SUMOylation, respectively (Fig.  4J).6,7,66 In addi-
tion, Ciona fanci contains multiple conserved SQ/TQ ATM/
ATR kinase phosphorylation motifs proximal to the putative 
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Figure 4. Analysis of FANCD2 (A–G) and FANCI (H–K) putative homologs in C. intestinalis. (A) Hydropathy plot of best aligning regions in human, 
Xenopus, and Ciona putative homologs for FANCD2. (B) Best ML tree for alignment of FANCE and putative homologs in C. intestinalis and other 
eukaryotes. Cifancd2 groups closely with FANCD2, but with low bootstrap support. (C) If Cifancd2 is moved out of the FANCD2 clade, the tree 
is statistically worse at the P  0.02 level, supporting the case for Cifancd2 as a true homolog of FANCD2. (D) Alignment of human, mouse, and 
C. intestinalis FANCD2 protein sequences showing conservation of L215, P216, L234, and L235, critical residues of the CUE domain (red boxes).63 
(E) Alignment showing partial conservation of critical residues around human aa 525 (arrows, and box), as well as K561, the site of monoubiquitination5 
(red arrowhead) in C. intestinalis. (F, G) Modeling of mouse and C. intestinalis FANCD2 homolog protein structures, respectively. (H) Hydropathy plot of 
best aligning regions in human, Xenopus, and Ciona putative homologs for FANCI. (I) Best ML tree for alignment of putative FANCI homologs, showing 
weak bootstrap support for Cifancl being more closely related to FANCI than the next most similar C. intestinalis protein. (J) Alignment of human, mouse, 
and C. intestinalis FANCI protein sequences showing the conservation of K523 and K715, the site of FANCI monoubiquitination,6,7 and, the site of FANCI 
SUMOylation, respectively (arrowheads). (K) SQ/TQ phosphosite clusters (red boxes) shown to be critical for FANCI function.68 Dashed boxes denote 
possible additional functional SQ/TQ phosphosite clusters in C. intestinalis sequence not found in humans and mouse.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Ciona fanconi anemia genes

141Evolutionary Bioinformatics 2016:12

monoubiquitination site (Fig. 4K). In vertebrates, these sites 
have been demonstrated to be critical for FANCI regulation 
and function.67,68 On the other hand, the ML phylogenetic 
analysis is inconclusive with respect to the orthology of the 
C. intestinalis candidate and FANCI. The best ML tree places 
the Ciona candidate as a sister taxon to a clade of deuterostome 
plus cnidarian FANCI proteins (Fig.  4I). However, forcing 
the Ciona candidate into the vertebrate FANCI clade results 
in a statistically worse tree, while forcing the Ciona candi-
date to group with the next most similar Ciona protein is not 
significantly different from the best ML tree (data not shown). 
In spite of the lack of support from the phylogenetic analysis, 
the sequence motif and structural data strongly suggest that 
Ciona fanci is a true FANCI ortholog.

Seven group III orthologs were found. FANCJ/BRIP1. In 
humans, FANCJ is a 5′–3′ DNA helicase that interacts directly 
with BRCA1.69,70 RBB returns the ERCC2 nucleotide excision 
repair protein, but RSD returns human FANCJ. There is good 
alignment between the globular domains in human FANCJ and 
the Ciona candidate, and the hydrophobicity plot shows high 
correlation (Fig. 5A). The human protein is of a similar size to 
the Ciona protein, and they both possess a DEAH-box helicase 
domain (Fig. 5B). The ML tree groups C. intestinalis fancj in the 
vertebrate FANCJ clade at 100% bootstrap support, and moving 
the C. intestinalis candidate out of that clade makes the tree signi
ficantly worse (Fig. 5C and D). Given these data, the C. intestinalis 
fancj candidate is a clear ortholog of human FANCJ.

FAN1. Fanconi-associated nuclease 1 is a DNA repair 
protein known to interact with monoubiquitinated FANCD214 
and FANCI.71 The RBB returns a protein annotated as Ciona 
fan1, with an E-value of 4 × 10−145. The fan1 C-terminal region 
shows 41% identity and 63% positive matches. The human and 
Ciona proteins align extremely well in the hydropathy plot 
(Fig. 5E) and both contain a 110 aa VRR nuclease domain 
(Fig. 5F). The ML tree clusters the C. intestinalis candidate 
with the vertebrate FAN1 proteins (Fig.  5G) and is signifi-
cantly worse when the C. intestinalis protein is taken out of 
that clade (Fig. 5H; P , 0.01). Taken together, the evidence is 
strongly in favor of Ciona fan1 being a homolog of FAN1.

FANCQ/ERCC4. The FANCQ gene product, also known 
as ERCC4 or XPF, forms a heterodimer with ERCC1 and func-
tions as a DNA repair structure-specific endonuclease.72 Both 
search methods return a Ciona xpf as the most closely match-
ing protein, with 50% identity, and 64% positive matches. The 
hydrophobicity plots show a high correlation, excepting one 
area corresponding to aa 390–430 in Ciona and aa 520–560 in 
humans (Fig. 6A). Both proteins possess an ERCC4 endonu-
clease domain of the same size approximately the same dis-
tance from the carboxy-terminal end of the protein (Fig. 6C). 
The ML analysis clusters the C. intestinalis xpf in the FANCQ 
clade (Fig. 6B), although moving the C. intestinalis protein out 
of that clade does not make the tree likelihood significantly 
worse (data not shown). Taken together, we conclude that  
C. intestinalis does have a FANCQ ortholog.

ERCC1. ERCC1 interacts directly with FANCQ/ERCC4. 
The Ciona candidate returned by RBB (XP_009861832) has 
an extremely similar hydropathy plot as the human and frog 
ERCC1 proteins, except at the N-terminal-most 50 residues 
(Fig.  6D), although the Ciona candidate appears to lack an 
intact HhH1 domain present in the human protein (Fig. 6E). 
The ML analysis groups the Ciona candidate within the ver-
tebrate ERCC1 clade (Fig.  6F). Moving the Ciona protein 
outside that clade or grouping it with the next most similar 
human gene (FAAP24) makes the trees statistically worse at 
the P , 0.02 level (Fig. 6G and H). These data strongly sup-
port the orthology of the Ciona candidate.

FANCO/RAD51C. RAD51C is also required for the 
maintenance of chromosome stability by functioning in HR 
repair.73 Ciona has five potential RAD51 family homologs if 
the proteins listed as lim15 and xrcc2 are included. RBB finds 
Ciona rad51 (XP_002126934) as the closest match to human 
FANCO. However, if the Ciona protein identified as rad51C 
in GenBank (XP_002130341) is used in the ML analysis with 
FANCO, Ciona rad51C robustly groups with FANCO to the 
exclusion of Ciona rad51 (Fig.  7C). Forcing Ciona rad51C 
out of the FANCO clade results in a statistically worse tree 
(Fig. 7D, P , 0.01). Structurally, the Ciona rad51C is more 
similar to FANCO than the higher BLAST match Ciona 
rad51 (Fig. 7A and B). Based on these analyses, we conclude 
that Ciona does have a FANCO homolog.

FANCR/RAD51. In humans, RAD51, recently gaining 
the name FANCR, is the major DNA strand exchange protein 
and is critical for the HR DNA repair process.74,75 De novo 
heterozygous RAD51 mutations have recently been reported 
in two unrelated individuals with an FA-like syndrome.76 
RAD51 is known to interact with both FANCS/BRCA1 and 
FANCD1/BRCA2 in the cellular DNA damage response.77 
Both search methods return a Ciona rad51 as the most likely 
counterpart to the human protein. RAD51 appears to be the 
most highly conserved protein in the entire FA pathway. The 
protein possesses 82% identity between human and Ciona as 
well as a 92% level of positive matches, far outstripping any 
other gene product tested. The Ciona product is 338 aa in 
length, while the human product is 339 aa (Fig.  8B). Both 
RAD51 and the Ciona rad51 candidate possess a 20 amino acid 
helix-hairpin-helix domain starting at about amino acid 60, as 
well as a 187 aa AAA-ATPase domain ending 33 aa before 
the C-terminus. The hydrophobicity plots show extreme simi-
larity, returning a Pearson coefficient of 0.92 (Fig. 8A). The 
ML analysis shows the Ciona rad51 candidate grouping with 
other deuterostome RAD51 proteins (Fig. 8C), while exclud-
ing Ciona rad51 from that clade results in a statistically worse 
tree (Fig. 8D, P  0.01). It is highly likely that Ciona rad51 is 
a true ortholog of human FANCR/RAD51.

FANCS/BRCA1. The C. intestinalis candidate for FANCS 
by RBB has two BRCT (BRCA1 C-terminal domain) domains 
at the C-terminus, similar to BRCA1 (Fig. 8F). BRCT domains  
typically mediate interactions with phosphopeptides. The 
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hydropathy plot of the C-terminal 500 residues of the 
C. intestinalis, human, and frog proteins show a good degree of 
similarity (Fig. 8E). However, the rest of the sequence of the 
1172 aa predicted C. intestinalis protein (from the ANISEED 
database as KH2012:KH.C9.487) toward the N-terminus 
has little resemblance to the human FANCS/BRCA1. Most 
likely because of this lack of alignment for a large part of the 
sequence, the ML analysis does not group the C. intestinalis 
protein with FANCS at a robust level (Fig. 8G). In fact, mov-
ing the C. intestinalis sequence either within the vertebrate 
BRCA1 clade or to the more distant branch of the tree makes 
for a statistically worse topology (data not shown). Because part 
of the protein is similar to its putative homolog while over half 
is not, we cannot say with complete confidence that “Ci-brca1” 
is a true homolog. However, it may still be the case that this 
protein in combination with one or more others is fulfilling the 
function served in humans by BRCA1.

FA and FA-associated proteins not found in Ciona. Our 
analyses found 11 FA or FA-associated proteins present in ver-
tebrates but not in Ciona. These results were based on the four 
major criteria outlined for each of the predicted FA homologs, 
as outlined above, namely, BLAST search, structural motif 
similarity, hydropathy, and phylogenetic (ML) analysis. The 
FA proteins that we did not find homologs for in Ciona were 
as follows: FANCA, FANCB, FANCC, FANCF, FANCG, 

FANCD1/BRCA2, FANCN/PALB2, and FANCP/SLX4. 
We also failed to find the FA-associated proteins FAAP20, 
FAAP24, and FAAP100.

For 10 of the 11 cases, RBB and RSD failed to match 
a Ciona protein sequence with an FA-related protein 
(Table  1). The exception is FANCD1/BRCA2, for which 
a match comes up in RBB as an uncharacterized protein 
LOC100185089 (Table 1). However, the ML analysis results  
in another C. intestinalis protein showing a closer relation-
ship to FANCD1/BRCA2. Rearranging the trees so that 
the best BLAST match is moved out of the FANCD1 clade 
altogether, or switching the first and second most similar 
C. intestinalis proteins in the tree, does not result in statisti-
cally worse trees, indicating that the evidence for homology 
of the C. intestinalis proteins is weak (data not shown). In 
addition, the hydropathy analysis shows a low correla-
tion (R2  =  0.117, Table  2). A Prosite scan indicates that 
LOC100185089 has two BRC repeats, which may explain 
why it comes up in the BLAST search. However, FANCD1 is 
a much larger protein (3418 aa vs. 724 aa) and has eight BRC 
repeats. These BRC repeats represent the major sites of inter-
action between RAD51 and BRCA2.78 In addition, BRCA2/
FANCD1 has an α-helical region, an oligonucleotide/ 
oligosaccharide-binding domain, a TOWER domain, and 
a second oligonucleotide/oligosaccharide-binding domain. 
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C.  intestinalis LOC100185089 possesses two BRC repeats 
only. None of these other domains are present.

There is a possibility that the predicted Ciona protein 
in the NCBI database is not the full-length sequence. How-
ever, we searched a 22 kb region in the Ciona genome, which 
includes LOC100185089 and flanking regions. No signifi-
cant similarity to the human sequence outside the region that 
aligns with LOC100185089 was found, even when the protein 
sequence not included in LOC100185089 was blasted against 
the translated Ciona genomic sequence. Thus, we infer that 
Ciona does not have a complete ortholog of human BRCA2.

For the other 10 of the 11 cases of unlikely homology, the 
hydropathy R2 statistics are lower numbers than those for the 
putative homologs, ranging from 0.034 to 0.177 vs. 0.291 to 
0.566, respectively (Table 2). Similarly, we did not find good 
evidence for homology to any C. intestinalis proteins by any 
of the other three analytical methods used (Table 1, and data 
not shown). Therefore, we conclude that these 11 FA and FA-
associated proteins are missing from C. intestinalis.

Discussion
In this study, we have established that the model marine inver-
tebrate, C. intestinalis, appears to contain all of the necessary 

functional components to reconstitute a simplified FA pathway 
(Fig. 9). Of the FA core complex group I proteins, we identified 
orthologs of FANCL, FANCT/UBE2T, and FANCM, and 
possibly FANCE. FANCL and FANCT/UBE2T are the E3 
ubiquitin ligase and E2 ubiquitin conjugase enzymes, respec-
tively, that monoubiquitinate FANCD2 and FANCI.5–7,10 
While FANCD2 and FANCI monoubiquitination are largely 
defective in FA patient cells with mutations in any of the core 
complex genes (FANCA, B, C, E, F, G, L, and T), several stud-
ies have established that FANCL and FANCT/UBE2T, in the 
presence of an E1 ubiquitin-activating enzyme and DNA, can 
readily promote FANCD2 and FANCI monoubiquitination 
in vitro.8,79–81 The roles of the other FA core complex proteins 
in promoting FANCD2 and FANCI monoubiquitination in 
vivo remain unknown. The functions provided by these other 
core complex proteins may be unnecessary in C. intestinalis, 
or may be provided by other proteins. Interestingly, previous 
studies have established that the FANCE protein directly 
interacts with FANCD2, thereby bridging the core ubiquitin 
ligase machinery and the substrate. C. intestinalis fance may 
fulfill an analogous function. Similar to human FANCM, C. 
intestinalis fancm contains an N-terminal DEAH domain-
containing Walker A and B motifs typical of an SF2 family 
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translocase. These proteins are capable of movement along 
DNA in the absence of helicase activity. FANCM translo-
case activity is necessary for replication fork stability and 
ATR-CHK1 checkpoint signaling.82,83 The C-terminus of 
human FANCM contains a degenerate ERCC4 endonuclease 
domain, which is also the site of binding of its heterodimeric 
partner FAAP24; yet, this region appears absent in C. intes-
tinalis fancm (Fig. 3B). Since C. intestinalis appears to lack a 
FAAP24 homolog, it is not surprising that Cifancm lacks the 
binding site. It has been speculated that the FANCM-FAAP24 
heterodimer plays an important DNA-targeting function, and 
why the formation of a heterodimer might be unnecessary in 
C. intestinalis is unclear.57,84 However, the categorization of 
FANCM as a true FA gene remains controversial.

The evidence for structural and functional conservation of 
the FANCD2 and FANCI proteins appears quite strong, with 
several protein domains and important sites of posttranslational 
modification being highly conserved (Fig. 4D, E, J, and K). 
This is consistent with the previous finding indicating con-
siderable depth in their conservation in all eukaryotes.26 The 
monoubiquitination of these proteins is a critical step in the 
activation of the FA pathway and in ICL repair.5–7 In the case 
of FANCD2, monoubiquitination of K561 has been impli-
cated in the recruitment of the FAN1 and FANCP/SLX4 
proteins, which participate in, or facilitate, several key nucle-
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olytic processing steps during ICL repair.13–15,17 Conservation 
of the FANCD2  K561 and FANCI K523  monoubiquitina-
tion sites, as well as several other important sites of posttrans-
lational modification, strongly suggests that this central step 
is intact in C. intestinalis.

Of the group III proteins, the evidence points to the 
existence of C. intestinalis orthologs of FANCJ/BRIP1, 
FANCQ/ERCC4, FANCR/RAD51, FANCO/RAD51C, 
and FANCS/BRCA1. The heterodimeric binding partner of 
FANCQ/ERCC4, ERCC1, is also present, as is the FANCD2-
associated nuclease FAN1. Conservation of FANCR/RAD51 
and FANCS/BRCA1 is not surprising, given their key roles 
in multiple cellular processes, including meiotic and mitotic 

recombination. Targeted disruption of either gene results in 
early embryonic lethality in mice.85,86 However, the absence of 
FANCD1/BRCA2 is particularly surprising, given its strong 
conservation among eukaryotes.26 FANCD1/BRCA2 plays 
a critical role in regulating FANCR/RAD51 nucleoprotein 
filament formation and DNA strand exchange.78,87–89 It is 
also intriguing that C. intestinalis apparently lacks FANCN/
PALB2. FANCN/PALB2 interacts directly with FANCD1/
BRCA2 and promotes its chromatin localization.23 Studies of 
the Ustilago maydis homolog of BRCA2 indicate that BRCA2 
promotes RAD51 nucleation at junctions of single-stranded 
and double-stranded DNA.90,91 However, lower eukaryotes 
such as Saccharomyces cerevisiae and Schizosaccharomyces pombe 
lack homologs of both FANCS/BRCA1 and FANCD1/
BRCA2, indicating that the functions provided by these pro-
teins are unnecessary in certain organisms or may be provided 
by other proteins.

There is considerable precedent suggestive of the efficacy 
of studying the FA pathway in C. intestinalis. Study of several 
human diseases have benefited from the use of invertebrate 
model organisms. In particular, the genetically tractable 
invertebrates, such as Drosophila and Caenorhabditis elegans, 
have been used extensively.92,93 Notably, it has recently been 
shown that even very simple animals, such as sponges and sea 
anemones, have homologs of many human disease genes.94,95 
C. intestinalis has only recently emerged as a model system. 
However, it has already been used to study certain human 
disease pathways, such as Huntington’s Disease96,97 and 
Alzheimer’s disease (AD).98 In the case of Alzheimer’s, trans-
genic C. intestinalis were produced expressing the human APP 
gene mutant associated with familial AD. The transgenic 
protein resulted in the formation of amyloid-β plaques in less 
than 24 hours in the rapidly developing C. intestinalis larval 
brain. This result contrasts with a 2–8-month time period for 
plaques to form in mouse AD models. For FA, study of the 
pathway in invertebrate model organisms has proven valuable 
in several cases.99 For example, the function of FANCJ in 
maintaining poly(G)/poly(C) tract stability during DNA rep-
lication was first shown in the nematode worm C. elegans.100 
It was later demonstrated that human FANCJ has the same 
helicase function.101

It is important to note that of all the three major con-
stellations of FA patient phenotypes, namely, developmental 
defects, bone marrow failure, and increased cancer risk, the 
molecular bases of the developmental defects are the most 
poorly understood. A C. intestinalis model for FA could 
provide unique insights into these defects. Temporospatial 
aspects of FA gene expression and developmental conse-
quences of disruption of FA genes using CRISPR/Cas9 or 
TALEN systems102–106 could be highly informative for FA 
patient developmental defects. Furthermore, another unique 
benefit to exploring a C. intestinalis model for FA is the 
prospect of discovering the physiological function(s) of this 
pathway. While it is well established that FA patient cells 
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Figure 9. (A) A model of the FA pathway in humans. Following exposure 
to DNA damaging agents or during S-phase of the cell cycle, the 
FA core complex (group I) proteins catalyze the monoubiquitination 
of the FANCD2 and FANCI (group II) proteins. Following their 
monoubiquitination, FANCD2 and FANCI function together with the 
downstream FA (group III) proteins to repair damaged DNA. Modified 
from Cybulski and Howlett, 2011.114 (B) A model of a hypothetical 
simplified FA pathway in C. intestinalis based on the reduced 
complement of FA gene homologs found by this study. C. intestinalis 
possesses the critical E3 ubiquitin ligase (Fancl) and E2 ubiquitin-
conjugating enzyme (Fanct) to monoubiquitinate Fancd2 and Fanci, as 
well as a minimal set of FA group III effector proteins. Proteins shown in 
gray have lower support for existence in C. intestinalis.
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are hypersensitive to ICL-inducing agents, the relevance of 
ICLs in the physiological setting is unclear. Recent studies 
have established an important role for the FA proteins in 
mitigating endogenously arising aldehyde-mediated DNA 
damage.107–109 Exploring the pathway in other model systems 
may lead to a broader understanding of the true function(s) 
of these key proteins. C. intestinalis, as a tunicate, is in the 
most closely related invertebrate group to the vertebrates.27,110 
As such, in spite of being anatomically simpler than a verte-
brate, they are genetically more similar than other eukary-
otes. However, it is possible that C. intestinalis may deploy 
its FA homologs differently than they function in humans. 
If this is the case, it may still be relevant to understanding 
human disease, as it will point to alternative ways of dealing 
with DNA lesions and may provide information on some of 
the other defects seen in FA patients.

In summary, our study provides compelling evidence for 
the existence of a simplified and potentially functional FA 
pathway in the model chordate C. intestinalis. C. intestinalis 
is an excellent model for the study of developmental pro-
cesses because it is anatomically simple, its gametogenesis 
and development are well studied, it has a small and well-
annotated genome and abundant gene expression data, and 
good transgenic technology exists.29,30,111–113 Future studies 
will seek to determine the patterns and timing of FA gene 
expression in C. intestinalis and the developmental impacts 
of disruption of the pathway.
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