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A B S T R A C T   

Climate change is a worsening global crisis that will continue negatively impacting population health and well-being unless adaptation and mitigation interventions 
are rapidly implemented. Climate change-related cardiovascular disease is mediated by air pollution, increased ambient temperatures, vector-borne disease and 
mental health disorders. Climate change-related cardiovascular disease can be modulated by climate change adaptation; however, this process could result in sig-
nificant health inequity because persons and populations of lower socioeconomic status have fewer adaptation options. Clear scientific evidence for climate change 
and its impact on human health have not yet resulted in the national and international impetus and policies necessary to slow climate change. As respected members 
of society who regularly communicate scientific evidence to patients, clinicians are well-positioned to advocate on the importance of addressing climate change. This 
narrative review summarizes the links between climate change and cardiovascular health, proposes actionable items clinicians and other healthcare providers can 
execute both in their personal life and as an advocate of climate policies, and encourages communication of the health impacts of climate change when counseling 
patients. Our aim is to inspire the reader to invest more time in communicating the most crucial public health issue of the 21st century to their patients.   

1. Introduction 

Human activities, particularly the combustion of fossil fuels, have 
unequivocally warmed the earth’s atmosphere, ocean, and land by 
increasing the atmospheric concentrations of greenhouse gasses (GHG) 
like carbon dioxide (CO2) [1–5]. The big picture solution to climate 
change is that fewer climate forcing agents must be put into the atmo-
sphere than are taken out, a process referred to as “mitigation” [6]. 
These mitigation strategies involve every energy-consuming human 
activity. Sustained reductions in total global CO2 emissions have yet to 
occur. Several Western industrialized economies have managed to 
achieve small reductions in GHG emissions over the past two decades [7, 
8]. Still, these reductions in GHG are inadequate to achieve emission 
goals to keep global warming below 1.5 ◦C this century. Furthermore, 
increased GHG production is expected from low- and middle-income 

countries, especially without appropriate assistance from high income 
countries [9]. 

1.1. The impact of climate change and planetary health on human health 

Climate change affects human health through extreme weather 
events, heat stress, air pollution, infectious diseases, malnutrition, and 
other factors such as migration and displacement, outlined by the World 
Health organisation and The Lancet Countdown International Collabo-
ration on Health and Climate Change [10–13]. The health effects of air 
pollution and increasing temperatures are particularly salient for those 
with or at increased risk of CVD [13–17]. In 2019, air pollution was 
responsible for 11.8% of deaths and 8.3% of disability-adjusted life years 
(DALYs), and high temperatures were responsible for 0.54% of death 
and 0.46% of DALYs globally [18,19]. Assuming no adaptation, the 
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global climate change-attributable, heat-related excess mortality is ex-
pected to almost triple between 2030 and 2050 [20]. 

“Adaptation” is defined by the Intergovernmental Panel on Climate 
Change (IPCC) as the process of adjustment to actual or expected climate 
[21] (Table 2). This can be considered analogous to the secondary 
prevention of cardiovascular disease (CVD). It does not encompass the 
activities that prevent the onset of climate change itself but, rather, 
actions that minimize the impact of climate change when it has already 
occurred. Adaptation capacity is strongly linked to socioeconomic sta-
tus. Climate change disproportionately harms those with the fewest 
resources. Health care and other inequities will soar unless there are 
definite steps to avert this [22]. Already, racial minorities experience 
greater exposure to air pollution due to proximity to large roads and 
urban redlined areas (with the latter tending to be hotter than neigh-
boring areas due to a lack of tree cover) [23–26]. 

Planetary health is a related but different concept to climate change. 
It refers to the health impacts of disruption to the earth’s natural systems 
caused by humans [27]. It expands the definition of environmental 
factors influencing health beyond climate change to include forest 
clearance, land degradation, biodiversity loss, freshwater depletion and 
damage to coastal reefs and ecosystems [28]. Climate change mitigation 
and adaptation strategies have widely differing planetary health impli-
cations. For example, afforestation and tree-planting programs, which 
create CO2 sinks, also cause an imbalance in the water cycles of grass-
lands and their ecosystems [29,30]. Lithium mining in Chile, necessary 
for low carbon energy devices, has been criticized for depleting local 
groundwater resources across the Atacama Desert, destroying fragile 
ecosystems and converting meadows and lagoons into salt flats [31]. 
Considering the relationships among these global challenges may avoid 
the unintended consequences of addressing just one arm of planetary 

health. 

1.2. The impact of climate change on cardiovascular disease 

To date, review articles have centered primarily on the impact of 
pollution on CVD, with relatively few focusing on climate change as a 
broader topic [14,32–37]. This review broadens the focus of how 
climate change affects cardiac health beyond air pollution to include 
heat stress, infectious diseases, and other psychological and social fac-
tors (Fig. 1). Our specific aim is to evaluate, in the context of climate 
change, current CVD prevention lifestyle and pharmacological recom-
mendations provided to patients by clinicians and other healthcare 
professionals and to conclude with practical suggestions for clinicians on 
how to use personal decisions, policy advocacy, and your role as a 
clinician communicator to help address climate change. 

2. Air pollution 

2.1. Epidemiology and pathophysiology of air pollution 

Air pollution is defined as an unwanted, dangerous material intro-
duced into the earth’s environment due to human activity [38]. It is 
composed of a mixture of gasses and particles, and the dominant source 
is fossil fuel combustion [32]. Particulate matter (PM) is categorized into 
coarse particles (PM10), which have an aerodynamic diameter of <10 
μm, fine particles (PM2.5, <2.5 μm in diameter), and ultrafine particles 
(PM0.1, <0.1 μm). PM2.5 is the principal air pollutant contributing to 
CVD. The gaseous components of pollution are composed of primary 
gasses such as nitrogen oxides, sulfur dioxide, and carbon monoxide, 
and secondary gaseous pollutants such as tropospheric ozone (found at 

Fig. 1. Climate change and cardiovascular disease.  
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ground level and not a component of the stratospheric ozone layer) 
generated by nitrogen oxides and volatile organic compounds reacting 
in the presence of sunlight. 

Air pollution and climate change are intrinsically linked [39]. Fossil 
fuel combustion including “natural” gas [40], is the major cause of both 
problems. Increased temperatures and dry conditions have extended the 
fire season and increased the risk of wildfires [41]. Temperature tightly 
correlates with tropospheric ozone concentrations [42,43]. Increased 
temperatures are associated with stagnant atmospheric conditions 
[44–46], whereby light winds and a stable lower atmosphere prevent 
horizontal and vertical dispersion of airborne pollutants, while an 
absence of precipitation prevents the washing away of pollutants [47]. 
Air conditioning can help prevent heat-related deaths, but the current 
technology leads to further fossil fuel combustion [48]. 

Furthermore, associations between particulate matter and mortality, 

including cardiovascular mortality, are more robust with higher mean 
annual temperatures [49]. 

Mechanistic frameworks linking the pathophysiological effects of air 
pollution to CVD health begin with the deposition of PM2.5 in the lungs, 
where it interacts with cells and endogenous structures, both locally in 
the lungs and systemically across various vascular beds to initiate 
oxidative stress, low-grade inflammation, and create harmful biological 
intermediates (e.g., modified phospholipids) [33]. These primary initi-
ating pathways activate subsequent effector pathways such as (1) 
endothelial barrier dysfunction; (2) systemic inflammation; (3) pro-
thrombotic pathways; (4) autonomic imbalance; (5) 
hypothalamic-pituitary-adrenal axis activation; and (6) neural reflex 
arcs, all of which progress to the development of CVD risk factors such as 
hypertension [50,51], diabetes mellitus [52], dyslipidemia[53], and 
subclinical atherosclerosis [54]. Ultimately, clinical outcomes, such as 

Fig. 2. Exposure-response curve for the relative risk of cardiovascular disease associated with long-term exposure to PM2.5.  
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cardiovascular death [55–57], myocardial infarction [58,59], stroke 
[60,61], arrhythmia[62] and heart failure[63] have all been linked to 
air pollution [32,33,38,64–68]. 

Three characteristics of air pollution are worth highlighting to aid in 
developing strategies to counteract its adverse cardiovascular effects: 

• First, air pollution can be classified as ambient (outdoor) or house-
hold (indoor), which is vital in highlighting the differing sources, 
populations affected, and strategies required to improve health in 
these settings. 

• Second, the exposure-response curve displaying CVD risk as a func-
tion of pollutant concentration rises steeply at low levels before 
flattening out at extreme concentrations, without a threshold below 
which exposure can be considered safe (Fig. 2) [33,69]. As a result, 
99% of the global population breathes air pollution at levels that 
exceed the World Health Organization’s air quality guidelines, with 
low- and middle-income countries experiencing the highest expo-
sures [70].  

• Third, while chronic exposure to air pollution is similar to traditional 
risk factors, like hypertension, instigating chronic pathophysiolog-
ical processes that ultimately result in cardiovascular events, short- 
term (up to 7 days) exposure to even minimally increased concen-
trations of PM2.5 are also associated with increases in acute 
myocardial infarction (2.5% per 10 mg/m3) and heart failure hos-
pitalization or death [59,63]. 

The WHO interim targets (Its) are also highlighted. The Its are suc-
cessive targets of 35, 25, and 15 μg/m3, which were set up to reduce 
mortality. Exceeding IT-1 levels is associated with increased mortality 
by 15%. IT-2 and IT-3 reduce mortality by 6% at or below each level. For 
typical days in U.S. cities, the levels range within 24-h standards (5 to 
35 μg/m3). In India, peak daily levels exceeding 250 μg/m3 are com-
mon. Figure courtesy of Rajagopalan et al. [33,69]. 

2.2. Strategies to minimize the impact of air pollution on CVD 

The Air Quality Index (AQI) is a tool for reporting air quality. It is 
calculated based on five major pollutants’ ambient air concentrations: 
particle pollution and ground-level ozone are the main determinants, 
but nitrogen dioxide, sulfur dioxide and carbon monoxide are also 
considered [71]. The index ranges from 0 to 500, wh10ereby values at or 
below 100 are considered satisfactory. The index is subdivided into six 
categories, and graded activity recommendations are provided first to 
those particularly sensitive to air pollution, such as those with cardio-
vascular or pulmonary disease, and then to all individuals [72]. For 
example, when the AQI is 101–150, people with cardiopulmonary dis-
ease and diabetes, children and older adults are advised to reduce pro-
longed or heavy exertion (such activities include playing basketball or 
soccer, chopping wood, heavy manual labor, and vigorous running, 
cycling, or hiking). 

The core intervention against air pollution requires societal and 
governmental changes in shifting to renewable energy sources. Until 
that can be achieved, alternative policy interventions such as the pro-
motion of low/zero-emission transportation and urban landscape re-
form, in combination with personal interventions such as minimizing 
commuting during rush hour, and the use of face masks and air purifiers 
should be employed. Some studies, primarily from Asian megacities, 
have found the use of facemasks such as the N95 respirator and air-
filters/cleaners to be associated with improvements in cardiopulmonary 
surrogate markers such as blood pressure [73,74]. There may be a 
particular benefit for those living near heavily trafficked highways and 
powerplants or during periods of poor air quality due to meteorological 
stagnation events or wildfires [75,76]. This initial data is promising and 
summarized elsewhere [77], but further trials of personal strategies to 
reduce air pollution exposure and improve health outcomes are 
warranted. 

3. Heat 

3.1. Epidemiology of increasing temperatures 

The impact of increasing temperatures on human society is depen-
dent on both vulnerability and the magnitude of exposure to heat. 
Vulnerability refers to the propensity to be adversely affected by climate 
change and encompasses a variety of elements, including susceptibility 
to harm and lack of capacity to cope and adapt [78]. Vulnerability dif-
fers within communities, across societies, regions and countries, and 
may also change over time. For example, vulnerability is modulated by 
population age, access to air conditioning, overall health expenditure, 
and rates of CVD, obesity and mental health disorders [35,79–81]. 

Regarding heat exposure, the overall temperature-attributable 
excess mortality related to climate change is determined by the net ef-
fect of increased heat-related mortality and decreased cold-related 
mortality [82,83]. The frequency of heat waves, which are responsible 
for more significant mortality than any other extreme weather event in 
the U.S. and other parts of the world [84], is increasing in concert with 
mean temperatures [85,86]. Extreme cold weather conditions that 
accompany climate change also contributes to an increase in tempera-
ture variability that is expected to increase clinical cardiovascular events 
[87–93]. Although high-income countries will be better placed to pre-
vent harm from some health consequences of climate change – like 
undernutrition, diarrheal disease, malaria or dengue – heat mortality is 
expected to increase, even in wealthy countries [89]. The European heat 
wave of 2003 was a devastating example of this, with a death toll 
exceeding 30,000 [94]. 

3.2. Heat stress and wet bulb temperature 

Heat stress refers to the environmental conditions, for example, 
temperature or humidity, that an individual is exposed to, whereas heat 
strain refers to the physiological response to these conditions [95]. The 
wet bulb temperature represents the temperature a thermometer (or the 
human body) may be cooled to by ventilation (convection of ambient 
air) and evaporation [96]. At 100% relative humidity, the wet bulb 
temperature is equal to the air temperature, so the human body can only 
be cooled by ventilation. The wet bulb temperature is lower than the air 
temperature at lower humidity, when the human body can be cooled by 
both ventilation and evaporation. Building on the wet bulb concept, the 
Universal Thermal Climate Index (UTCI) also incorporates wind and 
radiation [97]. 

According to the UTCI, mild heat strain starts at 23 ◦C with high 
humidity or 27 ◦C with low humidity. Exposures as short as 6 h to 
temperatures above 35 ◦C – just below body temperature – with high 
humidity can be lethal as neither ventilation nor evaporation is effective 
[98]. The National Weather Service issues Excessive Heat Warnings or 
Advisories based on the “Heat Index,” which is the temperature at a 
reference humidity level that produces the same discomfort as the 
temperature and humidity of the actual environment [99]. However, 
there is mixed evidence that such alerts prevent excess death, which may 
relate to heterogeneity in heat response plans that facilitate individual 
behavior change in response to these alerts [100,101]. Public health 
officials must work with the weather service and behavioral scientists to 
develop an effective system for recognizing risks and implementing an 
effective plan that engages the public. 

3.3. Physiology of heat stress 

Humans cool themselves by dissipating heat with a combination of 
ventilation; conduction by direct contact with a surface; respiration by 
inhaling cool air and exhaling warm air; evaporation by sweating; and 
radiation. There is wide variation in an individual’s capacity to tolerate 
heat stress. The primary physiologic response to increased temperature 
involves endothelial vasorelaxation with increased cutaneous blood 

A.P. Jacobsen et al.                                                                                                                                                                                                                            



American Journal of Preventive Cardiology 12 (2022) 100391

5

flow [102,103]. This mechanism is blunted in the elderly and those with 
hypercholesterolemia; the latter is thought to occur due to 
atherosclerosis-mediated decreases in arterial smooth muscle respon-
siveness to nitrovasodilators [104,105]. The shift in blood flow from the 
core to the peripheral circulation results in a reduction of intracardiac 
filling pressures and systemic vascular resistance, necessitating an 
increased cardiac output [106–108]. 

An increase in ejection fraction is frequently seen with heat stress; 
however, diastolic function is often impaired such that stroke volume 
decreases, and cardiac output is augmented primarily by heart rate 
[109]. These hemodynamic changes may be less well tolerated in those 
with poor cardiovascular reserve, particularly those with underlying 
cardiomyopathy and valvular heart disease, and those who use cardiac 
medications that slow heart rate [110]. Acute rises in red cell and 
platelet counts, blood viscosity and plasma cholesterol may help explain 
the increased mortality from arterial thrombosis during heat stress 
[111]. 

Heatstroke is a specific pathology defined as hyperthermia associ-
ated with a systematic inflammatory response leading to a syndrome of 
multi-organ dysfunction in which encephalopathy predominates [112, 
113]. Classic heatstroke typically occurs in elderly, chronically ill pa-
tients whose physiologic reserves are overwhelmed by heat stress. Pa-
tients with underlying CVD or taking medications such as diuretics and 
beta-blockers are at increased risk of heatstroke. Exertional heatstroke 
occurs in otherwise healthy individuals performing strenuous outdoor 
activities, such as laborers, athletes, and soldiers. 

Initial management includes rapid on-site cooling with cold-water 
immersion for exertional heatstroke (before transporting to the emer-
gency department). Conductive or evaporative cooling is used for classic 
heatstroke as cold-water immersion is thought less well tolerated by 
elderly individuals, though data are limited [114]. Subsequent man-
agement requires monitoring for and addressing complications such as 
heart failure, arrhythmia, acute kidney injury, rhabdomyolysis, en-
cephalopathy, disseminated intravascular coagulation (DIC), acute res-
piratory distress syndrome and liver failure. 

3.4. Strategies to minimize the impact of rising temperatures on CVD 

As patients with CVD are at the highest risk for dying in a heatwave, 
it is prudent for clinicians to provide such patients with practical advice 
for coping with heat exposure [115,116]. Advice that is supported by 
scientific evidence includes to: (1) increase fluid intake and not wait for 
thirst to trigger drinking, particularly amongst the elderly; (2) remain in 
a cool or air-conditioned environment and wear loose-fitting clothes; (3) 
reduce normal activity levels; and (4) provide patients with “heatwave 
rules” specific to their cardiovascular medications. Examples could 
include careful home monitoring of their weight, blood pressure and 
symptoms of presyncope and halving their diuretic or antihypertensive 
dose on particularly hot days [81]. 

Finally, there should be a greater emphasis on educating the public 
on the risks of heat waves. In particular, the first heatwave of the 
summer is usually the most dangerous for human health as individuals 
have not had the opportunity to develop thermal tolerance or acclima-
tize [35,117,118]. Thermal tolerance refers to cellular adaptation with 
the accumulation of heat-shock proteins caused by a single, severe, 
nonlethal heat exposure. In contrast, heat acclimation refers to physio-
logic adaptions such as improved sweating, cutaneous blood flow, fluid 
balance and altered metabolism. Consequently, there is greater resil-
ience against heat stress [119–121]. Employing preventive measures 
such as those described above during this first heatwave can prevent 
substantial heat-related morbidity and mortality when humans are 
particularly vulnerable. 

4. Vector-borne disease 

Climate-driven vector-borne illness affects other specialties to a 

greater extent however the cardiovascular system may be involved 
[122]. The incidence of Lyme disease, a climate change indicator used 
by the Environmental Protection Agency, has doubled since 1990 [123]. 
The Ixodes scapularis deer tick that predominantly transmits the bacteria 
in North America is most active when temperatures and humidity are 
above 7◦C and 85% respectively [124,125]. Lyme carditis is an un-
common manifestation, occurring when Borrelia burgdorferi dissemi-
nates from the tick bite site in the skin, infecting heart tissue and causing 
inflammation [126]. The predominant cardiac manifestation is partial 
heart block, which usually is mild and resolves, though rarely progresses 
to complete heart block, which may be permanent without antibiotic 
therapy. Lyme myocarditis or pericarditis may also occur and can be 
fatal [127]. The same Ixodes tick is also responsible for transmitting the 
Babesia microti parasite, which infects erythrocytes [128]. Up to 10% of 
individuals presenting with babesiosis have evidence of decompensated 
heart failure, presumably due to anemia [129]. Babesiosis-associated 
myocarditis has also been described [130]. 

Between 8 and 12 million people worldwide are estimated to have 
Chagas disease [131], which results from infection with the protozoan 
Trypanosoma cruzi endemic to Central and South America. The infection 
is becoming more common in the U.S. primarily due to migration [132, 
133]. However, autochthonous infection i.e., spread between in-
dividuals in the same place (as opposed to importation or migration), 
has been acquired Arizona, Arkansas, California, Louisiana, Mississippi, 
Missouri, Tennessee, and Texas [134]—suggesting expanded 
climate-driven range. The triatomine insects involved in transmitting 
T. cruzi are becoming more common in these southern U.S. states, tend 
to develop faster and feed more often to avoid dehydration when tem-
peratures are >30 ◦C, resulting in this indigenous spread [135–137]. 
Manifestations of Chagas heart disease include dilated cardiomyopathy, 
ventricular aneurysm, ventricular arrhythmias and conduction distur-
bances (classically right bundle branch block) [109]. 

Temperature and humidity influence mosquito survival, frequency of 
blood feeding, and the development of parasites within mosquitos 
[138]. Malaria, caused by Plasmodium protozoa and transmitted by 
Anopheles mosquitoes [139], is endemic in sub-Saharan Africa, Asia, 
Oceania, South and Central America. Fluctuations in autochthonous 
transmission of malaria have also been seen in areas like Greece and the 
Anhui Province in China [140–142]. Cardiovascular involvement is not 
commonly reported in patients with malaria, but is associated with 
considerable morbidity when present modulated by a dysregulated in-
flammatory cytokine response, endothelial dysfunction and red blood 
cell sequestration [143,144]. 

The Aedes mosquito native to Southeast Asia is involved in the 
transmission of both chikungunya and dengue virus. Over the last two 
decades, climate conditions have developed such that much of Europe is 
increasingly suitable for breeding the Aedes mosquito [145]. Chi-
kungunya disease typically presents with fever and disabling arthralgias 
but can present with systemic involvement and more severe disease 
[146]. When this is the case, cardiovascular involvement typically pre-
sents acutely with myocarditis and arrhythmia, which may progress to 
chronic dilated cardiomyopathy [147]. Similarly, most dengue in-
fections are relatively benign; however, severe presentations include a 
dengue-associated vasculopathy with hemorrhage, endothelial 
dysfunction with capillary leak and hypovolemic shock, and organ 
dysfunction [148]. Direct effects of the dengue virus on the heart include 
myocardial impairment through circulating myocardial depressant fac-
tors, myocarditis, and arrhythmia, of which relative bradycardia is a 
notable feature [149,150]. 

Similar increases in the number of West Nile virus cases, are expected 
with current climate projections [135]. Atypical or particularly severe 
presentations of West Nile virus with cardiovascular involvement have 
been described [151], and cardiologists will need greater awareness of 
the clinical presentation and increasing prevalence of these infectious 
diseases. 
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5. Mental health disorders 

“Solastalgia” refers to the distress that is produced by environmental 
change [152], while climate anxiety refers to typical anxiety symptoms 
such as obsessive thinking, insomnia and panic attacks related to the 
global climate crisis and the threat of environmental disaster [153–155]. 
Some climate-related exposures, including heat and humidity and di-
sasters such as droughts, wildfires and floods, are associated with sub-
stance use disorders, schizophrenia, mood disorders, anxiety and 
vascular dementia [156,157]. This is pertinent because several psychi-
atric illnesses, including schizophrenia [158] and anxiety [159] have 
clear associations with CVD. For example, major psychiatric illness and 
atypical antipsychotic medications are components of cardiovascular 
risk prediction algorithms such as the QRISK3 risk calculator [160]. 
Beyond the more significant burden of CVD mediated by chronic mental 
health conditions, a greater incidence of Takotsubo cardiomyopathy has 
been documented in response to extreme weather events [161,162]. 

6. Ocean health and CVD 

Climate change results in increasing ocean temperature, higher sea 
levels, more acidic seawater, and greater levels of salinity with knock-on 
effects on the cardiovascular system. First, increasing sea levels has 
resulted in increased soil and potable water salinity with multiple 
adverse effects including increased rates of hypertension [163]; second, 
loss of fisheries impede the public’s ability to follow the American Heart 
Association’s (AHA) recommendation to consume fish at least twice a 
week; third, microplastic accumulation such as bisphenol-A in our 
oceans is consumed by humans and is associated with increased CVD 
[164]. Addressing these impacts of climate change on our oceans may 
ultimately yield positive effects on cardiovascular health [165]. 

7. How climate change impacts a cardiologist’s practice and 
recommendations 

7.1. Lifestyle 

Reviews have not gone beyond synthesizing evidence of harm from 
climate change. Here we go further to provide actionable recommen-
dations regarding lifestyle, review what limited evidence exists 
regarding pharmacologic therapies, and discuss the bidirectional 

relationship between the cardiovascular healthcare system and climate 
change. 

Certain “health co-benefits” may be experienced with climate change 
mitigation and adaptation strategies, particularly exercise and diet 
(Fig. 3) [34,166,167]. Adopting a low greenhouse gas emission diet 
through decreased meat consumption from methane-producing animals 
such as sheep and cows is associated with reduced mortality, ischemic 
heart disease, and stroke [168–170]. Mediterranean-type diets, which 
are high in plant foods and emphasize plant protein sources, simulta-
neously decrease the risk of CVD induced by air pollution and minimize 
greenhouse gas production [171–176]. 

Physical activity, including work and commuting-related, leisure, 
and fitness purposes, increases longevity [179] and decreases the risk of 
CVD [180], hypertension [181], obesity[182] and diabetes [183]. 
Active transportation methods such as cycling and walking simulta-
neously address physical inactivity and (by reducing CO2 emissions) 
climate change [184–187]. Urban planning more conducive to active 
transportation with decreased emissions may result in better cardio-
vascular health and reduce heat exposure due to increased greenspace 
with less asphalt. There are some concerns regarding outdoor exercise 
when air quality is particularly poor [188]. However, the car-
diometabolic health benefits of active commuting outweigh the 
increased health risks of traffic-related pollutants in all but the most 
extreme pollution cases [189,190]. High temperatures can also reduce 
the frequency and duration of physical exercise that can be tolerated 
[191,192]. As a result, sports medicine authorities in many countries, 
including the US, suggest postponing outdoor competitive events if the 
wet-bulb temperature is above 28 ◦C [193,194]. Cardiologists and pri-
mary care physicians should advocate for community designs that 
emphasize areas where individuals can exercise under natural foliage 
and away from polluting foci such as busy roads and industrial areas. 
Cigarette smoking and nicotine ingestion increase physiologic strain 
during heat exposure and may increase the risk of heat stress [195]. 

Finally, the AHA defines inadequate sleep duration as <7 h per night 
and is recognized as an important cardiometabolic risk factor [196,197]. 
In large prospective studies, healthy, nonobese adults, who reported <6 
h of sleep a day were at increased risk of myocardial infarction, obesity, 
dyslipidemia, hypertension and elevated fasting glucose [198,199]. 
Sleep disruption has also been reported as a result of climate-related 
temperature changes and climate-related stress responses [200,201]. 
Sound pollution from industry and motor vehicles (particularly those 

Fig. 3. The ABCs of cardiovascular disease prevention [177,178]: Climate change edit 
H, Health co-benefit. 
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with combustion engines) further contributes to poor sleep. Encouraging 
adequate sleep is yet another health co-benefit in that our patients’ 
metabolic health will benefit from more sleep. A sleeping human tends 
to consume less energy resulting in less GHG emissions. 

7.2. Medications 

Commonly prescribed cardiovascular medications impact our pa-
tients’ susceptibility to heat-related illness [202–204]. Diuretics, 
angiotensin-converting enzyme inhibitors, angiotensin II receptor 
blockers, and sodium-glucose cotransporter-2 inhibitors increase the 
risk of hypovolemia and heatstroke [205–207]. Beta-blockers decrease 
blood flow to the skin and reduce cardiac output, also placing in-
dividuals at higher risk of heatstroke [208]. 

Aspirin and clopidogrel use results in attenuated reflex cutaneous 
vasodilation, which may elevate core temperatures in the setting of both 
passive and exertional heat stress [209]. Conversely, there is some evi-
dence that aspirin may inhibit heat-induced platelet hyperaggregability 
involved in DIC secondary to heat stroke [210], and aspirin pretreat-
ment has been found to prolong survival in rats who sustain heat stroke 
[211]. Aspirin does not appear to modify the effect of PM exposure on 
ischemic stroke [212]. 

Statin medications may be thermo-protective primarily via cuta-
neous vasodilation [213,214], achieved by stabilizing the essential 
cofactor tetrahydrobiopterin, necessary for nitric oxide production 
[215,216]. An analysis of a large U.S. Medicaid program found a pro-
tective association of statin use against all-cause mortality which 
strengthened as daily average and daily maximum temperature 
increased [217]. Preclinical studies have suggested that the inflamma-
tory response induced by exposure to ambient air pollution may be 
nullified by statin therapy; however, this has not been borne out by 
observational data [218,219]. By understanding how medications 
impact heat and pollution sensitivity, clinicians can give individualized 
recommendations regarding their patient’s risk during extreme 
exposures. 

Certain medications are particularly heat-sensitive. For example, the 
efficacy of PCSK9-inhibitors significantly decreases when stored at 
temperatures higher than 25 ◦C for several hours [220], and insulin has 
long been recognized as a heat-sensitive medication that undergoes 
degradation at temperatures above 30 ◦C. With increasing temperature 
and temperature variability, those most disadvantaged will not have the 
resources to store their therapies correctly. Medicines stable at higher 
room temperatures are needed to avoid refrigeration, benefitting those 
without access to such appliances. 

7.3. Preparing the healthcare system for climate change 

Cardiovascular specialists need to work with hospital administrators 
in the healthcare system in which they practice to prepare for the 
increasing impact of climate change. Disruption of healthcare infra-
structure, due to events such as wildfires, floods and hurricanes is 
already affecting a substantial amount of healthcare delivery [221]. 
Desertification, ocean warming and acidification threaten the avail-
ability of healthy diets. Health systems should invest in disaster planning 
and early warning systems to prepare for waves of patients in extreme 
weather events or climate refugees [34]. Plans to access and provide 
nutritious food should also be developed. 

While climate change has significant impacts on health care delivery 
[222], the inverse is also true [223]. The U.S. healthcare system ac-
counts for 8.5% of all U.S. GHG emissions and, if it were a country, 
would rank 13th in the world in terms of emissions [224]. Steps to 
eliminating GHG production in the healthcare sector include reducing 
demand through preventive care, use of clean energy, choosing medical 
supplies and equipment with lower carbon footprints, and employing 
telemedicine where possible [225,226]. Cardiac catheterization labs 
and intensive care units are particularly carbon intense environments 

that require significant sustainability assessment and, where we should 
be especially sensitive to the consequences of providing futile care 
[227]. 

7.4. Personal and policy action items 

Climate health literature is dominated by impact research, however 
mitigation and adaptation responses remain niche topics [228]. Here we 
propose a list of actionable items that physicians may implement in their 
personal and professional capacity to reduce their impact on climate 
change (Table 1). Incorporating personal action items such as flying less 
and eating a plant based diet are important short term strategies to 
engage with other individuals and convince them of the important 
changes that need to occur. However, these actions alone are grossly 
inadequate, without wider communication or policy action [229]. 
Instigation of personal action items in the short term may also counter 
the “governance trap” wherein the public and governments each seek to 
attribute responsibility for instigating change to the other [230]. 

7.5. Climate change communication 

We have an opportunity to adapt our practice to protect our patients 
in this changing climate and use our voice to influence the mitigation 
and adaptation strategies required to combat climate change. The pub-
lic’s prioritization of climate change fluctuates. At the beginning of the 
last decade, it has fallen below that of the 1980s [230,240]. The 
discrepancy between the increasing scientific certainty of anthropogenic 
climate change and a decreasing public concern for the issue is known as 
the “psychological climate paradox” [241]. An information deficit does 
not explain this, but rather cognitive biases and social influences that 
prevent the facts about climate change from being internalized and 
influencing behavior [242]. One such critical influence has been the 

Table 1 
Actionable items physicians can implement in their personal and professional 
capacity.  

High Impact Personal Actions for Individuals in High-Income Countries [231]:*  
○ Fly less.  
○ Drive less, in a more efficient car, or do not drive.  
○ Eat a plant-based diet, be less wasteful with food.  
○ Make your home more energy efficient.  
○ Dress and shop sustainably.  
○ Consider having fewer children.  
○ Consider choosing carbon friendly pets. 
Policy, Advocacy and Media Action [232]:  
○ Legislative advocacy: E-mail, call or meet with your local, state or federal 

representatives about the health effects of climate change. Support candidates 
committed to addressing climate change. Testify at hearings. Join or follow 
advocacy groups to keep informed in terms of legislation, such as “Physicians for 
Social Responsibility” [233] or the “Medical Society Consortium on Climate and 
Health” [234].  

○ Determine if your hospital system has a climate solution plan, and if not, advocate 
or work to ensure one is developed [235].  

○ Engage in non-violent social protests to address the climate emergency [236].  
○ Pen an Op-Ed or write letters to the Editor about the connection between climate 

change and health after extreme weather events. 
Climate Change Communication [237]:  
○ Open up the conversation with patients or colleagues whenever there is a significant 

weather abnormality: flood, tropical storm, heatwave, wildfire.  
○ Highlight the health co-benefits of a low greenhouse gas lifestyle and diet.  
○ Discuss the health effects of climate change as a matter of routine when discussing 

other health maintenance.  
○ Encourage high-risk patients to make personal disaster action plans during hot- 

weather or disaster seasons (e.g., wildfire season, hurricane season).  
○ When a patient presents with a complication of climate change, alert them that this 

is the case.  
■ Syncope due to heat.  
■ Acute kidney injury due to hypovolemia.  
■ Asthma or COPD flares due to worsening air pollution.  
■ Myocardial infarction or heart failure exacerbation due to particulate matter or 

wildfire smoke exposure  
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concerted efforts of high emitting industries to influence the discourse 
on climate change, similar to big tobacco and the risks of smoking [243]. 

Humans tend to struggle with future, uncertain (or perceived to be 
debatable), and costly to correct (both financially and non-financially) 
problems [244]. Unfortunately, climate change is all three, which 
partially explains our inability to confront the issue. Climate commu-
nication must address these barriers by making the climate issue more 
personal, nudging the public towards action to minimize cognitive 
dissonance and denial, providing a narrative of opportunity and giving 
meaningful indicators on progress, for example, the proportion of 
reduction in CO2 emissions, or share of fossil fuels in total energy use 
[241,245]. 

Patients and the public respond to simple, clear messages repeated 
often and from trusted sources. Physicians have the experience and skills 
to communicate messages to influence their patients’ behaviors. For 
example, convincing a patient to take a statin deals with an uncertain 
and potentially costly future cardiovascular event. Yet, patients will 
regularly leave their cardiologist’s office assured that this is necessary. 

In 2020 many clinicians embraced a new role by rapidly educating 
themselves on the health effects of COVID-19 to allow them to provide 
reliable public health information [246]. Up to 75% of physicians report 
that it is their responsibility to inform patients about the health impacts 
of climate change [232,247]. Changing current behaviors should be the 
immediate priority, while larger-scale policy and regulatory solutions 
should be the focus long-term [248]. This is our opportunity to impress 
upon our patients the health impacts of climate change and provide 
guidance on what needs to be done to address the greatest public health 
challenge of the 21st century [249,250]. 

8. Conclusion 

Cardiovascular disease related to climate change can be prevented. 
This review has summarized the pathophysiology of cardiovascular 
disease associated with air pollution, heat and other medical conditions. 
Evidence-based recommendations relating to lifestyle, medication, car-
diovascular care, and communication have been devised so that clini-
cians and other healthcare professionals may take action to prevent 
climate-change-associated heart disease among their patients. 
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Table 2 
Glossary.  

Term Explanation 

Air pollution Unwanted, dangerous material that is 
introduced into the earth’s environment as a 
result of human activity 

Air Quality Index A tool for reporting air quality and is calculated 
based on the ambient air concentrations of five 
major pollutants 

Anthropocene The most recent period in the earth’s history 
when human activity significantly impacted the 
planet’s climate and ecosystems. 

Autochthonous transmission Spread of a microorganism between individuals 
in the same place (as opposed to importation or 
migration) 

Climate forcing Any influence on climate that originates from 
outside the climate system itself, for example, 
GHG or surface reflectivity (as opposed to 
radiative forcing as below) 

Climate change adaptation The process of adjustment to actual or expected 
climate 

Climate change mitigation Actions that reduce the rate of climate change 
by decreasing the rate of GHG emissions and 
increasing the rate of GHG removal [6] 

Health co-benefits Climate change mitigation activities that also 
provide health gains 

Heat acclimation Physiologic adaptions including improved 
sweating, cutaneous blood flow, fluid balance 
and altered metabolism. and consequently, 
greater resilience against heat stress 

Heat index The temperature at a reference humidity level 
produces the same level of discomfort as the 
temperature and humidity of the actual 
environment. 

Heat strain The physiological response to environmental 
conditions that an individual is exposed to 

Heat stress The environmental conditions, for example, 
temperature or humidity, that an individual is 
exposed to 

Heatstroke A form of hyperthermia associated with a 
systematic inflammatory response leads to a 
multi-organ dysfunction syndrome in which 
encephalopathy predominates. An entirely 
separate entity to a cerebrovascular accident 

Heatwave A series of unusually hot days. Variably defined, 
but the EPA defines as two or more consecutive 
days when the daily minimum apparent 
temperature (the actual temperature adjusted 
for humidity) in a particular city exceeds the 
85th percentile of historical July and August 
temperatures (1981–2010) for that city 

Intergovernmental Panel on 
Climate Change (IPCC) 

The international body set up by the United 
Nations provides reports on the scientific basis 
of climate change, its impacts and future risks, 
and options for adaptation and mitigation 

Particulate matter (PM) The particle component of air pollution is 
categorized based on the diameter of the 
particle 

Planetary health Refers to the health impacts of disruption to the 
earth’s natural systems caused by humans 

Psychological climate paradox The discrepancy between the increasing 
scientific certainty of anthropogenic-driven 
climate change and a decreasing public concern 
for the issue 

Radiative forcing The difference between incoming and outgoing 
radiation is known as a planet’s radiative 
forcing (as opposed to climate forcing as above) 

Representative Concentration 
Pathway (RCP) 

RCPs are pathways that provide time-dependent 
projections of atmospheric greenhouse gas 
(GHG) concentrations [238] 

Shared Socioeconomic Pathway 
(SSP) 

SSPs are reference pathways describing 
plausible alternative trends in the evolution of 
society and ecosystems over a century 
timescale, in the absence of climate change or 
climate policies [239] 

The Universal Thermal Climate 
Index (UTCI)  

Table 2 (continued ) 

Term Explanation 

Provides an assessment of thermal strain in 
humans incorporating temperature, humidity, 
wind and radiation 

Thermal tolerance Cellular adaptation with the accumulation of 
heat-shock proteins caused by a single, severe 
but nonlethal heat exposure 

Tropospheric ozone One of the gaseous components of air pollution 
found at ground level (as opposed to 
stratospheric ozone, which protects life on Earth 
from harmful ultraviolet radiation) 

Vulnerability Vulnerability refers to the propensity or 
predisposition to be adversely affected by 
climate change and encompasses a variety of 
concepts and elements, including sensitivity or 
susceptibility to harm and lack of capacity to 
cope and adapt [78] 

Wet bulb temperature The temperature to which a thermometer (or the 
human body) may be cooled by ventilation and 
evaporation  
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